1
|
Yu J, Cai W, Zhou T, Men B, Chen S, Tu D, Guo W, Wang J, Zhao F, Wang Y. CEACAM1 increased the lymphangiogenesis through miR-423-5p and NF- kB in Non-Small Cell Lung Cancer. Biochem Biophys Rep 2024; 40:101833. [PMID: 39398537 PMCID: PMC11470192 DOI: 10.1016/j.bbrep.2024.101833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/15/2024] [Accepted: 09/19/2024] [Indexed: 10/15/2024] Open
Abstract
Background Lung cancer causes significant mortality, with invasion and metastasis being the main features that cause most cancer deaths. Lymph node metastasis is the primary metastatic route in non-small cell carcinoma (NSCLC) and influences the staging and prognosis of NSCLC. Cumulative studies have reported that Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) is involved in the progression of various cancers. However, few studies have discussed the function of CEACAM1 in lymphangiogenesis in NSCLC. Here, we examined how CEACAM1 influences lymphangiogenesis in NSCLC. Methods A total of 30 primary squamous cell carcinoma (LUSC) patients diagnosed with LN metastasis were prospectively selected. LUSC tumor tissues, para-cancerous tissues, and positive lymph node tissues were harvested. The expression and subcellular location of CEACAM1, CD31, and LVYE1 in clinical samples were detected by immunohistochemistry. Next, the CEACAM1 and hsa-miR-423-5p expressions were detected by qPCR. The protein expression of lymphangiogenesis-associated proteins and critical cytokines of the NF-κB pathway in HDLECs was detected by Western blot. A tube formation assay was performed to detect the lymphangiogenesis in different groups. The interaction between CEACAM1 and hsa-miR-423-5p was verified using a dual luciferase assay. Results CEACAM1 was found to be a potential gene associated with lung cancer prognosis. It was positively correlated with angiogenesis and lymphangiogenesis. Then, we detected the function of CEACAM1 in lymphangiogenesis and found that CEACAM1 promoted lymphangiogenesis. hsa-miR-423-5p overexpression inhibited lymphangiogenesis via targeting CEACAM1. Finally, we observed that CEACAM1 can activate the NF-κB pathway and, therefore, promote lymphangiogenesis. Conclusion We found that CEACAM1 enhanced lymphangiogenesis in NSCLC via NF-kB activation and was repressed by miR-423-5p. This suggests the value of CEACAM1 as a new therapeutic marker in NSCLC.
Collapse
Affiliation(s)
- Jie Yu
- Department of Thoracocardiac Surgery, 920th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Kunming, Yunnan, China
| | - Wenke Cai
- Department of Thoracocardiac Surgery, 920th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Kunming, Yunnan, China
| | - Tao Zhou
- Department of Respiration, 920th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Kunming, Yunnan, China
| | - Bo Men
- Department of Thoracocardiac Surgery, 920th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Kunming, Yunnan, China
| | - Shunqiong Chen
- Department of Respiration, 920th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Kunming, Yunnan, China
| | - Dong Tu
- Department of Thoracocardiac Surgery, 920th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Kunming, Yunnan, China
| | - Wei Guo
- Department of Thoracocardiac Surgery, 920th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Kunming, Yunnan, China
| | - Jicui Wang
- Department of Thoracocardiac Surgery, 920th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Kunming, Yunnan, China
| | - Feipeng Zhao
- Department of Plastic and Maxillofacial Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yan Wang
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
2
|
Feng S, Wang Z, Jin Y, Xu S. TabDEG: Classifying differentially expressed genes from RNA-seq data based on feature extraction and deep learning framework. PLoS One 2024; 19:e0305857. [PMID: 39037985 PMCID: PMC11262683 DOI: 10.1371/journal.pone.0305857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 06/05/2024] [Indexed: 07/24/2024] Open
Abstract
Traditional differential expression genes (DEGs) identification models have limitations in small sample size datasets because they require meeting distribution assumptions, otherwise resulting high false positive/negative rates due to sample variation. In contrast, tabular data model based on deep learning (DL) frameworks do not need to consider the data distribution types and sample variation. However, applying DL to RNA-Seq data is still a challenge due to the lack of proper labeling and the small sample size compared to the number of genes. Data augmentation (DA) extracts data features using different methods and procedures, which can significantly increase complementary pseudo-values from limited data without significant additional cost. Based on this, we combine DA and DL framework-based tabular data model, propose a model TabDEG, to predict DEGs and their up-regulation/down-regulation directions from gene expression data obtained from the Cancer Genome Atlas database. Compared to five counterpart methods, TabDEG has high sensitivity and low misclassification rates. Experiment shows that TabDEG is robust and effective in enhancing data features to facilitate classification of high-dimensional small sample size datasets and validates that TabDEG-predicted DEGs are mapped to important gene ontology terms and pathways associated with cancer.
Collapse
Affiliation(s)
- Sifan Feng
- School of Mathematics and Statistics, Guangdong University of Technology, Guangzhou, Guangdong, China
| | - Zhenyou Wang
- School of Mathematics and Statistics, Guangdong University of Technology, Guangzhou, Guangdong, China
| | - Yinghua Jin
- School of Mathematics and Statistics, Guangdong University of Technology, Guangzhou, Guangdong, China
| | - Shengbin Xu
- School of Mathematics and Statistics, Guangdong University of Technology, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Schwarzenbach H, Gahan PB. Interplay between LncRNAs and microRNAs in Breast Cancer. Int J Mol Sci 2023; 24:ijms24098095. [PMID: 37175800 PMCID: PMC10179369 DOI: 10.3390/ijms24098095] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
(1) Although long noncoding RNAs (lncRNAs) are known to be precursors of microRNAs (miRNAs), they frequently act as competing endogoneous RNAs (ceRNAs), yet still their interplay with miRNA is not well known. However, their interaction with miRNAs may result in the modulation of miRNA action. (2) To determine the contribution of these RNA molecules in tumor resistance to chemotherapeutic drugs, it is essential to consider not only the oncogenic and tumor suppressive function of miRNAs but also the impact of lncRNAs on miRNAs. Therefore, we performed an extensive search in different databases including PubMed. (3) The present study concerns the interplay between lncRNAs and miRNAs in the regulatory post-transcriptional network and their impact on drugs used in the treatment of breast cancer. (4) Consideration of this interplay may improve the search for new drugs to circumvent chemoresistance.
Collapse
Affiliation(s)
- Heidi Schwarzenbach
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Peter B Gahan
- Fondazione "Enrico Puccinelli" Onlus, 06126 Perugia, Italy
| |
Collapse
|
4
|
Franco PIR, Neto JRDC, de Menezes LB, Machado JR, Miguel MP. Revisiting the hallmarks of cancer: A new look at long noncoding RNAs in breast cancer. Pathol Res Pract 2023; 243:154381. [PMID: 36857948 DOI: 10.1016/j.prp.2023.154381] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/16/2023] [Indexed: 02/19/2023]
Abstract
Breast cancer is one of the leading causes of death in women worldwide. The increasing understanding of the molecular mechanisms underlying its heterogeneity favors a better understanding of tumor biology and consequently the development of better diagnostic and treatment techniques. The advent of tumor genome sequencing techniques has highlighted more participants in the process, in addition to protein-coding genes. Thus, it is now known that long noncoding RNAs, previously described as transcriptional noise with no biological function, are intimately associated with tumor development. In breast cancer, they are abnormally expressed and closely associated with tumor progression, which makes them attractive diagnostic biomarkers and prognostic and specific therapeutic targets. Therefore, a thorough understanding of the regulatory mechanisms of long noncoding RNAs in breast cancer is essential for the search for new treatment strategies. In this review, we summarize the major long noncoding RNAs and their association with the cancer characteristics of the ability to sustain proliferative signaling, evasion of growth suppressors, replicative immortality, activation of invasion and metastasis, induction of angiogenesis, resistance to cell death, reprogramming of energy metabolism, genomic instability and sustained mutations, promotion of tumor inflammation, and evasion of the immune system. In addition, we report and suggest how they can be used as prognostic biomarkers and possible therapeutic targets.
Collapse
Affiliation(s)
- Pablo Igor Ribeiro Franco
- Instituto de Patologia Tropical e Saúde Pública, Programa de Pós-Graduação em Medicina Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil.
| | - José Rodrigues do Carmo Neto
- Instituto de Patologia Tropical e Saúde Pública, Programa de Pós-Graduação em Medicina Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Liliana Borges de Menezes
- Setor de Patologia Geral, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil; Escola de Veterinária e Zootecnia, Programa de Pós-Graduação em Ciência Animal, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Juliana Reis Machado
- Instituto de Patologia Tropical e Saúde Pública, Programa de Pós-Graduação em Medicina Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil; Departamento de Patologia, Genética e Evolução, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brazil
| | - Marina Pacheco Miguel
- Setor de Patologia Geral, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil; Escola de Veterinária e Zootecnia, Programa de Pós-Graduação em Ciência Animal, Universidade Federal de Goiás, Goiânia, GO, Brazil
| |
Collapse
|
5
|
Kashyap D, Sharma R, Goel N, Buttar HS, Garg VK, Pal D, Rajab K, Shaikh A. Coding roles of long non-coding RNAs in breast cancer: Emerging molecular diagnostic biomarkers and potential therapeutic targets with special reference to chemotherapy resistance. Front Genet 2023; 13:993687. [PMID: 36685962 PMCID: PMC9852779 DOI: 10.3389/fgene.2022.993687] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/07/2022] [Indexed: 01/08/2023] Open
Abstract
Dysregulation of epigenetic mechanisms have been depicted in several pathological consequence such as cancer. Different modes of epigenetic regulation (DNA methylation (hypomethylation or hypermethylation of promotor), histone modifications, abnormal expression of microRNAs (miRNAs), long non-coding RNAs, and small nucleolar RNAs), are discovered. Particularly, lncRNAs are known to exert pivot roles in different types of cancer including breast cancer. LncRNAs with oncogenic and tumour suppressive potential are reported. Differentially expressed lncRNAs contribute a remarkable role in the development of primary and acquired resistance for radiotherapy, endocrine therapy, immunotherapy, and targeted therapy. A wide range of molecular subtype specific lncRNAs have been assessed in breast cancer research. A number of studies have also shown that lncRNAs may be clinically used as non-invasive diagnostic biomarkers for early detection of breast cancer. Such molecular biomarkers have also been found in cancer stem cells of breast tumours. The objectives of the present review are to summarize the important roles of oncogenic and tumour suppressive lncRNAs for the early diagnosis of breast cancer, metastatic potential, and chemotherapy resistance across the molecular subtypes.
