1
|
Chen Y, Zhao C, Guo H, Zou W, Zhang Z, Wei D, Lu H, Zhang L, Zhao Y. Wip1 inhibits neutrophil extracellular traps to promote abscess formation in mice by directly dephosphorylating Coronin-1a. Cell Mol Immunol 2023; 20:941-954. [PMID: 37386173 PMCID: PMC10387484 DOI: 10.1038/s41423-023-01057-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 06/04/2023] [Indexed: 07/01/2023] Open
Abstract
Neutrophil extracellular traps (NETs) participate in the rapid inhibition and clearance of pathogens during infection; however, the molecular regulation of NET formation remains poorly understood. In the current study, we found that inhibition of the wild-type p53-induced phosphatase 1 (Wip1) significantly suppressed the activity of Staphylococcus aureus (S. aureus) and accelerated abscess healing in S. aureus-induced abscess model mice by enhancing NET formation. A Wip1 inhibitor significantly enhanced NET formation in mouse and human neutrophils in vitro. High-resolution mass spectrometry and biochemical assays demonstrated that Coro1a is a substrate of Wip1. Further experiments also revealed that Wip1 preferentially and directly interacts with phosphorylated Coro1a than compared to unphosphorylated inactivated Coro1a. The phosphorylated Ser426 site of Coro1a and the 28-90 aa domain of Wip1 are essential for the direct interaction of Coro1a and Wip1 and for Wip1 dephosphorylation of p-Coro1a Ser426. Wip1 deletion or inhibition in neutrophils significantly upregulated the phosphorylation of Coro1a-Ser426, which activated phospholipase C and subsequently the calcium pathway, the latter of which promoted NET formation after infection or lipopolysaccharide stimulation. This study revealed Coro1a to be a novel substrate of Wip1 and showed that Wip1 is a negative regulator of NET formation during infection. These results support the potential application of Wip1 inhibitors to treat bacterial infections.
Collapse
Affiliation(s)
- Yifang Chen
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regeneration, Beijing, China
| | - Chenxu Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Han Guo
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Weilong Zou
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Zhaoqi Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Dong Wei
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hezhe Lu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regeneration, Beijing, China.
| | - Lianfeng Zhang
- Key Laboratory of Human Diseases Comparative Medicine, Ministry of Health; Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Beijing, China.
| | - Yong Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regeneration, Beijing, China.
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
2
|
Shen J, Wang Q, Mao Y, Gao W, Duan S. Targeting the p53 signaling pathway in cancers: Molecular mechanisms and clinical studies. MedComm (Beijing) 2023; 4:e288. [PMID: 37256211 PMCID: PMC10225743 DOI: 10.1002/mco2.288] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 04/25/2023] [Accepted: 05/08/2023] [Indexed: 06/01/2023] Open
Abstract
Tumor suppressor p53 can transcriptionally activate downstream genes in response to stress, and then regulate the cell cycle, DNA repair, metabolism, angiogenesis, apoptosis, and other biological responses. p53 has seven functional domains and 12 splice isoforms, and different domains and subtypes play different roles. The activation and inactivation of p53 are finely regulated and are associated with phosphorylation/acetylation modification and ubiquitination modification, respectively. Abnormal activation of p53 is closely related to the occurrence and development of cancer. While targeted therapy of the p53 signaling pathway is still in its early stages and only a few drugs or treatments have entered clinical trials, the development of new drugs and ongoing clinical trials are expected to lead to the widespread use of p53 signaling-targeted therapy in cancer treatment in the future. TRIAP1 is a novel p53 downstream inhibitor of apoptosis. TRIAP1 is the homolog of yeast mitochondrial intermembrane protein MDM35, which can play a tumor-promoting role by blocking the mitochondria-dependent apoptosis pathway. This work provides a systematic overview of recent basic research and clinical progress in the p53 signaling pathway and proposes that TRIAP1 is an important therapeutic target downstream of p53 signaling.
