1
|
Lv C, Huang Y, Yan R, Gao Y. Vascular endothelial growth factor induces the migration of human airway smooth muscle cells by activating the RhoA/ROCK pathway. BMC Pulm Med 2023; 23:505. [PMID: 38093231 PMCID: PMC10720058 DOI: 10.1186/s12890-023-02803-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 12/02/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Airway remodeling due to increased airway smooth muscle cell (ASMC) mass, likely due to enhanced proliferation, hypertrophy, and migration, has been proven to be highly correlated with decreased lung function in asthma patients. Vascular endothelial growth factor (VEGF) mediates vascular and extravascular remodeling and inflammation and has been proven to be involved in the progression of asthma. Previous studies have focused on the effects of VEGF on ASMC proliferation, but few researchers have focused on the effects of VEGF on human ASMC migration. The purpose of this study was to explore the effect of VEGF on the migration of ASMCs and its related signaling pathway mechanism to provide evidence for the treatment of airway remodeling. METHODS We examined the effects of VEGF induction on ASMC migration and explored the mechanisms involved in ASMC migration. RESULTS We found by wound healing and Transwell assays that VEGF promoted ASMC migration. Through the Cell Counting Kit-8 (CCK-8) experiment, we found that VEGF had no significant effect on the proliferation of ASMCs, which excluded the involvement of cell proliferation in the process of wound healing. Moreover, a cellular immunofluorescence assay showed that VEGF promoted F-actin reorganization, and Western blotting showed that VEGF improved RhoA activation and myosin phosphatase targeting subunit-1 (MYPT1) and myosin light chain (MLC) phosphorylation in ASMCs. Treatment with the ROCK inhibitor Y27632 significantly attenuated the effects of VEGF on MYPT1/MLC activation and cell migration. CONCLUSION In conclusion, the results suggest that the promigratory function of VEGF activates the RhoA/ROCK pathway, induces F-actin reorganization, improves the migration of ASMCs, and provides a better rationale for targeting the RhoA/ROCK pathway for therapeutic approaches in airway remodeling.
Collapse
Affiliation(s)
- Chengtian Lv
- Department of Pulmonary and Critical Care Medicine; Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuwen Huang
- Department of Pulmonary and Critical Care Medicine; Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ruirong Yan
- Department of Pulmonary and Critical Care Medicine; Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuanmei Gao
- Department of Pulmonary and Critical Care Medicine; Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
2
|
Tota M, Łacwik J, Laska J, Sędek Ł, Gomułka K. The Role of Eosinophil-Derived Neurotoxin and Vascular Endothelial Growth Factor in the Pathogenesis of Eosinophilic Asthma. Cells 2023; 12:cells12091326. [PMID: 37174726 PMCID: PMC10177218 DOI: 10.3390/cells12091326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/23/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Asthma is a chronic complex pulmonary disease characterized by airway inflammation, remodeling, and hyperresponsiveness. Vascular endothelial growth factor (VEGF) and eosinophil-derived neurotoxin (EDN) are two significant mediators involved in the pathophysiology of asthma. In asthma, VEGF and EDN levels are elevated and correlate with disease severity and airway hyperresponsiveness. Diversity in VEGF polymorphisms results in the variability of responses to glucocorticosteroids and leukotriene antagonist treatment. Targeting VEGF and eosinophils is a promising therapeutic approach for asthma. We identified lichochalcone A, bevacizumab, azithromycin (AZT), vitamin D, diosmetin, epigallocatechin gallate, IGFBP-3, Neovastat (AE-941), endostatin, PEDF, and melatonin as putative add-on drugs in asthma with anti-VEGF properties. Further studies and clinical trials are needed to evaluate the efficacy of those drugs. AZT reduces the exacerbation rate and may be considered in adults with persistent symptomatic asthma. However, the long-term effects of AZT on community microbial resistance require further investigation. Vitamin D supplementation may enhance corticosteroid responsiveness. Herein, anti-eosinophil drugs are reviewed. Among them are, e.g., anti-IL-5 (mepolizumab, reslizumab, and benralizumab), anti-IL-13 (lebrikizumab and tralokinumab), anti-IL-4 and anti-IL-13 (dupilumab), and anti-IgE (omalizumab) drugs. EDN over peripheral blood eosinophil count is recommended to monitor the asthma control status and to assess the efficacy of anti-IL-5 therapy in asthma.