Collapse
Affiliation(s)
- Dharambir Kashyap
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Riya Sharma
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Neelam Goel
- Department of Information Technology, University Institute of Engineering & Technology, Panjab University, Chandigarh, India
| | - Harpal S. Buttar
- Department of Pathology and Laboratory Medicine, University of Ottawa, Faculty of Medicine, Ottawa, ON, Canada
| | - Vivek Kumar Garg
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Gharuan, Mohali, India,*Correspondence: Vivek Kumar Garg, ; Asadullah Shaikh,
| | - Deeksha Pal
- Department of Translational and Regenerative Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Khairan Rajab
- College of Computer Science and Information Systems, Najran University, Najran, Saudi Arabia
| | - Asadullah Shaikh
- College of Computer Science and Information Systems, Najran University, Najran, Saudi Arabia,*Correspondence: Vivek Kumar Garg, ; Asadullah Shaikh,
| |
Collapse
|
6
|
Hashemi M, Arani HZ, Orouei S, Fallah S, Ghorbani A, Khaledabadi M, Kakavand A, Tavakolpournegari A, Saebfar H, Heidari H, Salimimoghadam S, Entezari M, Taheriazam A, Hushmandi K. EMT mechanism in breast cancer metastasis and drug resistance: Revisiting molecular interactions and biological functions. Biomed Pharmacother 2022; 155:113774. [DOI: 10.1016/j.biopha.2022.113774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/20/2022] [Accepted: 09/28/2022] [Indexed: 12/24/2022] Open
|
7
|
Gao C, Li L, Jin X, Song X, Li H, Xu X, Dong C, Ma B. The Involvement of Insulin-Like Growth Factor 2 Messenger Ribonucleic Acid-Binding Protein 2 in the Regulation of the Expression of Breast Cancer-Related Genes. BREAST CANCER (DOVE MEDICAL PRESS) 2022; 14:311-322. [PMID: 36237482 PMCID: PMC9553167 DOI: 10.2147/bctt.s382566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/22/2022] [Indexed: 11/23/2022]
Abstract
Aim This study investigated the role and mechanism of insulin-like growth factor 2-IGF2BP2 in breast cancer. Methods IGF2BP2 is overexpressed in MDA-MB-231 human breast cancer cells. Thus, RNA sequencing was used to analyze the differentially expressed genes, Cell Counting Kit-8 was used to detect cell proliferation, and a Transwell assay was used to assess cell invasion. Following on from the RNA sequencing results, Interferon-induced protein with tetratricopeptide repeats 2 (IFIT2), chemokine C-C motif ligand 20 (CCL20), chemokine C-C motif ligand 5 (CCL5), and chemokine C-X-C motif ligand 10 (CXCL10) regulated by IGF2BP2 were subjected to real-time reverse transcriptase-polymerase chain reaction verification. Results After IGF2BP2 overexpression, 67 genes were up-regulated, and 87 genes were down-regulated. The gene with the most significant up-regulation was homeobox protein 1 (PROX1), and the gene with the most significant down-regulation was Acidic β-crystallin 4 (CRYBA4). The most enriched gene ontology (GO) terms of up-regulated differentially expressed genes are protein binding and cell membrane and of down-regulated differentially expressed genes they are ion binding, cytoplasm, and response to virus. Kyoto Encyclopedia of Genes and Genomes analysis showed that the up-regulated differential genes were mainly enriched in protein processing, the endoplasmic reticulum, and the regulation of actin cytoskeleton, while down-regulated differential genes were mainly enriched in rheumatoid arthritis, chemokine signaling pathways, toll-like receptor signaling pathways, tumor necrosis factor signaling pathways, cytokine-cytokine receptor interaction, and Notch signaling pathways. IGF2BP2 overexpression significantly promoted the proliferation and invasion of breast cancer cells (P < 0.01). Compared with the control group, the IGF2BP2 overexpression group had significantly increased expressions of IFIT2, CCL20, and CXCL10 (P < 0.05). Conclusion IGF2BP2 may promote the invasion and proliferation of human breast cancer cells by up-regulating breast cancer-related genes, such as IFIT2, CCL20, and CXCL10.
Collapse
Affiliation(s)
- Chao Gao
- State Key Laboratory of Pathogenes, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Breast and Thyroid Surgery, Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, People’s Republic of China
| | - Li Li
- State Key Laboratory of Pathogenes, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Gynecology and surgery, Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, People’s Republic of China
| | - Xixin Jin
- State Key Laboratory of Pathogenes, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Breast and Thyroid Surgery, Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, People’s Republic of China
| | - Xinyu Song
- State Key Laboratory of Pathogenes, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Breast and Thyroid Surgery, Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, People’s Republic of China
| | - Huiling Li
- State Key Laboratory of Pathogenes, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Breast and Thyroid Surgery, Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, People’s Republic of China
| | - Xiaoli Xu
- State Key Laboratory of Pathogenes, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Breast and Thyroid Surgery, Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, People’s Republic of China
| | - Chao Dong
- State Key Laboratory of Pathogenes, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Breast and Thyroid Surgery, Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, People’s Republic of China,Correspondence: Chao Dong; Binlin Ma, State Key Laboratory of Pathogenes, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Breast and Thyroid Surgery, Affiliated Cancer Hospital of Xinjiang Medical University, No. 789 of East Suzhou Street, Urumqi, 830000, People’s Republic of China, Tel +860991-7968088, Fax +860991-7968111, Email ;
| | - Binlin Ma
- State Key Laboratory of Pathogenes, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Breast and Thyroid Surgery, Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, People’s Republic of China
| |
Collapse
|
8
|
Situ Y, Lu X, Cui Y, Xu Q, Deng L, Lin H, Shao Z, Chen J. Systematic Analysis of CXC Chemokine-Vascular Endothelial Growth Factor A Network in Colonic Adenocarcinoma from the Perspective of Angiogenesis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5137301. [PMID: 36246978 PMCID: PMC9553499 DOI: 10.1155/2022/5137301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 12/04/2022]
Abstract
Background Tumor angiogenesis plays a vital role in tumorigenesis, proliferation, and metastasis. Recently, vascular endothelial growth factor A (VEGFA) and CXC chemokines have been shown to play vital roles in angiogenesis. Exploring the expression level, gene regulatory network, prognostic value, and target prediction of the CXC chemokine-VEGFA network in colon adenocarcinoma (COAD) is crucial from the perspective of tumor angiogenesis. Methods In this study, we analyzed gene expression and regulation, prognostic value, target prediction, and immune infiltrates related to the CXC chemokine-VEGFA network in patients with COAD using multiple databases (cBioPortal, UALCAN, Human Protein Atlas, GeneMANIA, GEPIA, TIMER (version 2.0), TRRUST (version 2), LinkedOmics, and Metascape). Results Our results showed that CXCL1/2/3/5/6/8/11/16/17 and VEGFA were markedly overexpressed, while CXCL12/13/14 were underexpressed in patients with COAD. Moreover, genetic alterations in the CXC chemokine-VEGFA network found at varying rates in patients with COAD were as follows: CXCL1/2/17 (2.1%), CXCL3/16 (2.6%), CXCL5/14 (2.4%), CXCL6 (3%), CXCL8 (0.8%), CXCL11/13 (1.9%), CXCL12 (0.6%), and VEGFA (1.3%). Promoter methylation of CXCL1/2/3/11/13/17 was considerably lower in patients with COAD, whereas methylation of CXCL5/6/12/14 and VEGFA was considerably higher. Furthermore, CXCL9/10/11 and VEGFA expression was notably correlated with the pathological stages of COAD. In addition, patients with COAD with high CXCL8/11/14 or low VEGFA expression levels survived longer than patients with dissimilar expression levels. CXC chemokines and VEGFA form a complex regulatory network through coexpression, colocalization, and genetic interactions. Moreover, many transcription factor targets of the CXC chemokine-VEGFA network in patients with COAD were identified: RELA, NFKB1, ZFP36, XBP1, HDAC2, SP1, ATF4, EP300, BRCA1, ESR1, HIF1A, EGR1, STAT3, and JUN. We further identified the top three miRNAs involved in regulating each CXC chemokine within the network: miR-518C, miR-369-3P, and miR-448 regulated CXCL1; miR-518C, miR-218, and miR-493 regulated CXCL2; miR-448, miR-369-3P, and miR-221 regulated CXCL3; miR-423 regulated CXCL13; miR-378, miR-381, and miR-210 regulated CXCL14; miR-369-3P, miR-382, and miR-208 regulated CXCL17; miR-486 and miR-199A regulated VEGFA. Furthermore, the CXC chemokine-VEGFA network in patients with COAD was notably associated with immune infiltration. Conclusions This study revealed that the CXC chemokine-VEGFA network might act as a prognostic biomarker for patients with COAD. Moreover, our study provides new therapeutic targets for COAD, serving as a reference for further research in the future.
Collapse
Affiliation(s)
- Yongli Situ
- Department of Parasitology, Guangdong Medical University, Zhanjiang, 524023 Guangdong, China
| | - Xiaoyong Lu
- Department of Parasitology, Guangdong Medical University, Zhanjiang, 524023 Guangdong, China
| | - Yongshi Cui
- Department of Parasitology, Guangdong Medical University, Zhanjiang, 524023 Guangdong, China
| | - Qinying Xu
- Department of Parasitology, Guangdong Medical University, Zhanjiang, 524023 Guangdong, China
| | - Li Deng
- Department of Parasitology, Guangdong Medical University, Zhanjiang, 524023 Guangdong, China
| | - Hao Lin
- Orthopedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524023 Guangdong, China
| | - Zheng Shao
- Department of Parasitology, Guangdong Medical University, Zhanjiang, 524023 Guangdong, China
| | - Jv Chen
- Department of Pharmacy, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001 Guangdong, China
| |
Collapse
|
9
|
Wang S, Wang Y, Lu J, Wang J. LncRNA LINC00665 Promotes Ovarian Cancer Cell Proliferation and Inhibits Apoptosis via Targeting miR-181a-5p/FHDC. Appl Biochem Biotechnol 2022; 194:3819-3832. [PMID: 35524876 DOI: 10.1007/s12010-022-03943-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2022] [Indexed: 11/02/2022]
Abstract
Previous reports indicate that long intergenic non-coding RNA LINC00665 naturally occurred vital effects in various cancers. Herein, the role of LINC00665 in ovarian cancer progress was explored. We found that LINC00665 was upregulated in ovarian cancer cell lines. Besides, a series of assays including flow cytometry, wound-healing, transwell, cell counting Kit-8 (CCK-8), and EdU assay confirmed that the knockdown of LINC00665 could reduce the viability, proliferation, and migration of SKOV-3 and OVCAR-3 cells. Accumulating evidence indicates that many lncRNAs can function as endogenous miRNA sponges by competitively binding common miRNAs. In this study, the bioinformatics analysis suggests that LNC00665 specifically binds to miR-181a-5p. LINC00665 downregulated the miR-181a-5p in SKOV-3 and OVCAR-3 cells. The knockdown of miR-181a-5p evidently reverses the inhibitory effect of sh-LINC00662. Besides, FH2 domain containing 1 (FHDC1) has been proved to deed as an effective target of miR-181a-5p. The results reveal the knockdown of LINC00665 facilitates ovarian cancer via development by sponging miR-181a-5p and up-regulating FHDC1 expression. These may contribute to ovarian cancer therapy.
Collapse
Affiliation(s)
- Suli Wang
- Department of Women's Health, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, Jiangsu Province, China
- Department of Gynecological Oncology Surgery, Jiangsu Cancer Hospital (Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital), 42 Baiziting Road, Nanjing, 210009, Jiangsu Province, China
| | - Yingchun Wang
- Department of Gynecology, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, Jiangsu Province, China
| | - Jin Lu
- Department of Gynecological Oncology Surgery, Jiangsu Cancer Hospital (Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital), 42 Baiziting Road, Nanjing, 210009, Jiangsu Province, China
| | - Jinhua Wang
- Department of Gynecological Oncology Surgery, Jiangsu Cancer Hospital (Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital), 42 Baiziting Road, Nanjing, 210009, Jiangsu Province, China.
| |
Collapse
|
10
|
Qian W, Yang L, Ni Y, Yin F, Qin L, Yang Y. LncRNA LINC01857 reduces metastasis and angiogenesis in breast cancer cells via regulating miR-2052/CENPQ axis. Open Med (Wars) 2022; 17:1357-1367. [PMID: 36046633 PMCID: PMC9372711 DOI: 10.1515/med-2022-0525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 05/29/2022] [Accepted: 07/18/2022] [Indexed: 12/02/2022] Open
Abstract
Long non-coding RNAs have been confirmed closely related to the metastasis and angiogenesis of breast cancer (BC). LINC01857 can promote the growth and metastasis of BC cells. The present work focused on exploring the role of LINC01857 in BC metastasis and angiogenesis and investigating the possible mechanisms. The results showed that LINC01857 and CENPQ were highly expressed in BC tissues and cells, while miR-2052 was contrarily expressed. In vitro study showed that low expression of linc01857 could inhibit the migration ability and vascularization of BC cells, and mir-2052 inhibitor partially restored the effect of si-LINC01857 on the migration ability and vascularization of BC cells. Likewise, inhibition of CENPQ can partially rescue the effects of miR-2052 inhibitor on the migration ability and vascularization of BC cells. In vivo studies showed that down-regulation of LINC01857 notably suppressed tumor growth and angiogenesis in nude mice. The miR-2052 inhibitor partially restored the effects of si-LINC01857. CENPQ suppression partially rescued the effects of the miR-2052 inhibitor. To conclude, LINC01857/miR-2052/CENPQ is the potential novel target for BC treatment.