Collapse
Affiliation(s)
- Jinze Shen
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouZhejiangChina
| | - Qurui Wang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouZhejiangChina
| | - Yunan Mao
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouZhejiangChina
| | - Wei Gao
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouZhejiangChina
| | - Shiwei Duan
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouZhejiangChina
| |
Collapse
|
3
|
Yan H, Xu JJ, Ali I, Zhang W, Jiang M, Li G, Teng Y, Zhu G, Cai Y. CDK5RAP3, an essential regulator of checkpoint, interacts with RPL26 and maintains the stability of cell growth. Cell Prolif 2022; 55:e13240. [PMID: 35509151 PMCID: PMC9136512 DOI: 10.1111/cpr.13240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/22/2022] [Accepted: 04/08/2022] [Indexed: 12/24/2022] Open
Abstract
PURPOSE AND MATERIALS CDK5RAP3 (CDK5 regulatory subunit associated protein 3) was originally identified as a binding protein of CDK5. It is a crucial gene controlling biological functions, such as cell proliferation, apoptosis, invasion, and metastasis. Although previous studies have also shown that CDK5RAP3 is involved in a variety of signalling pathways, however, the mechanism of CDK5RAP3 remains largely undefined. This study utilized MEFs from conditional knockout mice to inhibit CDK5RAP3 and knockdown CDK5RAP3 in MCF7 to explore the role of CDK5RAP3 in cell growth, mitosis, and cell death. RESULTS CDK5RAP3 was found to be widely distributed throughout the centrosome, spindle, and endoplasmic reticulum, indicating that it is involved in regulating a variety of cellular activities. CDK5RAP3 deficiency resulted in instability of cell growth. CDK5RAP3 deficiency partly blocks the cell cycle in G2 /M by downregulating CDK1 (Cyclin-dependent kinase 1) and CCNB1 (Cyclin B1) expression levels. The cell proliferation rate was decreased, thereby slowing down the cell growth rate. Furthermore, the results showed that CDK5RAP3 interacts with RPL26 (ribosome protein L26) to regulate the mTOR pathway. CDK5RAP3 and RPL26 deficiency inhibited mTOR/p-mTOR protein and induce autophagy, resulting in an upregulation of the percentage of apoptosis, and the upregulated percentage of apoptosis also slowed cell growth. CONCLUSIONS Our experiments show that CDK5RAP3 interacts with RPL26 and maintains the stability of cell growth. It shows that CDK5RAP3 plays an important role in cell growth and can be used as the target of gene medicine.
Collapse
Affiliation(s)
- Hongchen Yan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jun-Jie Xu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Ilyas Ali
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Wei Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Ming Jiang
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guiping Li
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Teng
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Guangxun Zhu
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yafei Cai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
4
|
Klebanovych A, Vinopal S, Dráberová E, Sládková V, Sulimenko T, Sulimenko V, Vosecká V, Macůrek L, Legido A, Dráber P. C53 Interacting with UFM1-Protein Ligase 1 Regulates Microtubule Nucleation in Response to ER Stress. Cells 2022; 11:cells11030555. [PMID: 35159364 PMCID: PMC8834445 DOI: 10.3390/cells11030555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/27/2022] [Accepted: 02/03/2022] [Indexed: 02/01/2023] Open
Abstract
ER distribution depends on microtubules, and ER homeostasis disturbance activates the unfolded protein response resulting in ER remodeling. CDK5RAP3 (C53) implicated in various signaling pathways interacts with UFM1-protein ligase 1 (UFL1), which mediates the ufmylation of proteins in response to ER stress. Here we find that UFL1 and C53 associate with γ-tubulin ring complex proteins. Knockout of UFL1 or C53 in human osteosarcoma cells induces ER stress and boosts centrosomal microtubule nucleation accompanied by γ-tubulin accumulation, microtubule formation, and ER expansion. C53, which is stabilized by UFL1, associates with the centrosome and rescues microtubule nucleation in cells lacking UFL1. Pharmacological induction of ER stress by tunicamycin also leads to increased microtubule nucleation and ER expansion. Furthermore, tunicamycin suppresses the association of C53 with the centrosome. These findings point to a novel mechanism for the relief of ER stress by stimulation of centrosomal microtubule nucleation.