Collapse
Affiliation(s)
- Maciej Tota
- Student Scientific Group of Adult Allergology, Clinical Department of Internal Medicine, Pneumology and Allergology, Wroclaw Medical University, 50-369 Wrocław, Poland
| | - Julia Łacwik
- Student Scientific Group of Microbiology and Immunology, Department of Microbiology and Immunology, Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Julia Laska
- Student Scientific Group of Microbiology and Immunology, Department of Microbiology and Immunology, Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Łukasz Sędek
- Department of Microbiology and Immunology, Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Krzysztof Gomułka
- Clinical Department of Internal Medicine, Pneumology and Allergology, Wroclaw Medical University, 50-369 Wrocław, Poland
| |
Collapse
|
3
|
Ward T, Jha A, Daynes E, Ackland J, Chalmers JD. Review of the British Thoracic Society Winter Meeting 23 November 2022 23-25 November 2022. Thorax 2023; 78:e1. [PMID: 36717241 DOI: 10.1136/thorax-2022-219941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/06/2023] [Indexed: 02/01/2023]
Abstract
The British Thoracic Society Winter Meeting at the QEII Centre in London provided the first opportunity for the respiratory community to meet and disseminate research findings face to face since the start of the COVID-19 pandemic. World-leading researchers from the UK and abroad presented their latest findings across a range of respiratory diseases. This article aims to represent the range of the conference and as such is written from the perspective of a basic scientist, a physiotherapist and two doctors. The authors reviewed showcase sessions plus a selection of symposia based on their personal highlights. Content ranged from exciting new developments in basic science to new and unpublished results from clinical trials, delivered by leading scientists from their fields including former deputy chief medical officer Professor Sir Jonathan Van-Tam and former WHO chief scientist Dr Soumya Swaminathan.
Collapse
Affiliation(s)
- Tom Ward
- Department Respiratory Sciences, College of Life Sciences, University of Leicester, Leicester, UK
| | - Akhilesh Jha
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Enya Daynes
- Department of Respiratory Medicine, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Jodie Ackland
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - James D Chalmers
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| |
Collapse
|
4
|
Specjalski K, Romantowski J, Niedoszytko M. YKL-40 as a possible marker of neutrophilic asthma. Front Med (Lausanne) 2023; 10:1115938. [PMID: 36844232 PMCID: PMC9945318 DOI: 10.3389/fmed.2023.1115938] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 01/23/2023] [Indexed: 02/11/2023] Open
Abstract
Asthma is a heterogeneous chronic disorder of the airways, with inflammation and bronchial hyperresponsiveness as its major underlying phenomena. Asthmatics vary in terms of inflammation pattern, concomitant pathologies, and factors aggravating the course of the disease. As a result, there is a need for sensitive and specific biomarkers that could facilitate diagnosing asthma as well as phenotyping in everyday practice. Chitinases and chitinase-like proteins (CLPs) seem promising in this field. Chitinases are evolutionarily conserved hydrolases that degrade chitin. In contrast, CLPs bind chitin but do not have degrading activity. Mammalian chitinases and CLPs are produced by neutrophils, monocytes, and macrophages in response to parasitic or fungal infections. Recently, several questions have been raised about their role in chronic airway inflammation. Several studies demonstrated that overexpression of CLP YKL-40 was associated with asthma. Moreover, it correlated with exacerbation rate, therapy resistance, poor control of symptoms, and, inversely, with FEV1. YKL-40 facilitated allergen sensitization and IgE production. Its concentration was elevated in bronchoalveolar lavage fluid after an allergen challenge. It was also found to promote the proliferation of bronchial smooth muscle cells and correlate with subepithelial membrane thickness. Thus, it may be involved in bronchial remodeling. Associations between YKL-40 and particular asthma phenotypes remain unclear. Some studies showed that YKL-40 correlates with blood eosinophilia and FeNO, suggesting a role in T2-high inflammation. Quite the opposite, cluster analyses revealed the highest upregulation in severe neutrophilic asthma and obesity-associated asthma. The main limitation in the practical application of YKL-40 as a biomarker is its low specificity. High serum levels of YKL-40 were also found in COPD and several malignancies, in addition to infectious and autoimmune diseases. To conclude, the level of YKL-40 correlates with asthma and some clinical features in the whole asthmatic population. The highest levels are found in neutrophilic and obesity-related phenotypes. However, due to its low specificity, the practical application of YKL-40 remains uncertain but could be useful in phenotyping, especially when combined with other biomarkers.