Collapse
Affiliation(s)
- Weiwei Qian
- Department of Breast Surgery, Nantong Third People’s Hospital, Nantong University , Nantong , Jiangsu Province , China
| | - Linlin Yang
- Department of Oncology, Sheyang People’s Hospital , Yancheng City , Jiangsu Province 224300 , China
| | - Yi Ni
- Department of Breast Surgery, Nantong Third People’s Hospital, Nantong University , Nantong , Jiangsu Province , China
| | - Fei Yin
- Department of Breast Surgery, Nantong Third People’s Hospital, Nantong University , Nantong , Jiangsu Province , China
| | - Lili Qin
- Department of Endoscopic Center, Affiliated Hospital of Nantong University , Nantong City , Jiangsu Province 226001 , China
| | - Yang Yang
- Department of Trauma Center, Affiliated Hospital of Nantong University , No. 20 Xisi Road, Chongchuan District , Nantong City , Jiangsu Province 226001 , China
| |
Collapse
|
11
|
Malik J, Klammer M, Rolny V, Chan HLY, Piratvisuth T, Tanwandee T, Thongsawat S, Sukeepaisarnjaroen W, Esteban JI, Bes M, Köhler B, Swiatek-de Lange M. Comprehensive evaluation of microRNA as a biomarker for the diagnosis of hepatocellular carcinoma. World J Gastroenterol 2022; 28:3917-3933. [PMID: 36157551 PMCID: PMC9367234 DOI: 10.3748/wjg.v28.i29.3917] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/20/2022] [Accepted: 07/11/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer. Current guidelines for HCC management recommend surveillance of high-risk patients every 6 mo using ultrasonography. Serum biomarkers, like alpha-fetoprotein (AFP), protein induced by vitamin K absence/antagonist-II (PIVKA-II) and lectin-reactive AFP, show suboptimal performance for detection of HCC, which is crucial for successful resection or treatment. Thus, there is a significant need for new biomarkers to aid early diagnosis of HCC. Studies have shown that the expression level of human microRNAs (miRNAs), a small, non-coding RNA species released into the blood, can serve as an early marker for various diseases, including HCC.
AIM To evaluate the diagnostic role of miRNAs in HCC as single markers, signatures or in combination with known protein biomarkers.
METHODS Our prospective, multicenter, case-control study recruited 660 participants (354 controls with chronic liver disease and 306 participants with HCC) and employed a strategy of initial screening by two independent methods, real-time quantitative PCR (n = 60) and next-generation sequencing (n = 100), to assess a large number of miRNAs. The results from the next-generation sequencing and real-time quantitative PCR screening approaches were then combined to select 26 miRNAs (including two putative novel miRNAs). Those miRNAs were analyzed for their diagnostic potential as single markers or in combination with other miRNAs or established protein biomarkers AFP and PIVKA-II via real-time quantitative PCR in training (n = 200) and validation cohorts (n = 300).
RESULTS We identified 26 miRNAs that differentiated chronic liver disease controls from (early) HCC via two independent discovery approaches. Three miRNAs, miR-21-5p (miR-21), miR-320a and miR-186-5p, were selected by both methods. In the training cohort, only miR-21, miR-320d and miR-423 could significantly distinguish (Q < 0.05) between the HCC and chronic liver disease control groups. In the multivariate setting, miR-21 with PIVKA-II was selected as the best combination, resulting in an area under the curve of 0.87 for diagnosis and area under the curve of 0.74 for early diagnosis of HCC. In the validation cohort, only miR-21 and miR-423 could be confirmed as potential HCC biomarkers. A combination of miRNAs did not perform better than any single miRNA. Improvement of PIVKA-II performance through combination with miRNAs could not be confirmed in the validation panel. Two putative miRs, put-miR-6 and put-miR-99, were tested in the training and validation panels, but their expression could only be detected in very few samples and at a low level (cycle threshold between 31.24 and 34.97).
CONCLUSION miRNAs alone or as a signature in combination with protein biomarkers AFP and PIVKA-II do not improve the diagnostic performance of the protein biomarkers.
Collapse
Affiliation(s)
| | | | | | - Henry Lik-Yuen Chan
- Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Teerha Piratvisuth
- NKC Institute of Gastroenterology and Hepatology, Songklanagarind Hospital, Hat Yai 90112, Thailand
| | - Tawesak Tanwandee
- Division of Gastroenterology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Satawat Thongsawat
- Department of Internal Medicine, Maharaj Nakorn Chiang Mai Hospital, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | | | - Marta Bes
- Transfusion Safety Laboratory, Banc de Sang i Teixits, Barcelona 08005, Spain
| | - Bruno Köhler
- Department of Medical Oncology, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg 69120, Germany
- Liver Cancer Center Heidelberg, University Hospital Heidelberg, Heidelberg 69120, Germany
| | | |
Collapse
|
12
|
Liu D, Wan Y, Qu N, Fu Q, Liang C, Zeng L, Yang Y. LncRNA-FAM66C Was Identified as a Key Regulator for Modulating Tumor Microenvironment and Hypoxia-Related Pathways in Glioblastoma. Front Public Health 2022; 10:898270. [PMID: 35874989 PMCID: PMC9299378 DOI: 10.3389/fpubh.2022.898270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
Although the role of hypoxia has been greatly explored and unveiled in glioblastoma (GBM), the mechanism of hypoxia-related long non-coding (lnc) RNAs has not been clearly understood. This study aims to reveal the crosstalk among hypoxia-related lncRNAs, tumor microenvironment (TME), and tumorigenesis for GBM. Gene expression profiles of GBM patients were used as a basis for identifying hypoxia-related lncRNAs. Unsupervised consensus clustering was conducted for classifying samples into different molecular subtypes. Gene set enrichment analysis (GSEA) was performed to analyze the enrichment of a series of genes or gene signatures. Three molecular subtypes were constructed based on eight identified hypoxia-related lncRNAs. Oncogenic pathways, such as epithelial mesenchymal transition (EMT), tumor necrosis factor-α (TNF-α) signaling, angiogenesis, hypoxia, P53 signaling, and glycolysis pathways, were significantly enriched in C1 subtype with poor overall survival. C1 subtype showed high immune infiltration and high expression of immune checkpoints. Furthermore, we identified 10 transcription factors (TFs) that were highly correlated with lncRNA-FAM66C. Three key lncRNAs (ADAMTS9-AS2, LINC00968, and LUCAT1) were screened as prognostic biomarkers for GBM. This study shed light on the important role of hypoxia-related lncRNAs for TME modulation and tumorigenesis in GBM. The eight identified hypoxia-related lncRNAs, especially FAM66C may serve as key regulators involving in hypoxia-related pathways.
Collapse
Affiliation(s)
- Dan Liu
- Oncology Department, Jinzhou Central Hospital, Jinzhou, China
| | - Yue Wan
- Oncology Department, Jinzhou Central Hospital, Jinzhou, China
| | - Ning Qu
- Department of Pediatrics, Jinzhou Central Hospital, Jinzhou, China
| | - Qiang Fu
- Department of Neurosurgery, Shengjing Hospital Affiliated to China Medical University, Shenyang, China
| | - Chao Liang
- Department of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Lingda Zeng
- Department of Otorhinolaryngology Surgery, Jinzhou Central Hospital, Jinzhou, China
| | - Yang Yang
- Department of Neurosurgery, Jinzhou Central Hospital, Jinzhou, China
| |
Collapse
|
13
|
Zhong W, Qu H, Yao B, Wang D, Qiu J. Analysis of a Long Non-coding RNA associated Signature to Predict Survival in Patients with Bladder Cancer. Cureus 2022; 14:e24818. [PMID: 35693359 PMCID: PMC9172899 DOI: 10.7759/cureus.24818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2022] [Indexed: 12/24/2022] Open
|
14
|
Yue Q, Bai J, Wang F, Xue F, Li L, Duan X. Novel classification and risk model based on ferroptosis-related lncRNAs to predict oncologic outcomes for gastric cancer patients. J Biochem Mol Toxicol 2022; 36:e23052. [PMID: 35315178 DOI: 10.1002/jbt.23052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 01/07/2022] [Accepted: 03/10/2022] [Indexed: 12/24/2022]
Abstract
Gastric cancer (GC) is a highly heterogeneous malignancy, characterized by high mortality and poor prognosis. Ferroptosis is a newly defined nonapoptotic programmed cell death mechanism that has been implicated in the development of various pathological conditions. We aimed to identify ferroptosis-related long noncoding RNA (lncRNAs) that might be used to predict GC prognosis. The data were obtained from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus database. Two subtypes, C1 and C2, were identified, which had significant variations in prognosis and immune cell infiltrations. Differentially expressed genes between the subtypes were found to be involved in multiple tumor-associated pathways. Subsequently, a training dataset and a testing dataset were created from the TCGA dataset. A predictive model for GC patients based on six ferroptosis-related lncRNAs (including STX18-AS1, MIR99AHG, LINC01197, LINC00968, LINC00865, and LEF1-AS1) was developed. The model could stratify patients into a high- and low-risk group, showing good predictive performance. The testing dataset, entire TCGA dataset, and GSE62254 cohort both confirmed the predictive value of the model. Compared to the clinical parameters (including gender, age, and grade), the risk model was an independent risk factor for GC patients. Moreover, a nomogram (containing our risk score model and clinical parameters) was constructed, which might provide great potential to improve prediction accuracy. Moreover, the single-sample gene set enrichment analysis revealed that the high-risk group was linked to various signaling pathways involved in the regulation of GC progression. Conclusively, a novel classification and risk model based on ferroptosis-related lncRNAs that can predict oncologic outcomes for GC patients has been developed.