Collapse
Affiliation(s)
- Anastasiya Klebanovych
- Laboratory of Biology of Cytoskeleton, Institute of Molecular Genetics of the Czech Academy of Sciences, CZ 142 20 Prague, Czech Republic; (A.K.); (S.V.); (E.D.); (V.S.); (T.S.); (V.S.); (V.V.); (L.M.)
| | - Stanislav Vinopal
- Laboratory of Biology of Cytoskeleton, Institute of Molecular Genetics of the Czech Academy of Sciences, CZ 142 20 Prague, Czech Republic; (A.K.); (S.V.); (E.D.); (V.S.); (T.S.); (V.S.); (V.V.); (L.M.)
| | - Eduarda Dráberová
- Laboratory of Biology of Cytoskeleton, Institute of Molecular Genetics of the Czech Academy of Sciences, CZ 142 20 Prague, Czech Republic; (A.K.); (S.V.); (E.D.); (V.S.); (T.S.); (V.S.); (V.V.); (L.M.)
| | - Vladimíra Sládková
- Laboratory of Biology of Cytoskeleton, Institute of Molecular Genetics of the Czech Academy of Sciences, CZ 142 20 Prague, Czech Republic; (A.K.); (S.V.); (E.D.); (V.S.); (T.S.); (V.S.); (V.V.); (L.M.)
| | - Tetyana Sulimenko
- Laboratory of Biology of Cytoskeleton, Institute of Molecular Genetics of the Czech Academy of Sciences, CZ 142 20 Prague, Czech Republic; (A.K.); (S.V.); (E.D.); (V.S.); (T.S.); (V.S.); (V.V.); (L.M.)
| | - Vadym Sulimenko
- Laboratory of Biology of Cytoskeleton, Institute of Molecular Genetics of the Czech Academy of Sciences, CZ 142 20 Prague, Czech Republic; (A.K.); (S.V.); (E.D.); (V.S.); (T.S.); (V.S.); (V.V.); (L.M.)
| | - Věra Vosecká
- Laboratory of Biology of Cytoskeleton, Institute of Molecular Genetics of the Czech Academy of Sciences, CZ 142 20 Prague, Czech Republic; (A.K.); (S.V.); (E.D.); (V.S.); (T.S.); (V.S.); (V.V.); (L.M.)
| | - Libor Macůrek
- Laboratory of Biology of Cytoskeleton, Institute of Molecular Genetics of the Czech Academy of Sciences, CZ 142 20 Prague, Czech Republic; (A.K.); (S.V.); (E.D.); (V.S.); (T.S.); (V.S.); (V.V.); (L.M.)
| | - Agustin Legido
- Section of Neurology, St. Christopher’s Hospital for Children, Department of Pediatrics, Drexel University College of Medicine, Philadelphia, PA 19134, USA;
| | - Pavel Dráber
- Laboratory of Biology of Cytoskeleton, Institute of Molecular Genetics of the Czech Academy of Sciences, CZ 142 20 Prague, Czech Republic; (A.K.); (S.V.); (E.D.); (V.S.); (T.S.); (V.S.); (V.V.); (L.M.)