Collapse
Affiliation(s)
| | - Jan Romantowski
- Department of Allergology, Medical University of Gdańsk, Gdańsk, Poland
| | - Marek Niedoszytko
- Department of Allergology, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
5
|
Jiang Y, Yan Q, Liu CX, Peng CW, Zheng WJ, Zhuang HF, Huang HT, Liu Q, Liao HL, Zhan SF, Liu XH, Huang XF. Insights into potential mechanisms of asthma patients with COVID-19: A study based on the gene expression profiling of bronchoalveolar lavage fluid. Comput Biol Med 2022; 146:105601. [PMID: 35751199 PMCID: PMC9117163 DOI: 10.1016/j.compbiomed.2022.105601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 11/21/2022]
Abstract
Background The 2019 novel coronavirus disease (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is currently a major challenge threatening the global healthcare system. Respiratory virus infection is the most common cause of asthma attacks, and thus COVID-19 may contribute to an increase in asthma exacerbations. However, the mechanisms of COVID-19/asthma comorbidity remain unclear. Methods The “Limma” package or “DESeq2” package was used to screen differentially expressed genes (DEGs). Alveolar lavage fluid datasets of COVID-19 and asthma were obtained from the GEO and GSV database. A series of analyses of common host factors for COVID-19 and asthma were conducted, including PPI network construction, module analysis, enrichment analysis, inference of the upstream pathway activity of host factors, tissue-specific analysis and drug candidate prediction. Finally, the key host factors were verified in the GSE152418 and GSE164805 datasets. Results 192 overlapping host factors were obtained by analyzing the intersection of asthma and COVID-19. FN1, UBA52, EEF1A1, ITGB1, XPO1, NPM1, EGR1, EIF4E, SRSF1, CCR5, PXN, IRF8 and DDX5 as host factors were tightly connected in the PPI network. Module analysis identified five modules with different biological functions and pathways. According to the degree values ranking in the PPI network, EEF1A1, EGR1, UBA52, DDX5 and IRF8 were considered as the key cohost factors for COVID-19 and asthma. The H2O2, VEGF, IL-1 and Wnt signaling pathways had the strongest activities in the upstream pathways. Tissue-specific enrichment analysis revealed the different expression levels of the five critical host factors. LY294002, wortmannin, PD98059 and heparin might have great potential to evolve into therapeutic drugs for COVID-19 and asthma comorbidity. Finally, the validation dataset confirmed that the expression of five key host factors were statistically significant among COVID-19 groups with different severity and healthy control subjects. Conclusions This study constructed a network of common host factors between asthma and COVID-19 and predicted several drugs with therapeutic potential. Therefore, this study is likely to provide a reference for the management and treatment for COVID-19/asthma comorbidity.