Collapse
Affiliation(s)
- Qingfang Yue
- Department of Medical Oncology, Shaanxi Provincial People's Hospital, Affiliated Hospital of Northwestern Polytechnical University, Xi'an, Shaanxi, P. R. China
- Postdoctoral Station, Institute of Medical Research, Northwestern Polytechnic University, Xi'an, Shaanxi, P. R. China
| | - Jun Bai
- Department of Medical Oncology, Shaanxi Provincial People's Hospital, Affiliated Hospital of Northwestern Polytechnical University, Xi'an, Shaanxi, P. R. China
| | - Fei Wang
- Department of Gynecology, Shaanxi Provincial People's Hospital, Affiliated Hospital of Northwestern Polytechnical University, Xi'an, Shaanxi, P. R. China
| | - Fei Xue
- Second Department of General Surgery, Shaanxi Provincial People's Hospital, Affiliated Hospital of Northwestern Polytechnical University, Xi'an, Shaanxi, P. R. China
| | - Lianxiang Li
- Department of Gynecology, Shaanxi Provincial People's Hospital, Affiliated Hospital of Northwestern Polytechnical University, Xi'an, Shaanxi, P. R. China
| | - Xianglong Duan
- Second Department of General Surgery, Shaanxi Provincial People's Hospital, Affiliated Hospital of Northwestern Polytechnical University, Xi'an, Shaanxi, P. R. China
- Medical College, Xizang Mingzu University, Xianyang, Shaanxi, P. R. China
| |
Collapse
|
15
|
Todorova VK, Byrum SD, Gies AJ, Haynie C, Smith H, Reyna NS, Makhoul I. Circulating Exosomal microRNAs as Predictive Biomarkers of Neoadjuvant Chemotherapy Response in Breast Cancer. Curr Oncol 2022; 29:613-630. [PMID: 35200555 PMCID: PMC8870357 DOI: 10.3390/curroncol29020055] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/17/2022] [Accepted: 01/24/2022] [Indexed: 12/24/2022] Open
Abstract
Background: Neoadjuvant chemotherapy (NACT) is an increasingly used approach for treatment of breast cancer. The pathological complete response (pCR) is considered a good predictor of disease-specific survival. This study investigated whether circulating exosomal microRNAs could predict pCR in breast cancer patients treated with NACT. Method: Plasma samples of 20 breast cancer patients treated with NACT were collected prior to and after the first cycle. RNA sequencing was used to determine microRNA profiling. The Cancer Genome Atlas (TCGA) was used to explore the expression patterns and survivability of the candidate miRNAs, and their potential targets based on the expression levels and copy number variation (CNV) data. Results: Three miRNAs before that NACT (miR-30b, miR-328 and miR-423) predicted pCR in all of the analyzed samples. Upregulation of miR-127 correlated with pCR in triple-negative breast cancer (TNBC). After the first NACT dose, pCR was predicted by exo-miR-141, while miR-34a, exo-miR182, and exo-miR-183 predicted non-pCR. A significant correlation between the candidate miRNAs and the overall survival, subtype, and metastasis in breast cancer, suggesting their potential role as predictive biomarkers of pCR. Conclusions: If the miRNAs identified in this study are validated in a large cohort of patients, they might serve as predictive non-invasive liquid biopsy biomarkers for monitoring pCR to NACT in breast cancer.
Collapse
Affiliation(s)
- Valentina K. Todorova
- Division of Medical Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
- Correspondence:
| | - Stephanie D. Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (S.D.B.); (A.J.G.)
| | - Allen J. Gies
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (S.D.B.); (A.J.G.)
| | - Cade Haynie
- Biology Department, Ouachita Baptist University, Arkadelphia, AR 71998, USA; (C.H.); (H.S.); (N.S.R.)
| | - Hunter Smith
- Biology Department, Ouachita Baptist University, Arkadelphia, AR 71998, USA; (C.H.); (H.S.); (N.S.R.)
| | - Nathan S. Reyna
- Biology Department, Ouachita Baptist University, Arkadelphia, AR 71998, USA; (C.H.); (H.S.); (N.S.R.)
| | - Issam Makhoul
- Division of Medical Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| |
Collapse
|
16
|
Hussen BM, Salihi A, Abdullah ST, Rasul MF, Hidayat HJ, Hajiesmaeili M, Ghafouri-Fard S. Signaling pathways modulated by miRNAs in breast cancer angiogenesis and new therapeutics. Pathol Res Pract 2022; 230:153764. [PMID: 35032831 DOI: 10.1016/j.prp.2022.153764] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/30/2021] [Accepted: 01/06/2022] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRNAs) act as oncogenes or tumor suppressors by suppressing the expression of target genes, some of which are engaged in angiogenic signaling pathways directly or indirectly. Tumor development and metastasis are dependent on angiogenesis, and it is the main reason for the poor prognosis of cancer patients. New blood vessels are formed from pre-existing vessels when angiogenesis occurs. Thus, it is essential to develop primary tumors and the spread of cancer to surrounding tissues. MicroRNAs (miRNAs) are small noncoding RNAs involved in various biological processes. They can bind to the 3'-UTR of their target genes and prevent them from expressing. MiRNAs control the activity of endothelial cells (ECs) through altering many biological pathways, which plays a key role in cancer progression and angiogenesis. Recent findings revealed that tumor-derived extracellular vesicles participated directly in the control of tumor angiogenesis by delivering miRNAs to ECs. miRNAs recently show great promise in cancer therapies to inhibit angiogenesis. In this study, we showed the miRNA-regulated signaling pathways in tumor angiogenesis with highlighting the anti-angiogenic therapy response and miRNA delivery methods that have been used to inhibit angiogenesis in both in vivo and in vitro studies.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq; Center of Research and Strategic Studies, Lebanese French University, Erbil, Kurdistan Region, Iraq
| | - Abbas Salihi
- Department of Biology, College of Science, Salahaddin University-Erbil, Kurdistan Region, Iraq; Center of Research and Strategic Studies, Lebanese French University, Erbil, Kurdistan Region, Iraq
| | - Sara Tharwat Abdullah
- Department of Pharmacology and Toxicology, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Mohammed Fatih Rasul
- Department of Medical Analysis, Faculty of Science, Tishk International University-Erbil, Erbil, Iraq
| | - Hazha Jamal Hidayat
- Department of Biology, College of Education, Salahaddin University-Erbil, Kurdistan Region, Iraq
| | - Mohammadreza Hajiesmaeili
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Chen JM, Luo B, Ma R, Luo XX, Chen YS, Li Y. Lymphatic Endothelial Markers and Tumor Lymphangiogenesis Assessment in Human Breast Cancer. Diagnostics (Basel) 2021; 12:diagnostics12010004. [PMID: 35054174 PMCID: PMC8774380 DOI: 10.3390/diagnostics12010004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/09/2021] [Accepted: 12/17/2021] [Indexed: 12/11/2022] Open
Abstract
Metastasis via lymphatic vessels or blood vessels is the leading cause of death for breast cancer, and lymphangiogenesis and angiogenesis are critical prerequisites for the tumor invasion–metastasis cascade. The research progress for tumor lymphangiogenesis has tended to lag behind that for angiogenesis due to the lack of specific markers. With the discovery of lymphatic endothelial cell (LEC) markers, growing evidence demonstrates that the LEC plays an active role in lymphatic formation and remodeling, tumor cell growth, invasion and intravasation, tumor–microenvironment remodeling, and antitumor immunity. However, some studies have drawn controversial conclusions due to the variation in the LEC markers and lymphangiogenesis assessments used. In this study, we review recent findings on tumor lymphangiogenesis, the most commonly used LEC markers, and parameters for lymphangiogenesis assessments, such as the lymphatic vessel density and lymphatic vessel invasion in human breast cancer. An in-depth understanding of tumor lymphangiogenesis and LEC markers can help to illustrate the mechanisms and distinct roles of lymphangiogenesis in breast cancer progression, which will help in exploring novel potential predictive biomarkers and therapeutic targets for breast cancer.
Collapse
Affiliation(s)
- Jia-Mei Chen
- Center of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (J.-M.C.); (X.-X.L.)
| | - Bo Luo
- Department of Pathology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China;
| | - Ru Ma
- Department of Peritoneal Cancer Surgery, Beijing Shijitan Hospital of Capital Medical University, Beijing 100038, China;
| | - Xi-Xi Luo
- Center of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (J.-M.C.); (X.-X.L.)
| | - Yong-Shun Chen
- Center of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (J.-M.C.); (X.-X.L.)
- Correspondence: (Y.-S.C.); (Y.L.); Tel.: +86-027-88048911 (Y.-S.C.); +86-010-63926525 (Y.L.)
| | - Yan Li
- Department of Peritoneal Cancer Surgery, Beijing Shijitan Hospital of Capital Medical University, Beijing 100038, China;
- Department of Pathology, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
- Correspondence: (Y.-S.C.); (Y.L.); Tel.: +86-027-88048911 (Y.-S.C.); +86-010-63926525 (Y.L.)
| |
Collapse
|
18
|
Wu C, Bian X, Zhang L, Hu Y, Wu Y, Pei T, Han X. Long noncoding RNA LINC00968 inhibits proliferation, migration and invasion of lung adenocarcinoma through targeting miR-22-5p/CDC14A axis. 3 Biotech 2021; 11:433. [PMID: 34603911 PMCID: PMC8440738 DOI: 10.1007/s13205-021-02981-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 09/01/2021] [Indexed: 12/13/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is a high aggressive human cancer which usually diagnosed at advanced stages. Accumulating evidences indicate that long noncoding RNAs (lncRNAs) are crucial participants in LUAD progression. In the present study, we found that lncRNA LINC00968 was significantly down-regulated in LUAD tissues and cell lines. LINC00968 level was positively correlated to survival rate, and negatively correlated to tumor node metastasis (TNM) stage, tumor size and lymph node metastasis of LUAD patients. We over-expressed LINC00968 in LUAD cells using lentivirus, inhibited proliferation and cell cycle arrest at G1 phase were detected. LINC00968 over-expression also suppressed migration, invasion and epithelial mesenchymal transition. We further validated that LINC00968 localized in cytoplasm and acted as an upstream regulator of microRNA miR-22-5p, which was up-regulated in LUAD tissues and cell lines. Besides, elevated miR-22-5p expression abolished the effect of LINC00968 over-expression on LUAD progression including in vivo tumor growth. In addition, we first validated that cell division cycle 14A (CDC14A), which was down-regulated in LUAD tissues, was a downstream target of miR-22-5p. We over-expressed CDC14A in LUAD cells and miR-22-5p induced LUAD progression was partially reversed. In conclusion, our study demonstrated that LINC00968 inhibited proliferation, migration and invasion of LUAD by sponging miR-22-5p and further restoring CDC14A. This novel regulatory axis might provide us with promising diagnostic and therapeutic target in LUAD treatment.
Collapse
Affiliation(s)
- Chao Wu
- Department of Medical Quality Management, Xi’an International Medical Center Hospital, Xi’an, 710100 Shaanxi People’s Republic of China
| | - Xuzhao Bian
- Department of Medical Quality Management, Xi’an International Medical Center Hospital, Xi’an, 710100 Shaanxi People’s Republic of China
| | - Liyuan Zhang
- Department of Respiratory Medicine of Thoracic Hospital, Xi’an International Medical Center Hospital, No.777 Xitai Road, Gaoxin District, Xi’an, 710100 Shaanxi People’s Republic of China
| | - Yuanyuan Hu
- Medical College, Xijing University, Xi’an, 710100 Shaanxi People’s Republic of China
| | - Yang Wu
- Department of Medical Quality Management, Xi’an International Medical Center Hospital, Xi’an, 710100 Shaanxi People’s Republic of China
| | - Tianli Pei
- Department of Medical Quality Management, Xi’an International Medical Center Hospital, Xi’an, 710100 Shaanxi People’s Republic of China
| | - XinPeng Han
- Department of Respiratory Medicine of Thoracic Hospital, Xi’an International Medical Center Hospital, No.777 Xitai Road, Gaoxin District, Xi’an, 710100 Shaanxi People’s Republic of China
| |
Collapse
|
19
|
Fu A, Yu Z, Zhang E, Song J. Long noncoding RNA ZBED3-AS1 restrains breast cancer progression by targeting the microRNA-513a-5p/KLF6 axis. Thorac Cancer 2021; 12:2719-2731. [PMID: 34427978 PMCID: PMC8520814 DOI: 10.1111/1759-7714.14111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 12/18/2022] Open
Abstract
Breast cancer (BC) is the most commonly occurring malignancy in women. This study aimed to investigate the functions of the long noncoding RNA ZBED3‐AS1 (ZBED3‐AS1) in BC and its molecular mechanisms. qRT‐PCR was conducted to access the expression of ZBED3‐AS1, microRNA‐513a‐5p (miR‐513a‐5p), and Kruppel like factor 6 (KLF6) in BC. Additionally, BC cell viability and proliferative capacity were measured by MTT and 5‐Ethynyl‐20‐deoxyuridine (EdU) assays. A transwell assay was used for evaluating BC cell migration and invasion. The interactions among ZBED3‐AS1, miR‐513a‐5p, and KLF6 in BC were confirmed by dual‐luciferase reporter assay. Furthermore, feedback approaches were performed to determine whether ZBED3‐AS1 influences BC cell behaviors by regulating the miR‐513a‐5p/KLF6 axis. The murine xenograft model was established to assess the effect of ZBED3‐AS1 on tumor growth. The expression of ZBED3‐AS1 and KLF6 was reduced, while miR‐513a‐5p expression was elevated in BC. ZBED3‐AS1 elevation attenuated the malignant behaviors of BC cells, including viability, proliferative capacity, migration, and invasion. Mechanical experiments revealed that ZBED3‐AS1 targeted miR‐513a‐5p, and miR‐513a‐5p targeted KLF6 in BC. Feedback approaches validated that miR‐513a‐5p overexpression or KLF6 depletion reversed the inhibitory effects of ZBED3‐AS1 upregulation on viability, proliferative capacity, migration, and invasion of BC cells. Furthermore, ZBED3‐AS1 elevation attenuated the tumor growth in the murine xenograft model. ZBED3‐AS1 hindered the malignant development of BC cells by regulating the miR‐513a‐5p/KLF6 axis, providing a novel therapeutic target in BC.