- Correspondence: ; Tel.: +420-241-062-632
| |
Collapse
|
5
|
Quintero M, Liu S, Xia Y, Huang Y, Zou Y, Li G, Hu L, Singh N, Blumberg R, Cai Y, Xu H, Li H. Cdk5rap3 is essential for intestinal Paneth cell development and maintenance. Cell Death Dis 2021; 12:131. [PMID: 33504792 PMCID: PMC7841144 DOI: 10.1038/s41419-021-03401-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 02/07/2023]
Abstract
Intestinal Paneth cells are professional exocrine cells that play crucial roles in maintenance of homeostatic microbiome, modulation of mucosal immunity, and support for stem cell self-renewal. Dysfunction of these cells may lead to the pathogenesis of human diseases such as inflammatory bowel disease (IBD). Cdk5 activator binding protein Cdk5rap3 (also known as C53 and LZAP) was originally identified as a binding protein of Cdk5 activator p35. Although previous studies have indicated its involvement in a wide range of signaling pathways, the physiological function of Cdk5rap3 remains largely undefined. In this study, we found that Cdk5rap3 deficiency resulted in very early embryonic lethality, indicating its indispensable role in embryogenesis. To further investigate its function in the adult tissues and organs, we generated intestinal epithelial cell (IEC)-specific knockout mouse model to examine its role in intestinal development and tissue homeostasis. IEC-specific deletion of Cdk5rap3 led to nearly complete loss of Paneth cells and increased susceptibility to experimentally induced colitis. Interestingly, Cdk5rap3 deficiency resulted in downregulation of key transcription factors Gfi1 and Sox9, indicating its crucial role in Paneth cell fate specification. Furthermore, Cdk5rap3 is highly expressed in mature Paneth cells. Paneth cell-specific knockout of Cdk5rap3 caused partial loss of Paneth cells, while inducible acute deletion of Cdk5rap3 resulted in disassembly of the rough endoplasmic reticulum (RER) and abnormal zymogen granules in the mature Paneth cells, as well as loss of Paneth cells. Together, our results provide definitive evidence for the essential role of Cdk5rap3 in Paneth cell development and maintenance.
Collapse
Affiliation(s)
- Michaela Quintero
- Department of Biochemistry & Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Siyang Liu
- Department of Biochemistry & Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Yanhua Xia
- Faculty of Basic Medicine, Nanchang University, Nanchang, Jiangxi, China
| | - Yonghong Huang
- Faculty of Basic Medicine, Nanchang University, Nanchang, Jiangxi, China
| | - Yi Zou
- Department of Metabolic Endocrinology, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Ge Li
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Ling Hu
- Department of Metabolic Endocrinology, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Nagendra Singh
- Department of Biochemistry & Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Richard Blumberg
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Yafei Cai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Hong Xu
- Faculty of Basic Medicine, Nanchang University, Nanchang, Jiangxi, China
| | - Honglin Li
- Department of Biochemistry & Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
6
|
Shi L, Tian Q, Feng C, Zhang P, Zhao Y. The biological function and the regulatory roles of wild-type p53-induced phosphatase 1 in immune system. Int Rev Immunol 2020; 39:280-291. [PMID: 32696682 DOI: 10.1080/08830185.2020.1795153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Wild-type p53-induced phosphatase 1 (WIP1) belongs to the protein phosphatase 2C (PP2C) family and is a mammalian serine/threonine specific protein phosphatase to dephosphorylate numerous signaling molecules. Mammalian WIP1 regulates a wide array of targeting molecules and plays key regulatory roles in many cell processes such as DNA damage and repair, cell proliferation, differentiation, apoptosis, and senescence. WIP1 promotes the formation and development of tumors as an oncogene and a negative regulator of p53. It is also involved in the regulation of aging, neurological diseases and immune diseases. Recent studies demonstrated the critical roles of WIP1 in the differentiation and function of immune cells including T cells, neutrophils and macrophages. In the present manuscript, we briefly summarized the expression patterns, biological function and the target molecules and signal pathways of WIP1 and mainly discussed the latest advances on the regulatory effects of WIP1 in the immune system. WIP1 may be a potential target molecule to treat cancers and immune diseases such as allergic asthma.