Collapse
Affiliation(s)
- Yong Jiang
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, China.
| | - Qian Yan
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, China.
| | - Cheng-Xin Liu
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, China.
| | - Chen-Wen Peng
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, China.
| | - Wen-Jiang Zheng
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, China.
| | - Hong-Fa Zhuang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, China.
| | - Hui-Ting Huang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, China.
| | - Qiong Liu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, China.
| | - Hui-Li Liao
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, China.
| | - Shao-Feng Zhan
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, China.
| | - Xiao-Hong Liu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, China.
| | - Xiu-Fang Huang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, China.
| |
Collapse
|
6
|
Unravelling the molecular mechanisms underlying chronic respiratory diseases for the development of novel therapeutics via in vitro experimental models. Eur J Pharmacol 2022; 919:174821. [DOI: 10.1016/j.ejphar.2022.174821] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/01/2022] [Accepted: 02/09/2022] [Indexed: 12/11/2022]
|
7
|
Yan F, Hao Y, Gong X, Sun H, Ding J, Wang J. Silencing a disintegrin and metalloproteinase‑33 attenuates the proliferation of vascular smooth muscle cells via PI3K/AKT pathway: Implications in the pathogenesis of airway vascular remodeling. Mol Med Rep 2021; 24:502. [PMID: 33982767 PMCID: PMC8134872 DOI: 10.3892/mmr.2021.12141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 03/22/2021] [Indexed: 01/23/2023] Open
Abstract
Accumulating evidence suggests that pulmonary expression of a disintegrin and metalloproteinase-33 (ADAM33) serves a key role in the pathogenesis of airway remodeling-related diseases, including asthma. Airway vascular proliferation has been recognized as a key feature of airway remodeling. Our previous study showed that ADAM33 is constitutively expressed in airway vascular smooth muscle cells in patients with asthma, suggesting a potential role of ADAM33 in regulating airway vascular remodeling. Using in vitro human aortic smooth muscle cells (HASMCs) and lentiviral vector carrying short hairpin RNA for ADAM33, the present study aimed to evaluate the influence of ADAM33 silencing on the proliferation and apoptosis of HASMCs and the underlying molecular pathways. Cellular proliferation was observed using the Cell Counting Kit-8 method. Cellular apoptosis was evaluated with Annexin V-PE/7-AAD staining and flow cytometry. Reverse transcription-quantitative PCR and western blotting were used to evaluate the changes in mRNA and protein levels of involved signaling molecules. It was found that silencing of ADAM33 expression in HASMCs significantly inhibited proliferation, but induced the apoptosis of HASMCs. These changes were accompanied by inhibition of the PI3K/AKT/ERK pathway and Bcl-2, but an increase in Bax expression. These results suggested that constitutive expression of ADAM33 may be important to maintain a proliferative phenotype in HASMCs. The influences of ADAM33 on proliferation and apoptosis of HASMCs may involve regulation of PI3K/AKT/ERK and Bax/Bcl-2 pathways. These findings suggested an important role of ADAM33 in airway vascular remodeling and potential therapeutic significance of ADAM33 inhibition in airway remodeling-related diseases.
Collapse
Affiliation(s)
- Fang Yan
- School of Public Health, Xinjiang Medical University, Urumqi, Xinjiang Uyghur Autonomous Region 830011, P.R. China
| | - Yanyan Hao
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Respiratory Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uyghur Autonomous Region 830054, P.R. China
| | - Xinji Gong
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Respiratory Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uyghur Autonomous Region 830054, P.R. China
| | - Hu Sun
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Respiratory Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uyghur Autonomous Region 830054, P.R. China
| | - Jianbing Ding
- Department of Immunology, College of Basic Medicine, Xinjiang Medical University, Urumqi, Xinjiang Uyghur Autonomous Region 830011, P.R. China
| | - Jing Wang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Respiratory Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uyghur Autonomous Region 830054, P.R. China
| |
Collapse
|
8
|
Manli W, Hua Q. Effect of miR-506-3p on Proliferation and Apoptosis of Airway Smooth Muscle Cells in Asthmatic Mice by Regulating CCL2 Gene Expression and Mediating TLR4/NF-κB Signaling Pathway Activation. Mol Biotechnol 2021; 63:410-423. [PMID: 33638773 DOI: 10.1007/s12033-021-00309-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/12/2021] [Indexed: 10/22/2022]
Abstract