Collapse
Affiliation(s)
- Aiqin Fu
- Department of Medical Oncology, Yantai Yantaishan Hospital, Yantai City, China
| | - Ze Yu
- Department of Medical Oncology, Yantai Yantaishan Hospital, Yantai City, China
| | - Enning Zhang
- Department of Medical Oncology, Yantai Yantaishan Hospital, Yantai City, China
| | - Jijie Song
- Department of General Surgery, Yantai Municipal Laiyang Central Hospital, Yantai City, China
| |
Collapse
|
20
|
Song B, Li H, Guo S, Yang T, Li L, Cao L, Wang J. LINC00882 plays a tumor-promoter role in colorectal cancer by targeting miR-3619-5p to up-regulate CTNNB1. Arch Med Res 2021; 53:29-36. [PMID: 34399990 DOI: 10.1016/j.arcmed.2021.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Colorectal cancer (CRC) is a common malignant tumor in gastrointestinal tract around the world. Emerging evidence has confirmed that long non-coding RNAs (lncRNAs) are closely connected to cell progression in cancers, including CRC. METHODS RT-qPCR assays were applied to detect the expression of LINC00882, miR-3619-5p and CTNNB1. Western blot assays were performed to measure the protein level of E-cadherin, N-cadherin and CTNNB1. Transwell assay was conducted to test the cell migration. Immunofluorescence (IF) assay was performed to measure the connected protein of EMT process. RESULTS LINC00882 was highly expressed in CRC tissues and cell lines. Knockdown of LINC00882 hindered the process of CRC. Studies on gain-of-function and loss-of-function further testified that knockdown of LINC00882 or up-regulation of miR-3619-5p hindered cell migration and EMT process in CRC cells. Moreover, rescue assay proved that the inhibition of migration ability and EMT process resulted from LINC00882 silencing could be rescued when miR-3619-5p inhibitor or pcDNA3.1/CTNNB1 was transfected into CRC cells. CONCLUSION Our data suggested that LINC00882 promoted the progression of CRC as a ceRNA to regulate CTNNB1 via sponging miR-3619-5p. This finding would supply a novel insight for CRC therapy.
Collapse
Affiliation(s)
- Bingtan Song
- Department of Gastrointestinal Surgery, Binzhou Medical University Hospital, Binzhou, 256603, Shandong, China
| | - Hesheng Li
- Department of Gastrointestinal Surgery, Binzhou Medical University Hospital, Binzhou, 256603, Shandong, China.
| | - Song Guo
- Department of Gastrointestinal Surgery, Binzhou Medical University Hospital, Binzhou, 256603, Shandong, China
| | - Tao Yang
- Department of Gastrointestinal Surgery, Binzhou Medical University Hospital, Binzhou, 256603, Shandong, China
| | - Lin Li
- Operating Room, Binzhou Medical University Hospital, Binzhou, 256603, Shandong, China
| | - Lianmeng Cao
- Department of Gastrointestinal Surgery, Binzhou Medical University Hospital, Binzhou, 256603, Shandong, China
| | - Jian Wang
- Department of Gastroenterology &Endoscopy, Binzhou Medical University Hospital, Binzhou, 256603, Shandong, China
| |
Collapse
|
21
|
Lu L, Liu LP, Zhao QQ, Gui R, Zhao QY. Identification of a Ferroptosis-Related LncRNA Signature as a Novel Prognosis Model for Lung Adenocarcinoma. Front Oncol 2021; 11:675545. [PMID: 34249715 PMCID: PMC8260838 DOI: 10.3389/fonc.2021.675545] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/08/2021] [Indexed: 12/16/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is a highly heterogeneous malignancy, which makes prognosis prediction of LUAD very challenging. Ferroptosis is an iron-dependent cell death mechanism that is important in the survival of tumor cells. Long non-coding RNAs (lncRNAs) are considered to be key regulators of LUAD development and are involved in ferroptosis of tumor cells, and ferroptosis-related lncRNAs have gradually emerged as new targets for LUAD treatment and prognosis. It is essential to determine the prognostic value of ferroptosis-related lncRNAs in LUAD. In this study, we obtained RNA sequencing (RNA-seq) data and corresponding clinical information of LUAD patients from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database and ferroptosis-related lncRNAs by co-expression analysis. The best predictors associated with LUAD prognosis, including C5orf64, LINC01800, LINC00968, LINC01352, PGM5-AS1, LINC02097, DEPDC1-AS1, WWC2-AS2, SATB2-AS1, LINC00628, LINC01537, LMO7DN, were identified by Least Absolute Shrinkage and Selection Operator (LASSO) Cox regression analysis, and the LUAD risk prediction model was successfully constructed. Kaplan-Meier analysis, receiver operating characteristic (ROC) time curve analysis and univariate and multivariate Cox regression analysis and further demonstrated that the model has excellent robustness and predictive ability. Further, based on the risk prediction model, functional enrichment analysis revealed that 12 prognostic indicators involved a variety of cellular functions and signaling pathways, and the immune status was different in the high-risk and low-risk groups. In conclusion, a risk model of 12 ferroptosis related lncRNAs has important prognostic value for LUAD and may be ferroptosis-related therapeutic targets in the clinic.
Collapse
Affiliation(s)
- Lu Lu
- Department of Blood Transfusion, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Le-Ping Liu
- Department of Blood Transfusion, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Qiang-Qiang Zhao
- Department of Blood Transfusion, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Rong Gui
- Department of Blood Transfusion, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Qin-Yu Zhao
- Department of Blood Transfusion, The Third Xiangya Hospital of Central South University, Changsha, China
- College of Engineering and Computer Science, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
22
|
Wang M, Liu H, Wu W, Zhao J, Song G, Chen X, Wang R, Shao C, Li J, Wang H, Wang Q, Feng X. Identification of Differentially Expressed Plasma lncRNAs As Potential Biomarkers for Breast Cancer. Clin Breast Cancer 2021; 22:e135-e141. [PMID: 34119428 DOI: 10.1016/j.clbc.2021.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/26/2021] [Accepted: 05/08/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Breast cancer is the most common malignant tumor in women and is not easy to diagnose. Increasing evidence has underscored that long non-coding RNAs (lncRNAs) play important regulatory roles in the occurrence and progression of many cancers, including breast cancer. We aimed to identify lncRNAs in plasma as potential biomarkers for breast cancer. PATIENTS AND METHODS We analyzed the Gene Expression Omnibus (GEO) datasets GSE22820, GSE42568, and GSE65194 to identify the common differential genes between cancer tissues and adjacent tissues. Then 14 lncRNAs were identified among the common differential genes and validated by using real-time quantitative polymerase chain reaction in 92 patients with breast cancer and 100 healthy controls. Receiver operating characteristic (ROC) curves were constructed to evaluate their diagnostic value for breast cancer. RESULTS Integrated analysis of the GEO datasets identified three significantly upregulated and 11 downregulated lncRNAs in breast cancer tissues. Compared with healthy controls, MIAT was significantly upregulated in breast cancer patient plasma, and LINC00968 and LINC01140 were significantly downregulated. ROC curve analysis suggested that these three lncRNAs can discriminate breast cancer from healthy individual with high specificity and sensitivity. CONCLUSION This research identified three differentially expressed lncRNAs in breast cancer patient plasma. Our data suggest that these three lncRNAs can be used as potential diagnostic biomarkers of breast cancer.
Collapse
Affiliation(s)
- Minghui Wang
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Huilin Liu
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Wenyao Wu
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Jinxia Zhao
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Guanghui Song
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Xi Chen
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Rong Wang
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Changfeng Shao
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Jing Li
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Haiyan Wang
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Qing Wang
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Xiaodong Feng
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.
| |
Collapse
|
23
|
Malla RR, Farran B, Nagaraju GP. Understanding the function of the tumor microenvironment, and compounds from marine organisms for breast cancer therapy. World J Biol Chem 2021; 12:15-37. [PMID: 33815682 PMCID: PMC8006057 DOI: 10.4331/wjbc.v12.i2.15] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/13/2021] [Accepted: 02/20/2021] [Indexed: 02/06/2023] Open
Abstract
The pathology and physiology of breast cancer (BC), including metastasis, and drug resistance, is driven by multiple signaling pathways in the tumor microenvironment (TME), which hamper antitumor immunity. Recently, long non-coding RNAs have been reported to mediate pathophysiological develop-ments such as metastasis as well as immune suppression within the TME. Given the complex biology of BC, novel personalized therapeutic strategies that address its diverse pathophysiologies are needed to improve clinical outcomes. In this review, we describe the advances in the biology of breast neoplasia, including cellular and molecular biology, heterogeneity, and TME. We review the role of novel molecules such as long non-coding RNAs in the pathophysiology of BC. Finally, we provide an up-to-date overview of anticancer compounds extracted from marine microorganisms, crustaceans, and fishes and their synergistic effects in combination with other anticancer drugs. Marine compounds are a new discipline of research in BC and offer a wide range of anti-cancer effects that could be harnessed to target the various pathways involved in BC development, thus assisting current therapeutic regimens.