Collapse
Affiliation(s)
- Lu Shi
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qianchuan Tian
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chang Feng
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Peng Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yong Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Lin JX, Weng XF, Xie XS, Lian NZ, Qiu SL, Wang JB, Lu J, Chen QY, Cao LL, Lin M, Tu RH, Yang YH, Liu SJ, Hu M, Lin YK, Huang CM, Zheng CH, Li P, Xie JW. CDK5RAP3 inhibits angiogenesis in gastric neuroendocrine carcinoma by modulating AKT/HIF-1α/VEGFA signaling. Cancer Cell Int 2019; 19:282. [PMID: 31728130 PMCID: PMC6839262 DOI: 10.1186/s12935-019-0997-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 10/23/2019] [Indexed: 12/15/2022] Open
Abstract
Background Angiogenesis plays critical roles in the progression and metastasis of malignant tumors. Gastric neuroendocrine carcinoma is an uncommon stomach cancer that is rich in blood vessels and exhibits highly malignant biological behavior with a poor prognosis. The role of CDK5RAP3 in GNEC has not been reported to date. Methods Immunohistochemistry was used to assess the expression of CDK5RAP3 in GNEC tissues and adjacent non-tumor tissues. Cell lines with stable overexpression or knockdown of CDK5RAP3 were constructed using lentiviral transfection. Wound-healing assays, invasion and metastasis assays, tube formation assays, and tumor xenograft transplantation assays were performed to evaluate the effect of CDK5RAP3 on GNEC angiogenesis in vitro and in vivo. Real-time PCR, ELISA, western blot analysis, and confocal-immunofluorescence staining were used to explore the molecular mechanism of CDK5RAP3′s effect on angiogenesis. Results Compared with their respective adjacent non-tumor tissues, protein levels of CDK5RAP3 were significantly decreased in GNEC tissues. Furthermore, low expression of CDK5RAP3 was correlated with more advanced TNM stage, increased tumor microvessel density, and poor prognosis. Functionally, we found that GNEC cells with CDK5RAP3 knockdown promoted human umbilical vein endothelial cells migration and tube formation via activation of AKT/HIF-1α/VEGFA signaling, resulting in increased levels of VEGFA in GNEC cell supernatant. In addition, CDK5RAP3 overexpression in GNEC cells caused the opposing effect. Consistent with these results, nude mouse tumorigenicity assays showed that CDK5RAP3 expression downregulated angiogenesis in vivo. Lastly, patients with low CDK5RAP3 expression and high VEGFA expression exhibited the worst prognosis. Conclusions This study demonstrated that CDK5RAP3 inhibits angiogenesis by downregulating AKT/HIF-1α/VEGFA signaling in GNEC and improves patient prognosis, suggesting that CDK5RAP3 could be a potential therapeutic target for GNEC.
Collapse
Affiliation(s)
- Jian-Xian Lin
- 1Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001 Fujian China.,2Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350108 Fujian China.,3Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, 350108 Fujian China
| | - Xiong-Feng Weng
- 1Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001 Fujian China.,2Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350108 Fujian China.,3Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, 350108 Fujian China
| | - Xin-Sheng Xie
- 1Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001 Fujian China.,2Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350108 Fujian China.,3Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, 350108 Fujian China
| | - Ning-Zi Lian
- 1Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001 Fujian China.,2Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350108 Fujian China.,3Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, 350108 Fujian China
| | - Sheng-Liang Qiu
- 4Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, 350001 Fujian China
| | - Jia-Bin Wang
- 1Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001 Fujian China.,2Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350108 Fujian China.,3Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, 350108 Fujian China
| | - Jun Lu
- 1Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001 Fujian China.,2Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350108 Fujian China.,3Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, 350108 Fujian China
| | - Qi-Yue Chen
- 1Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001 Fujian China.,2Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350108 Fujian China.,3Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, 350108 Fujian China
| | - Long-Long Cao
- 1Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001 Fujian China.,2Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350108 Fujian China.,3Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, 350108 Fujian China
| | - Mi Lin
- 1Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001 Fujian China.,2Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350108 Fujian China