We aimed to investigate the effect of miR-506-3p on the proliferation and apoptosis of airway smooth muscle cells (ASMCS) in asthmatic mice by regulating the activation of TLR4/NF-κB signaling pathway through targeted regulation of C-C Motif Chemokine Ligand 2 (CCL2) expression. Twenty-four BALB/c mice of specific pathogen-free grade were selected to establish asthmatic mouse model, which were randomly divided into normal control group and asthma model group (n = 12 for each group). HE and IHC staining, bioinformatics and dual luciferase reporter assay, RT-PCR MTT, flow cytometry and Western blot were used in this research. HE staining showed airway epithelium thickening, submucosal inflammatory cell infiltration and airway smooth muscle thickening, and the positive expression rate of CCL2 was significantly increased in asthma model group (all P < 0.05). CCL2 was the target gene of miR-506-3p. Moreover, the expression of miR-506-3p in asthma model group was significantly decreased, the mRNA and protein expression levels of CCL2, TLR4, NF-κB (p65) and Bcl-2 were significantly increased, while those of Bax were decreased (all P < 0.05). In miR-506-3p mimic group or siRNA-CCL2 group, the expression of CCL2, TLR4, NF-κB (p65) and Bcl-2 decreased obviously, while that of Bax increased, cell proliferation decreased, G1 phase prolonged, G2 & S phases shortened, and apoptosis rate increased significantly (all P < 0.05), whereas the opposite trends were found in miR-506-3p inhibitor group (all P < 0.05). However, there was no statistical difference in the above-mentioned indexes in miR-506-3p inhibitor + siRNA-CCL2 group (all P > 0.05). Overexpression of miR-506-3p can inhibit ASMCS proliferation and promote apoptosis via inhibiting CCL2 expression and suppressing the activation of TLR4/NF-κB signaling pathway. Inhibited expression of miR-506-3p can reverse the positive role of CCL2 gene silencing. Our study is the first to prove the beneficial role of miR-506-3p-CCL2-TLR4/NF-κB regulatory axis in the development of asthma.
Collapse
Affiliation(s)
- Wang Manli
- Department 1 of Respiratory and Critical Care Medicine, Nanyang First People's Hospital, No. 12, Renmin Road, Nanyang City, 473000, Hubei, People's Republic of China.
| | - Qiao Hua
- Department 1 of Respiratory and Critical Care Medicine, Nanyang First People's Hospital, No. 12, Renmin Road, Nanyang City, 473000, Hubei, People's Republic of China
| |
Collapse
|
9
|
Kiilerich P, Cortes R, Lausten-Thomsen U, Borbye-Lorenzen N, Holmgaard S, Skogstrand K. Delivery Modality Affect Neonatal Levels of Inflammation, Stress, and Growth Factors. Front Pediatr 2021; 9:709765. [PMID: 34631615 PMCID: PMC8492985 DOI: 10.3389/fped.2021.709765] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022] Open
Abstract
Introduction: As part of the study CODIBINE, Correlations and Diagnoses for Biomarkers in New-borns, the main objective of the study was to explore neonatal inflammation, stress, neurodevelopment, and growth factors after in-labor and pre-labor cesarean section compared to vaginal delivery. Increasing evidence has shown that birth delivery mode has an impact on imminent and long-term child health. However, the effect of the timing of cesarean section is insufficiently elucidated. The main objective of the study was to explore the effect of different delivery modes, vaginal delivery compared to cesarean section with or without initiation of labor, on the infants. Methods: We designed a retrospective cohort study, including dried blood spot samples from mature (gestational age ≥ 37) newborns delivered in the years 2009-2011. The newborns were divided into three groups after delivery mode: (1) pre-labor cesarean section (n = 714), i.e., cesarean delivery without initiation of labor, (2) in-labor cesarean section (n = 655), i.e., cesarean section after initiation of labor, and (3) vaginal delivery (n = 5,897). We measured infant levels of inflammatory (IL-18, MCP-1, CRP, sTNF RI), stress (HSP-70), growth (EGF, VEGF-A), and neurotrophic factors (BDNF, NT-3, S100B) 2-4 days after birth. Results: The neonatal levels of inflammatory and stress markers were significantly lower, while the levels of growth factors were higher after pre-labor cesarean section compared to vaginal delivery. The biomarker levels were similar after in-labor cesarean section and vaginal delivery. Removing cases with pre-labor rupture of membranes and artificial rupture of membranes in the calculations did not change the results. The levels of neurotrophic factors were unaffected by delivery form. Males had generally higher levels of inflammation and lower levels of growth and neurotrophic factors. Overall, the levels of inflammatory markers increased, and the growth factors decreased with increasing gestational age. Conclusion: The present study of the biomarker levels after birth suggests that the labor process has an important effect on the fetal immune system and level of stress, regardless if the delivery ends with cesarean section or vaginal birth.