Collapse
Affiliation(s)
- Rama Rao Malla
- Department of Biochemistry and Bioinformatics, GITAM (Deemed to be University), Visakhapatnam 530045, AP, India
| | - Batoul Farran
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA 30322, United States
| | - Ganji Purnachandra Nagaraju
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States
| |
Collapse
|
24
|
Liu X, Zhang J, Nie D, Zeng K, Hu H, Tie J, Sun L, Peng L, Liu X, Wang J. Comparative Transcriptomic Analysis to Identify the Important Coding and Non-coding RNAs Involved in the Pathogenesis of Pterygium. Front Genet 2021; 12:646550. [PMID: 33790949 PMCID: PMC8005612 DOI: 10.3389/fgene.2021.646550] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/22/2021] [Indexed: 12/31/2022] Open
Abstract
Pterygium is a common ocular surface disease characterized by abnormal fibrovascular proliferation and invasion, similar to tumorigenesis. The formation of tumors is related to a change in the expression of various RNAs; however, whether they are involved in the formation and development of pterygium remains unclear. In this study, transcriptome analysis of messenger RNAs (mRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) of paired pterygium and normal conjunctiva was performed to explore key genes regulating the development of pterygium. In total, 579 mRNAs, 275 lncRNAs, and 21 circRNAs were differentially expressed (DE) in pterygium compared with paired conjunctival tissues. Functional enrichment analysis indicated that DE RNAs were associated with extracellular matrix organization, blood vessel morphogenesis, and focal adhesion. Furthermore, through protein-protein interaction network and mRNA-lncRNA co-expression network analysis, key mRNAs including FN1, VCAM1, and MMP2, and key lncRNAs including MIR4435-2HG and LINC00968 were screened and might be involved in the pathogenesis of pterygium. In addition, several circRNAs including hsa_circ_0007482 and hsa_circ_001730 were considered to be involved in the pterygium development. This study provides a scientific basis for elucidating the pathogenesis of pterygium and will be beneficial for the development of preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Xin Liu
- Shenzhen Eye Hospital, Shenzhen Key Laboratory of Ophthalmology, Affiliated Shenzhen Eye Hospital of Jinan University, Shenzhen, China
| | - Jing Zhang
- Shenzhen Eye Hospital, Shenzhen Key Laboratory of Ophthalmology, Affiliated Shenzhen Eye Hospital of Jinan University, Shenzhen, China
| | - Danyao Nie
- Shenzhen Eye Hospital, Shenzhen Key Laboratory of Ophthalmology, Affiliated Shenzhen Eye Hospital of Jinan University, Shenzhen, China
| | - Kun Zeng
- Shenzhen Eye Hospital, Shenzhen Key Laboratory of Ophthalmology, Affiliated Shenzhen Eye Hospital of Jinan University, Shenzhen, China
| | - Huiling Hu
- Shenzhen Eye Hospital, Shenzhen Key Laboratory of Ophthalmology, Affiliated Shenzhen Eye Hospital of Jinan University, Shenzhen, China
| | - Jinjun Tie
- Department of Ophthalmology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Liangnan Sun
- Shenzhen Eye Hospital, Shenzhen Key Laboratory of Ophthalmology, Affiliated Shenzhen Eye Hospital of Jinan University, Shenzhen, China
| | - Ling Peng
- Shenzhen Eye Hospital, Shenzhen Key Laboratory of Ophthalmology, Affiliated Shenzhen Eye Hospital of Jinan University, Shenzhen, China
| | - Xinhua Liu
- Shenzhen Eye Hospital, Shenzhen Key Laboratory of Ophthalmology, Affiliated Shenzhen Eye Hospital of Jinan University, Shenzhen, China
| | - Jiantao Wang
- Shenzhen Eye Hospital, Shenzhen Key Laboratory of Ophthalmology, Affiliated Shenzhen Eye Hospital of Jinan University, Shenzhen, China
| |
Collapse
|
25
|
Jiang M, Liu X, Zhang C, Zhu L, Wu HD, Dong L, Wang T, Lin T, He Y. Bioinformatics identification of the candidate microRNAs and construction of a competing endogenous RNA regulatory network in lacrimal gland adenoid cystic carcinoma high-grade transformation. Oncol Lett 2021; 21:360. [PMID: 33747217 PMCID: PMC7967933 DOI: 10.3892/ol.2021.12621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 12/09/2020] [Indexed: 12/30/2022] Open
Abstract
Adenoid cystic carcinoma of the lacrimal gland (LACC) is a major orbital malignancy. The recurrence rate and mortality rate are higher in LACC high-grade transformation (LACC-HGT) compared with in LACC. The present study aimed to identify the candidate microRNAs (miRNAs/miRs) and construct a competing endogenous RNA (ceRNA) regulatory network for LACC-HGT. A miRNA microarray on paraffin-embedded tissues was performed to identify the differentially expressed miRNAs (DEMs) of LACC-HGT. The overlap with the salivary adenoid cystic carcinoma miRNA/RNA sequencing dataset in the Gene Expression Omnibus was used to identify candidate miRNAs. In order to construct a ceRNA regulatory network of LACC-HGT, a microarray of mRNA and circRNA in primary cell lines was performed. The circRNAs and genes with high expression in LACC-HGT were predicted as targeting miRNAs, and the circRNA-miRNA-mRNA regulatory network was constructed. miR-140-3p was identified as part of the ceRNA network and as a candidate miRNA, therefore this was further analyzed using reverse transcription-quantitative (RT-q)PCR. Overall, the Agilent Human microarray analysis identified a total of 16 DEMs from the LACC-HGT paraffin-embedded tissues. A total of 653 DECs and 9,566 DEGs of LACC-HGT primary cell lines were screened via the microarray of mRNA and circRNA. The ceRNA regulatory network was constructed using the cross-binding of circRNA-miRNA, miRNA-mRNA and the downregulated miRNAs in LACC-HGT to clearly demonstrate the circRNA-miRNA-mRNA interaction relationship. RT-qPCR results confirmed that miR-140-3p was downregulated in LACC-HGT tissues and primary cell lines compared with LACC. Target genes CD200 and parathyroid hormone-related protein were significantly upregulated in LACC-HGT primary cell lines. miR-140-3p and its target genes may play an important role in LACC-HGT pathogenesis. In conclusion, the current bioinformatics study constructed a ceRNA network based on a microarray, which may help identify novel miRNA therapeutic targets for LACC-HGT.
Collapse
Affiliation(s)
- Meixia Jiang
- Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, P.R. China
| | - Xun Liu
- Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, P.R. China
| | - Chuanli Zhang
- Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, P.R. China
| | - Limin Zhu
- Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, P.R. China
| | - Hai-Dong Wu
- Tianjin Key Laboratory of Early Draggability Evaluation of Innovative Drugs, Tianjin International Joint Academy of Biomedicine, Tianjin 300384, P.R. China
| | - Lijie Dong
- Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, P.R. China
| | - Tingting Wang
- Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, P.R. China
| | - Tingting Lin
- Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, P.R. China
| | - Yanjin He
- Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, P.R. China
| |
Collapse
|
26
|
Angiogenesis regulation by microRNAs and long non-coding RNAs in human breast cancer. Pathol Res Pract 2021; 219:153326. [PMID: 33601152 DOI: 10.1016/j.prp.2020.153326] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are capable of regulating gene expression post-transcriptionally. Since the past decade, a number of in vitro, in vivo, and clinical studies reported the roles of these non-coding RNAs (ncRNAs) in regulating angiogenesis, an important cancer hallmark that is associated with metastases and poor prognosis. The specific roles of various miRNAs and lncRNAs in regulating angiogenesis in breast cancer, with particular focus on the downstream targets and signalling pathways regulated by these ncRNAs will be discussed in this review. In light of the recent trend in exploiting ncRNAs as cancer therapeutics, the potential use of miRNAs and lncRNAs as biomarkers and novel therapeutic agent against angiogenesis was also discussed.
Collapse
|
27
|
Ke R, Lv L, Zhang S, Zhang F, Jiang Y. Functional mechanism and clinical implications of MicroRNA-423 in human cancers. Cancer Med 2020; 9:9036-9051. [PMID: 33174687 PMCID: PMC7724490 DOI: 10.1002/cam4.3557] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 08/16/2020] [Accepted: 09/21/2020] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs play a vital role in the regulatory mechanisms of tumorigenesis. Current research indicates that microRNA-423 (miR-423) is abnormally expressed in various human tumors and participates in multiple signaling pathways of cancer progression. In most studies, miR-423 was confirmed as oncomiR, while a few contradictory reports considered miR-423 as an anticancer miRNA. The paradoxical role in cancer may hinder the application of miR-423 as a diagnostic and therapeutic target. Simultaneously, the interaction mechanism between miR-423 and lncRNA also needs attention. In this review, we have summarized the dual role of aberrant miR-423 expression and its mechanisms in tumorigenesis, and the therapeutic potential of miR-423 in human tumors.
Collapse
Affiliation(s)
- RuiSheng Ke
- Department of General Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, China.,The Fuzong Clinical Medical College of Fujian Medical University, Fuzhou City, China
| | - LiZhi Lv
- The Fuzong Clinical Medical College of Fujian Medical University, Fuzhou City, China.,Department of Hepatobiliary Surgery, 900 Hospital of the Joint Logistics Team, Fuzhou City, China
| | - SiYu Zhang
- Department of General Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - FuXing Zhang
- Department of General Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Yi Jiang
- The Fuzong Clinical Medical College of Fujian Medical University, Fuzhou City, China.,Department of Hepatobiliary Surgery, 900 Hospital of the Joint Logistics Team, Fuzhou City, China
| |
Collapse
|
28
|
Tang H, Han X, Feng Y, Hao Y. linc00968 inhibits the tumorigenesis and metastasis of lung adenocarcinoma via serving as a ceRNA against miR-9-5p and increasing CPEB3. Aging (Albany NY) 2020; 12:22582-22598. [PMID: 33159015 PMCID: PMC7746359 DOI: 10.18632/aging.103833] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/22/2020] [Indexed: 02/06/2023]
Abstract
Increasing evidence confirms that long noncoding RNAs (lncRNAs) exert vital functions in multiple biological process among malignant cancers. In the current study, we uncovered that linc00968 was downregulated in lung adenocarcinoma (LUAD). Furthermore, the low level of linc00968 was correlated with worse prognosis in patients with LUAD. Upregulation of linc00968 restrained the growth and metastatic phenotypes of LUAD cell in vitro and in vivo. Using bioinformation methods and luciferase reporter assay, we identified that linc00968 acted as a competing endogenous RNA (ceRNA) via sponging miR-9-5p to modulate the level of Cytoplasmic Polyadenylation Element Binding Protein 3 (CPEB3) in LUAD. In addition, LUAD cell migration, colony formation and epithelial-mesenchymal transition (EMT) process were suppressed by linc00968 while these aggressive traits were reversed by miR-142-5p or CPEB3 silencing. Altogether, our work disclosed that linc00968 played a critical role in LUAD and linc00968/miR-9-5p/CPEB3 regulatory axis might be a potential treatment target in LUAD.
Collapse
Affiliation(s)
- Huaping Tang
- Department of Pulmonary and Critical Care Medicine, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Xiaolei Han
- Health Office, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Yan Feng
- Department of Pulmonary and Critical Care Medicine, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Yueqin Hao
- Department of Pulmonary and Critical Care Medicine, Qingdao Municipal Hospital, Qingdao, Shandong, China
| |
Collapse
|
29
|
Shi P, Zhang X, Lou C, Xue Y, Guo R, Chen S. Hsa_circ_0084927 Regulates Cervical Cancer Advancement via Regulation of the miR-634/TPD52 Axis. Cancer Manag Res 2020; 12:9435-9448. [PMID: 33061631 PMCID: PMC7537997 DOI: 10.2147/cmar.s272478] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/03/2020] [Indexed: 12/15/2022] Open
Abstract
Background Cervical cancer (CC) is a common gynecological tumor that affects women’s health. Circular RNA hsa_circ_0084927 (hsa_circ_0084927) has been reported to be upregulated in CC. However, the role and regulatory mechanism of hsa_circ_0084927 in CC are unclear. Methods Expression of hsa_circ_0084927, microRNA (miR)-634, and tumor protein D52 (TPD52) mRNA in CC tissues and cells was examined by quantitative real-time polymerase chain reaction (qRT-PCR). The proliferation, colony formation, cell cycle progression, apoptosis, migration, and invasion of CC cells were determined with cell counting kit-8 (CCK-8), plate clone, flow cytometry, or transwell assays. The levels of cyclin D1, cleaved-caspase-3 (c-caspase 3), matrix metalloproteinase (MMP)-2, MMP-9, and TPD52 protein were evaluated with Western blotting. The targeting relationship between hsa_circ_0084927 or TPD52 and miR-634 was verified via dual-luciferase reporter and/or RNA immunoprecipitation (RIP) assays. Xenograft assay was conducted to confirm the role of hsa_circ_0084927 in vivo. Results Hsa_circ_0084927 and TPD52 were upregulated while miR-634 was downregulated in CC tissues and cells. Hsa_circ_0084927 silencing reduced tumor growth in vivo and induced cell cycle arrest, apoptosis, and curbed proliferation, colony formation, migration, and invasion of CC cells in vitro. Hsa_circ_0084927 regulated TPD52 expression through sponging miR-634. MiR-634 inhibitor reversed hsa_circ_0084927 knockdown-mediated impact on the malignancy of CC cells. TPD52 elevation abolished the repressive influence of miR-634 mimics on the malignancy of CC cells. Conclusion Hsa_circ_0084927 accelerated CC advancement via upregulating TPD52 via sponging miR-634, offering a new evidence to support hsa_circ_0084927 as a promising target for CC treatment.