| | - Ru-Hong Tu
- 1Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001 Fujian China.,2Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350108 Fujian China
| | - Ying-Hong Yang
- 4Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, 350001 Fujian China
| | - Si-Jia Liu
- 2Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350108 Fujian China
| | - Min Hu
- 2Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350108 Fujian China
| | - Yi-Ke Lin
- 2Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350108 Fujian China
| | - Chang-Ming Huang
- 1Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001 Fujian China.,2Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350108 Fujian China.,3Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, 350108 Fujian China
| | - Chao-Hui Zheng
- 1Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001 Fujian China.,2Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350108 Fujian China.,3Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, 350108 Fujian China
| | - Ping Li
- 1Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001 Fujian China.,2Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350108 Fujian China.,3Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, 350108 Fujian China
| | - Jian-Wei Xie
- 1Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001 Fujian China.,2Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350108 Fujian China.,3Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, 350108 Fujian China
| |
Collapse
|
8
|
Bhaskara GB, Wong MM, Verslues PE. The flip side of phospho-signalling: Regulation of protein dephosphorylation and the protein phosphatase 2Cs. PLANT, CELL & ENVIRONMENT 2019; 42:2913-2930. [PMID: 31314921 DOI: 10.1111/pce.13616] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/21/2019] [Accepted: 06/29/2019] [Indexed: 05/12/2023]
Abstract
Protein phosphorylation is a key signalling mechanism and has myriad effects on protein function. Phosphorylation by protein kinases can be reversed by protein phosphatases, thus allowing dynamic control of protein phosphorylation. Although this may suggest a straightforward kinase-phosphatase relationship, plant genomes contain five times more kinases than phosphatases. Here, we examine phospho-signalling from a protein phosphatase centred perspective and ask how relatively few phosphatases regulate many phosphorylation sites. The most abundant class of plant phosphatases, the protein phosphatase 2Cs (PP2Cs), is surrounded by a web of regulation including inhibitor and activator proteins as well as posttranslational modifications that regulate phosphatase activity, control phosphatase stability, or determine the subcellular locations where the phosphatase is present and active. These mechanisms are best established for the Clade A PP2Cs, which are key components of stress and abscisic acid signalling. We also describe other PP2C clades and illustrate how these phosphatases are highly regulated and involved in a wide range of physiological functions. Together, these examples of multiple layers of phosphatase regulation help explain the unbalanced kinase-phosphatase ratio. Continued use of phosphoproteomics to examine phosphatase targets and phosphatase-kinase relationships will be important for deeper understanding of phosphoproteome regulation.
Collapse
Affiliation(s)
| | - Min May Wong
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Paul E Verslues
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| |
Collapse
|
9
|
Fang Z, Pan Z. Essential Role of Ubiquitin-Fold Modifier 1 Conjugation in DNA Damage Response. DNA Cell Biol 2019; 38:1030-1039. [PMID: 31368785 DOI: 10.1089/dna.2019.4861] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Both endogenous and exogenous factors can cause DNA damage that compromises genomic integrity and cell viability. A proper DNA damage response (DDR) plays a role in maintaining genome stability and preventing tumorigenesis. DNA double-strand breaks (DSBs) are the most toxic DNA lesion, whose response is dominated by the ataxia-telangiectasia mutated (ATM) protein kinase. After being activated by the sensor Mre11-Rad50-Nbs1 (MRN) complex or acetyltransferase Tip60, ATM rapidly phosphorylates downstream targets to launch DDR signaling when DNA is damaged. However, the exact mechanism of DDR is complex and ambiguous. Ufmylation, one type of ubiquitin-like modification, proceeds mainly through a three-step enzymatic reaction to help ubiquitin-fold modifier 1 (Ufm1), attach to substrates with ubiquitin-like modifier-activating enzyme 5 (Uba5), Ufm1-conjugating enzyme 1 (Ufc1) and Ufm1-specific ligase 1 (Ufl1). Although ubiquitination is essential to the DSBs response, the potential function of ufmylation in DDR is largely unknown. Herein, we review the relationship between ufmylation and DDR to elucidate the function and mechanism of ufmylation in DDR, which would reveal the pathogenesis of some diseases and provide new guidance to create a therapeutic method.