Collapse
Affiliation(s)
- Pia Kiilerich
- Department for Congenital Disorders, Danish Center for Neonatal Screening, Statens Serum Institute, Copenhagen, Denmark
| | - Rikke Cortes
- Department for Congenital Disorders, Danish Center for Neonatal Screening, Statens Serum Institute, Copenhagen, Denmark
| | - Ulrik Lausten-Thomsen
- Neonatal Intensive Care Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Nis Borbye-Lorenzen
- Department for Congenital Disorders, Danish Center for Neonatal Screening, Statens Serum Institute, Copenhagen, Denmark
| | - Solveig Holmgaard
- Department for Congenital Disorders, Danish Center for Neonatal Screening, Statens Serum Institute, Copenhagen, Denmark
| | - Kristin Skogstrand
- Department for Congenital Disorders, Danish Center for Neonatal Screening, Statens Serum Institute, Copenhagen, Denmark
| |
Collapse
|
10
|
Kim SH, Pei QM, Jiang P, Liu J, Sun RF, Qian XJ, Liu JB. Effects of dexamethasone on VEGF-induced MUC5AC expression in human primary bronchial epithelial cells: Implications for asthma. Exp Cell Res 2020; 389:111897. [PMID: 32035951 DOI: 10.1016/j.yexcr.2020.111897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 11/17/2022]
Abstract
Mucins are major macromolecular components of lung mucus that are mainly responsible for the viscoelastic property of mucus. MUC5AC is a major mucin glycoprotein that is hypersecreted in asthmatic individuals. Vascular endothelial growth factor (VEGF) has been implicated in inflammatory and airway blood vessel remodeling in asthmatics. Our previous studies indicate that VEGF upregulates MUC5AC expression by interacting with VEGF receptor 2 (VEGFR2). It has been shown that dexamethasone (Dex) downregulates MUC5AC expression; however, the underlying mechanisms have not been completely elucidated. Therefore, we sought to investigate the effect of Dex on MUC5AC expression induced by VEGF and study the underlying mechanisms. We tested the effects of Dex on VEGFR2 and RhoA activation, caveolin-1 expression, and the association of caveolin-1 and VEGFR2 in primary bronchial epithelial cells. Dex downregulated MUC5AC mRNA and protein levels in a dose- and time-dependent manner, and suppressed the activation of VEGFR2 and RhoA induced by VEGF. Additionally, Dex upregulated caveolin-1 protein levels in a dose- and time-dependent manner. Furthermore, phospho-VEGFR2 expression was decreased through overexpression of caveolin-1 and increased after caveolin-1 knockdown. Dex treatment attenuated the VEGF-decreased association of caveolin-1 and VEGFR2. Collectively, our findings suggest that Dex downregulates VEGF-induced MUC5AC expression by inactivating VEGFR2 and RhoA. Furthermore, decreased MUC5AC expression by Dex was related to the increased association of caveolin-1 with VEGFR2. Further studies characterizing these mechanisms are required to facilitate the development of improved treatment strategies for asthma.