Collapse
Affiliation(s)
- Peijing Shi
- Department of Gynaecology, The Third Hospital of Ji'nan, Jinan, People's Republic of China
| | - Xiaoyong Zhang
- Department of Gynaecology, The Third Hospital of Ji'nan, Jinan, People's Republic of China
| | - Chunxiang Lou
- Department of Gynaecology, The Third Hospital of Ji'nan, Jinan, People's Republic of China
| | - Yunxia Xue
- Department of Gynaecology, The Third Hospital of Ji'nan, Jinan, People's Republic of China
| | - Ruibao Guo
- Department of Gynaecology, The Third Hospital of Ji'nan, Jinan, People's Republic of China
| | - Shuzhen Chen
- Department of Pathology, The Third Hospital of Ji'nan, Jinan, People's Republic of China
| |
Collapse
|
30
|
Teppan J, Barth DA, Prinz F, Jonas K, Pichler M, Klec C. Involvement of Long Non-Coding RNAs (lncRNAs) in Tumor Angiogenesis. Noncoding RNA 2020; 6:E42. [PMID: 32992718 PMCID: PMC7711482 DOI: 10.3390/ncrna6040042] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 12/30/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are defined as non-protein coding transcripts with a minimal length of 200 nucleotides. They are involved in various biological processes such as cell differentiation, apoptosis, as well as in pathophysiological processes. Numerous studies considered that frequently deregulated lncRNAs contribute to all hallmarks of cancer including metastasis, drug resistance, and angiogenesis. Angiogenesis, the formation of new blood vessels, is crucial for a tumor to receive sufficient amounts of nutrients and oxygen and therefore, to grow and exceed in its size over the diameter of 2 mm. In this review, the regulatory mechanisms of lncRNAs are described, which influence tumor angiogenesis by directly or indirectly regulating oncogenic pathways, interacting with other transcripts such as microRNAs (miRNAs) or modulating the tumor microenvironment. Further, angiogenic lncRNAs occurring in several cancer types such as liver, gastrointestinal cancer, or brain tumors are summarized. Growing evidence on the influence of lncRNAs on tumor angiogenesis verified these transcripts as potential predictive or diagnostic biomarkers or therapeutic targets of anti-angiogenesis treatment. However, there are many unsolved questions left which are pointed out in this review, hence driving comprehensive research in this area is necessary to enable an effective use of lncRNAs as either therapeutic molecules or diagnostic targets in cancer.
Collapse
Affiliation(s)
- Julia Teppan
- Research Unit of Non-Coding RNAs and Genome Editing in Cancer, Division of Clinical Oncology, Department of Internal Medicine, Comprehensive Cancer Center Graz, Medical University of Graz, 8036 Graz, Austria; (J.T.); (D.A.B.); (F.P.); (K.J.); (C.K.)
| | - Dominik A. Barth
- Research Unit of Non-Coding RNAs and Genome Editing in Cancer, Division of Clinical Oncology, Department of Internal Medicine, Comprehensive Cancer Center Graz, Medical University of Graz, 8036 Graz, Austria; (J.T.); (D.A.B.); (F.P.); (K.J.); (C.K.)
- Department of Experimental Therapeutics, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Felix Prinz
- Research Unit of Non-Coding RNAs and Genome Editing in Cancer, Division of Clinical Oncology, Department of Internal Medicine, Comprehensive Cancer Center Graz, Medical University of Graz, 8036 Graz, Austria; (J.T.); (D.A.B.); (F.P.); (K.J.); (C.K.)
| | - Katharina Jonas
- Research Unit of Non-Coding RNAs and Genome Editing in Cancer, Division of Clinical Oncology, Department of Internal Medicine, Comprehensive Cancer Center Graz, Medical University of Graz, 8036 Graz, Austria; (J.T.); (D.A.B.); (F.P.); (K.J.); (C.K.)
| | - Martin Pichler
- Research Unit of Non-Coding RNAs and Genome Editing in Cancer, Division of Clinical Oncology, Department of Internal Medicine, Comprehensive Cancer Center Graz, Medical University of Graz, 8036 Graz, Austria; (J.T.); (D.A.B.); (F.P.); (K.J.); (C.K.)
- Department of Experimental Therapeutics, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Christiane Klec
- Research Unit of Non-Coding RNAs and Genome Editing in Cancer, Division of Clinical Oncology, Department of Internal Medicine, Comprehensive Cancer Center Graz, Medical University of Graz, 8036 Graz, Austria; (J.T.); (D.A.B.); (F.P.); (K.J.); (C.K.)
| |
Collapse
|
31
|
Wang X, Chacon LI, Derakhshandeh R, Rodriguez HJ, Han DD, Kostyushev DS, Henry TD, Traverse JH, Moyé L, Simari RD, Taylor DA, Springer ML. Impaired therapeutic efficacy of bone marrow cells from post-myocardial infarction patients in the TIME and LateTIME clinical trials. PLoS One 2020; 15:e0237401. [PMID: 32841277 PMCID: PMC7446972 DOI: 10.1371/journal.pone.0237401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/25/2020] [Indexed: 01/07/2023] Open
Abstract
Implantation of bone marrow-derived cells (BMCs) into mouse hearts post-myocardial infarction (MI) limits cardiac functional decline. However, clinical trials of post-MI BMC therapy have yielded conflicting results. While most laboratory experiments use healthy BMC donor mice, clinical trials use post-MI autologous BMCs. Post-MI mouse BMCs are therapeutically impaired, due to inflammatory changes in BMC composition. Thus, therapeutic efficacy of the BMCs progressively worsens after MI but recovers as donor inflammatory response resolves. The availability of post-MI patient BM mononuclear cells (MNCs) from the TIME and LateTIME clinical trials enabled us to test if human post-MI MNCs undergo a similar period of impaired efficacy. We hypothesized that MNCs from TIME trial patients would be less therapeutic than healthy human donor MNCs when implanted into post-MI mouse hearts, and that therapeutic properties would be restored in MNCs from LateTIME trial patients. Post-MI SCID mice received MNCs from healthy donors, TIME patients, or LateTIME patients. Cardiac function improved considerably in the healthy donor group, but neither the TIME nor LateTIME group showed therapeutic effect. Conclusion: post-MI human MNCs lack therapeutic benefits possessed by healthy MNCs, which may partially explain why BMC clinical trials have been less successful than mouse studies.
Collapse
Affiliation(s)
- Xiaoyin Wang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, United States of America
| | | | - Ronak Derakhshandeh
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, United States of America
| | - Hilda J. Rodriguez
- Division of Cardiology, University of California, San Francisco, San Francisco, CA, United States of America
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, United States of America
| | - Daniel D. Han
- Division of Cardiology, University of California, San Francisco, San Francisco, CA, United States of America
| | - Dmitry S. Kostyushev
- Division of Cardiology, University of California, San Francisco, San Francisco, CA, United States of America
| | - Timothy D. Henry
- The Carl and Edyth Lindner Center for Research and Education at The Christ Hospital, Cincinnati, OH, United States of America
| | - Jay H. Traverse
- Minneapolis Heart Institute Foundation, Minneapolis, MN, United States of America
| | - Lem Moyé
- University of Texas Health School of Public Health, Houston, TX, United States of America
| | - Robert D. Simari
- Kansas University Medical Center, Kansas City, KS, United States of America
| | - Doris A. Taylor
- Texas Heart Institute, Houston, TX, United States of America
| | - Matthew L. Springer
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, United States of America
- Division of Cardiology, University of California, San Francisco, San Francisco, CA, United States of America
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, United States of America
| |
Collapse
|
32
|
Ghafouri-Fard S, Shoorei H, Mohaqiq M, Taheri M. Non-coding RNAs regulate angiogenic processes. Vascul Pharmacol 2020; 133-134:106778. [PMID: 32784009 DOI: 10.1016/j.vph.2020.106778] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 02/06/2023]
Abstract
Angiogenesis has critical roles in numerous physiologic processes during embryonic and adult life such as wound healing and tissue regeneration. However, aberrant angiogenic processes have also been involved in the pathogenesis of several disorders such as cancer and diabetes mellitus. Vascular endothelial growth factor (VEGF) is implicated in the regulation of this process in several physiologic and pathologic conditions. Notably, several non-coding RNAs (ncRNAs) have been shown to influence angiogenesis through modulation of expression of VEGF or other angiogenic factors. In the current review, we summarize the function and characteristics of microRNAs and long non-coding RNAs which regulate angiogenic processes. Understanding the role of these transcripts in the angiogenesis can facilitate design of therapeutic strategies to defeat the pathogenic events during this process especially in the human malignancies. Besides, angiogenesis-related mechanisms can improve tissue regeneration after conditions such as arteriosclerosis, myocardial infarction and limb ischemia. Thus, ncRNA-regulated angiogenesis can be involved in the pathogenesis of several disorders.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mahdi Mohaqiq
- Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University, Winston-Salem, NC, USA
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
33
|
Dai T, Zhao X, Li Y, Yu L, Li Y, Zhou X, Gong Q. miR-423 Promotes Breast Cancer Invasion by Activating NF-κB Signaling. Onco Targets Ther 2020; 13:5467-5478. [PMID: 32606763 PMCID: PMC7297514 DOI: 10.2147/ott.s236514] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 04/19/2020] [Indexed: 12/17/2022] Open
Abstract
Objective Breast cancer has become the most common malignancy among women worldwide; therefore, novel diagnostic and prognostic markers and therapeutic targets are urgently required. NF-κB signaling plays a pivotal role in enhancing breast cancer malignant phenotypes, especially cancer invasion and metastasis, which is the main cause of death in cancer patients. TNIP2, an important inhibitor of the NF-κB pathway, is known to involve a negative feedback loop of the NF-κB signaling cascade and to regulate tumor aggressiveness in various cancer types. However, the mRNA level of TNIP2 is barely altered in breast cancer; thus, the mechanism that regulates TNIP2 in breast cancer still needs to be elucidated. Methods We analyzed the expression and prognosis of miR-423 in a TCGA BRCA miRNA cohort and in clinical specimens. We detected the invasive capacity through a Matrigel-coated Transwell penetration assay, a three-dimensional (3D) spheroid invasion assay and a wound healing assay. Then, we applied luciferase assays, real-time PCR assays and Western blotting to further study the mechanism. Results In this study, analysis of the TCGA BRCA miRNA cohort and clinical specimens demonstrated that miR-423 was upregulated in human breast cancers and was positively correlated with clinical stage, poor overall survival and metastasis classification. Moreover, the invasiveness of breast cancer cells was enhanced by ectopic expression of miR-423 and inhibited by miR-423 downregulation. Mechanistically, upregulation of miR-423 led to activation of the NF-κB signaling pathway and elevated expression of snail and twist, while repression of miR-423 inhibited this pathway. Furthermore, the results indicated that TNIP2 is a target gene of miR-423, and suppression of TNIP2 resulted in increased invasiveness in miR-423-silenced cells. Conclusion Our results suggest that miR-423 is a crucial factor that enhances breast cancer cell invasion through the NF-κB signaling pathway and shed light on miR-423 as a promising prognostic and therapeutic marker for metastatic breast cancer.