Collapse
Affiliation(s)
- Zhi Fang
- Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Zezheng Pan
- Faculty of Basic Medical Science, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
10
|
Yang R, Wang H, Kang B, Chen B, Shi Y, Yang S, Sun L, Liu Y, Xiao W, Zhang T, Yang J, Zhang Y, Zhu M, Xu P, Chang Y, Jia Y, Huang Y. CDK5RAP3, a UFL1 substrate adaptor, is crucial for liver development. Development 2019; 146:dev.169235. [PMID: 30635284 DOI: 10.1242/dev.169235] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 01/04/2019] [Indexed: 12/21/2022]
Abstract
Protein modification by ubiquitin and ubiquitin-like proteins (UBLs) regulates numerous biological functions. The UFM1 system, a novel UBL conjugation system, is implicated in mouse development and hematopoiesis. However, its broad biological functions and working mechanisms remain largely elusive. CDK5RAP3, a possible ufmylation substrate, is essential for epiboly and gastrulation in zebrafish. Herein, we report a crucial role of CDK5RAP3 in liver development and hepatic functions. Cdk5rap3 knockout mice displayed prenatal lethality with severe liver hypoplasia, as characterized by delayed proliferation and compromised differentiation. Hepatocyte-specific Cdk5rap3 knockout mice suffered post-weaning lethality, owing to serious hypoglycemia and impaired lipid metabolism. Depletion of CDK5RAP3 triggered endoplasmic reticulum stress and activated unfolded protein responses in hepatocytes. We detected the in vivo interaction of CDK5RAP3 with UFL1, the defined E3 ligase in ufmylation. Notably, loss of CDK5RAP3 altered the ufmylation profile in liver cells, suggesting that CDK5RAP3 serves as a novel substrate adaptor for this UBL modification. Collectively, our study identifies CDK5RAP3 as an important regulator of ufmylation and suggests the involvement of ufmylation in mammalian development.
Collapse
Affiliation(s)
- Rui Yang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China.,Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Huanmin Wang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China.,Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Boxi Kang
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Bin Chen
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China.,Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Yaoyao Shi
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100005, China
| | - Shuchun Yang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China.,Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Lihong Sun
- Center for Experimental Animal Research, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Yufang Liu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China.,Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Weidi Xiao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Tao Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Juntao Yang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Ye Zhang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China.,Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Mingzhao Zhu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100005, China
| | - Ping Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Yongsheng Chang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China.,Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Yuyan Jia
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China .,Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Yue Huang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China .,Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
11
|
Affiliation(s)
- Jialiang Wang
- a Department of Neurological Surgery, Cancer Biology and Pharmacology , Vanderbilt University Medical Center , Nashville , TN, USA
| |
Collapse
|
12
|
Wamsley JJ, Gary C, Biktasova A, Hajek M, Bellinger G, Virk R, Issaeva N, Yarbrough WG. Loss of LZAP inactivates p53 and regulates sensitivity of cells to DNA damage in a p53-dependent manner. Oncogenesis 2017; 6:e314. [PMID: 28394357 PMCID: PMC5520489 DOI: 10.1038/oncsis.2017.12] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 12/22/2016] [Accepted: 02/10/2017] [Indexed: 02/07/2023] Open
Abstract
Chemotherapy and radiation, the two most common cancer therapies, exert their anticancer effects by causing damage to cellular DNA. However, systemic treatment damages DNA not only in cancer, but also in healthy cells, resulting in the progression of serious side effects and limiting efficacy of the treatment. Interestingly, in response to DNA damage, p53 seems to play an opposite role in normal and in the majority of cancer cells-wild-type p53 mediates apoptosis in healthy tissues, attributing to the side effects, whereas mutant p53 often is responsible for acquired cancer resistance to the treatment. Here, we show that leucine zipper-containing ARF-binding protein (LZAP) binds and stabilizes p53. LZAP depletion eliminates p53 protein independently of its mutation status, subsequently protecting wild-type p53 cells from DNA damage-induced cell death, while rendering cells expressing mutant p53 more sensitive to the treatment. In human non-small-cell lung cancer, LZAP levels correlated with p53 levels, suggesting that loss of LZAP may represent a novel mechanism of p53 inactivation in human cancer. Our studies establish LZAP as a p53 regulator and p53-dependent determinative of cell fate in response to DNA damaging treatment.
Collapse
Affiliation(s)
- J J Wamsley
- Division of Otolaryngology, Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - C Gary
- Division of Otolaryngology, Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - A Biktasova
- Division of Otolaryngology, Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - M Hajek
- Division of Otolaryngology, Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - G Bellinger
- Division of Otolaryngology, Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - R Virk
- Division of Otolaryngology, Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - N Issaeva
- Division of Otolaryngology, Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
- Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - W G Yarbrough
- Division of Otolaryngology, Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
- Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|