Collapse
Affiliation(s)
- Sung-Ho Kim
- Department of Respiration, Tianjin First Central Hospital, Tianjin, China.
| | - Qing-Mei Pei
- Department of Radiology, Tianjin Hospital of Integrated Traditional Chinese and Western Medicine, Tianjin, China.
| | - Ping Jiang
- Department of Respiration, Tianjin First Central Hospital, Tianjin, China.
| | - Juan Liu
- Department of Respiration, Tianjin First Central Hospital, Tianjin, China.
| | - Rong-Fei Sun
- Department of Respiration, Tianjin First Central Hospital, Tianjin, China.
| | - Xue-Jiao Qian
- Department of Respiration, Tianjin First Central Hospital, Tianjin, China.
| | - Jiang-Bo Liu
- Department of Respiration, Tianjin First Central Hospital, Tianjin, China.
| |
Collapse
|
11
|
Kim SH, Pei QM, Jiang P, Liu J, Sun RF, Qian XJ, Liu JB. Upregulation of MUC5AC by VEGF in human primary bronchial epithelial cells: implications for asthma. Respir Res 2019; 20:282. [PMID: 31831011 PMCID: PMC6909599 DOI: 10.1186/s12931-019-1245-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 11/22/2019] [Indexed: 12/24/2022] Open
Abstract
Background Airway mucus hypersecretion is an important pathophysiological feature in asthma. Mucins are glycoproteins that are mainly responsible for the viscoelastic property of mucus, and MUC5AC is a major mucin glycoprotein that is overproduced in asthma. Vascular endothelial growth factor (VEGF) has been implicated in inflammatory and airway blood vessel remodeling in asthmatics. Therefore, we sought to investigate the effect of VEGF on MUC5AC expression and study the underlying mechanisms. Methods In order to elucidate the precise mechanism underlying the effect of VEGF on MUC5AC expression, we tested the effects of VEGF on RhoA activation and the association of caveolin-1 and VEGFR2 in Primary Bronchial Epithelial Cells. Results VEGF up-regulated MUC5AC mRNA and protein levels in a dose- and time-dependent manner, and activated RhoA. Additionally, VEGF-induced MUC5AC expression and RhoA activation were enhanced by disrupting caveolae with cholesterol depletion and reversed by cholesterol repletion, and inhibited by a selective VEGF receptor 2 (VEGFR2) inhibitor SU1498. Furthermore, phospho-VEGFR2 expression was decreased via overexpression of caveolin-1. VEGF treatment reduced the association of caveolin-1 and VEGFR2. Conclusion Collectively, our findings suggest that VEGF up-regulates MUC5AC expression and RhoA activation by interaction with VEGFR2, and this phenomenon was related with the association of caveolin-1 and VEGFR2. Further studies on these mechanisms are needed to facilitate the development of treatments for asthma.
Collapse
Affiliation(s)
- Sung-Ho Kim
- Department of Respiration, Tianjin First Central Hospital, Fukanglu-24, Nankaiqu, Tianjin, 300192, China.
| | - Qing-Mei Pei
- Department of Radiology, Tianjin Hospital of Integrated Traditional Chinese and Western Medicine, Tianjin, China
| | - Ping Jiang
- Department of Respiration, Tianjin First Central Hospital, Fukanglu-24, Nankaiqu, Tianjin, 300192, China
| | - Juan Liu
- Department of Respiration, Tianjin First Central Hospital, Fukanglu-24, Nankaiqu, Tianjin, 300192, China
| | - Rong-Fei Sun
- Department of Respiration, Tianjin First Central Hospital, Fukanglu-24, Nankaiqu, Tianjin, 300192, China
| | - Xue-Jiao Qian
- Department of Respiration, Tianjin First Central Hospital, Fukanglu-24, Nankaiqu, Tianjin, 300192, China
| | - Jiang-Bo Liu
- Department of Respiration, Tianjin First Central Hospital, Fukanglu-24, Nankaiqu, Tianjin, 300192, China
| |
Collapse
|
12
|
Wang M, Li H, Zhao Y, Lv C, Zhou G. Rhynchophylline attenuates allergic bronchial asthma by inhibiting transforming growth factor-β1-mediated Smad and mitogen-activated protein kinase signaling transductions in vivo and in vitro. Exp Ther Med 2018; 17:251-259. [PMID: 30651790 PMCID: PMC6307401 DOI: 10.3892/etm.2018.6909] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 08/10/2018] [Indexed: 12/20/2022] Open
Abstract
Rhynchophylline (Rhy) is a major active component of Uncaria rhynchophylla and exhibits the potential to inhibit the proliferation of airway smooth muscle cells (ASMCs). In the current study, it was hypothesized that Rhy serves a key role in the anti-asthma effect of Uncaria rhynchophylla by inhibiting transforming growth factor-β1 (TGF-β1)-mediated activation of Smad and mitogen-activated protein kinase (MAPK) signaling. Allergic asthma was induced in mice using ovalbumin (OVA), and the effect of Rhy treatment on inflammatory and allergic responses in the bronchoalveolar lavage fluid (BALF) and serum of mice was determined. Subsequently, the changes in TGF-β1-induced Smad and MAPK signaling following Rhy administration were detected to determine the mechanism associated with this treatment. In addition, TGF-β1 was employed to induce hyperplasia of ASMCs, and the effect of Rhy on proliferation of ASMCs, and Smad and MAPK signaling in vitro was also assessed. The administration of Rhy attenuated the recruitment of eosinophils in BALF induced by OVA, which was associated with the suppressed production of immunoglobulin E, interleukin (IL)-13, IL-4 and IL-5. At the molecular level, the administration of Rhy suppressed the expression levels of TGF-β1, Smad4, p-Smad2 and p-Smad3, while it induced the expression of Smad7, indicating the inhibitory effect of Rhy on TGF-β1-mediated Smad and MAPK signaling. Furthermore, Rhy inhibited the proliferation of ASMCs and, similar to the results of the in vivo assay, it blocked the pro-hyperplasia signaling transduction in vitro. In conclusion, the current study demonstrated the anti-asthma effect of Rhy, which depended on the inhibition of TGF-β1-mediated Smad and MAPK signaling.
Collapse
Affiliation(s)
- Meng Wang
- Department of Medical Affairs, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Hui Li
- Department of Medical Affairs, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Yaxin Zhao
- Department of Pharmacology, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Chuanfeng Lv
- Department of Clinical Pharmacology, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Guanghua Zhou
- Department of Nursing, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| |
Collapse
|
13
|
The Cell Research Trends of Asthma: A Stem Frequency Analysis of the Literature. JOURNAL OF HEALTHCARE ENGINEERING 2018; 2018:9363820. [PMID: 30210753 PMCID: PMC6126072 DOI: 10.1155/2018/9363820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 03/26/2018] [Accepted: 07/22/2018] [Indexed: 02/06/2023]
Abstract
Objective This study summarized asthma literature indexed in the Medical Literature Analysis and Retrieval System Online (MEDLINE) and explored the history and present trends of asthma cell research by stem frequency ranking to forecast the prospect of future work. Methods Literature was obtained from MEDLINE for the past 30 years and divided into three groups by decade as the retrieval time. The frequency of stemmed words in each group was calculated using Python with Apache Spark and the Natural Language Tool Kit for ranking. The unique stems or shared stems of 3 decades were summarized. Results A total of 1331, 4393, and 7215 records were retrieved from 3 decades chronologically, and the stem ranking of the top 50 were listed by frequency. The number of stems shared with 3 decades was 26 and with the first and last 2 decades was 5 and 13. Conclusions The number of cell research studies of asthma has increased rapidly, and scholars have paid more attentions on experimental research, especially on mechanistic research. Eosinophils, mast cells, and T cells are the hot spots of immunocyte research, while epithelia and smooth muscle cells are the hot spots of structural cell research. The research trend is closely linked with the development of experimental technology, including animal models. Early studies featured basic research, but immunity research has dominated in recent decades. The distinct definition of asthma phenotypes associated with genetic characteristics, immunity research, and the introduction of new cells will be the hot spots in future work.
Collapse
|