Collapse
Affiliation(s)
- Ting Dai
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou 511436, People's Republic of China
| | - Xiaohui Zhao
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou 511436, People's Republic of China
| | - Yun Li
- Department of Immunobiology, Jinan University, Guangzhou 510632, People's Republic of China
| | - Lihong Yu
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou 511436, People's Republic of China
| | - Yanan Li
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou 511436, People's Republic of China
| | - Xiang Zhou
- Department of Microsurgery, Trauma and Hand Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, People's Republic of China
| | - Qing Gong
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou 511436, People's Republic of China
| |
Collapse
|
34
|
Su Y, Chen Y, Tian Z, Lu C, Chen L, Ma X. lncRNAs classifier to accurately predict the recurrence of thymic epithelial tumors. Thorac Cancer 2020; 11:1773-1783. [PMID: 32374079 PMCID: PMC7327696 DOI: 10.1111/1759-7714.13439] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/28/2020] [Accepted: 03/30/2020] [Indexed: 12/12/2022] Open
Abstract
Background Long non‐coding RNAs (lncRNAs), which have little or no ability to encode proteins, have attracted special attention due to their potential role in cancer disease. In this study we aimed to establish a lncRNAs classifier to improve the accuracy of recurrence prediction for thymic epithelial tumors (TETs). Methods TETs RNA sequencing (RNA‐seq) data set and the matched clinicopathologic information were downloaded from the Cancer Genome Atlas. Using univariate Cox regression and least absolute shrinkage and selection operator (LASSO) analysis, we developed a lncRNAs classifier related to recurrence. Functional analysis was conducted to investigate the potential biological processes of the lncRNAs target genes. The independent prognostic factors were identified by Cox regression model. Additionally, predictive ability and clinical application of the lncRNAs classifier were assessed, and compared with the Masaoka staging by receiver operating characteristic (ROC) analysis and decision curve analysis (DCA). Results Four recurrence‐free survival (RFS)‐related lncRNAs were identified, and the classifier consisting of the identified four lncRNAs was able to effectively divide the patients into high and low risk subgroups, with an area under curve (AUC) of 0.796 (three‐year RFS) and 0.788 (five‐year RFS), respectively. Multivariate analysis indicated that the lncRNAs classifier was an independent recurrence risk factor. The AUC of the lncRNAs classifier in predicting RFS was significantly higher than the Masaoka staging system. Decision curve analysis further demonstrated that the lncRNAs classifier had a larger net benefit than the Masaoka staging system. Conclusions A lncRNAs classifier for patients with TETs was an independent risk factor for RFS despite other clinicopathologic variables. It generated more accurate estimations of the recurrence probability when compared to the Masaoka staging system, but additional data is required before it can be used in clinical practice.
Collapse
Affiliation(s)
- Yongchao Su
- Department of Thoracic Surgery, Sanya Central Hospital, Sanya, China
| | - Yongbing Chen
- Department of Thoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zuochun Tian
- Department of Thoracic Surgery, Sanya Central Hospital, Sanya, China
| | - Chuangang Lu
- Department of Thoracic Surgery, Sanya Central Hospital, Sanya, China
| | - Liang Chen
- Department of Respiratory Medicine, Sanya Central Hospital, Sanya, China
| | - Ximiao Ma
- Department of Thoracic Surgery, Haikou People's Hospital, Haikou, China
| |
Collapse
|
35
|
Xu S, Gong Y, Yin Y, Xing H, Zhang N. The multiple function of long noncoding RNAs in osteosarcoma progression, drug resistance and prognosis. Biomed Pharmacother 2020; 127:110141. [PMID: 32334375 DOI: 10.1016/j.biopha.2020.110141] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/22/2020] [Accepted: 03/30/2020] [Indexed: 12/16/2022] Open
Abstract
Osteosarcoma is a bone tumor prevalent in children and young adults. LncRNAs are a family of non-protein-coding transcripts longer than 200 nucleotides. The tumor-related pathological functions of lncRNAs include proliferation, migration, and chemotherapy resistance, all of which have been widely acknowledged in research on osteosarcoma. In addition, compelling evidence suggests that lncRNAs could serve as diagnostic indicators, prognostic biomarkers, and targets for disease treatment. In this review, we systematically summarize how lncRNAs regulate tumorigenesis, invasion and therapeutic resistance. By deepening our knowledge of the relationship between lncRNAs and osteosarcoma, we hope to translate research findings into clinical applications as soon as possible.
Collapse
Affiliation(s)
- Shengjie Xu
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yingchao Gong
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ying Yin
- Department of Gastroenterology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Hongyuan Xing
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Ning Zhang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China.
| |
Collapse
|
36
|
Cheng C, Zhang Z, Cheng F, Shao Z. Exosomal lncRNA RAMP2-AS1 Derived from Chondrosarcoma Cells Promotes Angiogenesis Through miR-2355-5p/VEGFR2 Axis. Onco Targets Ther 2020; 13:3291-3301. [PMID: 32368088 PMCID: PMC7182451 DOI: 10.2147/ott.s244652] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 04/04/2020] [Indexed: 12/22/2022] Open
Abstract
Objective Exosomes derived from cancer cells can alter the microenvironment and enhance cancer malignancy through the regulation of peripheral cell functions. The present study focused on the crosstalk between chondrosarcoma cells and human umbilical vein endothelial cells (HUVECs) mediated by exosomes derived from chondrosarcoma cells and aimed to explore the potential molecular mechanism. Materials and Methods Chondrosarcoma cell-derived exosomes were isolated and characterized. Cell proliferation assay, tube formation assay and transwell migration assay were performed to characterize the effects of exosomes on HUVECs. The lncRNA microarray was used to select differentially expressed lncRNAs in HUVECs treated with or without exosomes. Serum samples of patients with chondrosarcoma were collected to analyze the correlation between the RAMP2-AS1 level and the clinicopathological features. Online databases were used to predict the target microRNA of RAMP2-AS1. Dual luciferase reporter assay, Western blotting and qRT-PCR assays were performed to verify the interactions among RAMP2-AS1, miR-2355-5p and VEGFR2. Rescue experiments were conducted to validate the existence of the RAMP2-AS1/miR-2355-5p/VEGFR2 axis. Results The exosomes secreted by chondrosarcoma cells could enhance HUVECs proliferation, migration and tube formation. LncRNA microarray analysis revealed that exosomes carried lncRNA RAMP2-AS1, and further verification showed that the level of RAMP2-AS1 was increased in the serum of chondrosarcoma patients and was closely related to local invasiveness, distant metastasis and poor prognosis. Subsequent experiments demonstrated that RAMP2-AS1 knockdown could partly abrogate the promoting effects on angiogenesis induced by exosomes derived from chondrosarcoma cells. Moreover, dual luciferase reporter assay and rescue experiments suggested that the RAMP2-AS1/miR-2355-5p/VEGFR2 axis was responsible for exosome-induced angiogenesis of HUVECs. Conclusion Chondrosarcoma cell-derived exosomes carry lncRNA RAMP2-AS1, which acts as a ceRNA of miR-2355-5p to regulate VEGFR2 expression, thereby positively regulating the angiogenic ability of HUVECs. Thus, exosomal RAMP2-AS1 has the potential as a novel biomarker and therapeutic target for chondrosarcoma.
Collapse
Affiliation(s)
- Cheng Cheng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Zhicai Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Fuli Cheng
- Department of Pediatric Orthopedics, Zhengzhou Orthopaedics Hospital, Henan University, Zhengzhou 450052, People's Republic of China
| | - Zengwu Shao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| |
Collapse
|
37
|
Zhou Y, Si L, Liu Z, Shi Y, Agula B. Long Noncoding RNA ZFAS1 Promotes Progression of NSCLC via Regulating of miR-590-3p. Cell Transplant 2020; 29:963689720919435. [PMID: 32841053 PMCID: PMC7586268 DOI: 10.1177/0963689720919435] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/05/2020] [Accepted: 03/19/2020] [Indexed: 12/14/2022] Open
Abstract
The incidence and mortality rate of nonsmall cell lung cancer (NSCLC) are continuously increasing. Recently, the important roles of long noncoding ribonucleic acid (lncRNA) zinc finger antisense1 (ZFAS1) in the development of many disease have been proved. However, the roles of ZFAS1 in NSCLC are still not completely understood. Thus, this study aimed to explore the potential roles and underlying mechanisms of lncRNA ZFAS1 in the progression of NSCLC. Our results demonstrated that lncRNA ZFAS1 expression was significantly upregulated in NSCLC tissues and cell lines. Loss-of-function experiments revealed that lncRNA ZFAS1 inhibition could remarkably suppress NSCLC cells proliferation in vitro. Bioinformatic analysis and luciferase reporter assay revealed that lncRNA ZFAS1 directly interacted with miR-590-3p. Rescue experiments showed that miR-590-3p inhibitor reversed the cell proliferation function of lncRNA ZFAS1 knockdown in vitro. Furthermore, we confirmed that lncRNA ZFAS1 inhibited cell division cycle 42 (Cdc42) expression by regulating of miR-590-3p in NSCLC cells. Therefore, our study indicates that lncRNA ZFAS1/miR-590-3p axis is involved in NSCLC cell proliferation. It also suggests that lncRNA ZFAS1 is a putative tumor oncogene in NSCLC.
Collapse
Affiliation(s)
- Yumei Zhou
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, China
| | - Lengge Si
- Mongolian Medical College, Inner Mongolia Medical University, Hohhot, China
| | - Zihao Liu
- Department of Cancer Prevention, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, China
| | - Yanchun Shi
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, China
| | - B Agula
- Baotou Medical College, Baotou, China
| |
Collapse
|
38
|
Ye W, Ni Z, Yicheng S, Pan H, Huang Y, Xiong Y, Liu T. Anisomycin inhibits angiogenesis in ovarian cancer by attenuating the molecular sponge effect of the lncRNA‑Meg3/miR‑421/PDGFRA axis. Int J Oncol 2019; 55:1296-1312. [PMID: 31638182 PMCID: PMC6831202 DOI: 10.3892/ijo.2019.4887] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 08/21/2019] [Indexed: 02/07/2023] Open
Abstract
Angiogenesis has an important role in tumour cell growth and metastasis. Anisomycin has been shown to inhibit tumour cell growth. However, whether anisomycin can inhibit angiogenesis of tumours has not been reported. The present study demonstrated that there was a positive correlation between tumour angiogenesis and the number of CD44+/CD133+ serous human ovarian cancer stem cells (HuOCSCs). Subsequently, it was confirmed that anisomycin significantly inhibited the proliferation, invasion, tumorigenic ability and tumour angiogenesis of HuOCSCs. Gene expression profiling by cDNA microarrays revealed that the expression levels of vascular endothelial cell markers, platelet‑derived growth factors, Notch pathway components and 27 tumour angiogenesis‑related genes were significantly decreased in the anisomycin‑treated group compared with the control group. Further experiments demonstrated that the expression levels of endogenous long non‑coding RNA (lncRNA) maternally expressed 3 (Meg3) were significantly decreased in anisomycin‑treated HuOCSCs, whereas the expression levels of microRNA (miR)‑421 were significantly increased. The results of luciferase reporter assays indicated that, when miR‑421 was overexpressed in cells, the luciferase activities of wild‑type platelet derived growth factor receptor α (PDGFRA) 3' untranslated region and Meg3 reporter plasmids were significantly decreased. Overexpression of miR‑421 in HuOCSCs significantly enhanced the anisomycin‑mediated inhibition of HuOCSC proliferation. Taken together, the present results demonstrated that anisomycin inhibited the activation downstream of the Notch1 pathway by attenuating the molecular sponge effect of the lncRNA‑Meg3/miR‑421/PDGFRA axis, ultimately inhibiting angiogenesis, proliferation and invasion in ovarian cancer cells.
Collapse
MESH Headings
- 3' Untranslated Regions/genetics
- Animals
- Anisomycin/pharmacology
- Anisomycin/therapeutic use
- Carcinogenesis/drug effects
- Carcinogenesis/genetics
- Carcinoma, Ovarian Epithelial/blood supply
- Carcinoma, Ovarian Epithelial/drug therapy
- Carcinoma, Ovarian Epithelial/genetics
- Carcinoma, Ovarian Epithelial/pathology
- Cell Proliferation/drug effects
- Cell Proliferation/genetics
- Drug Screening Assays, Antitumor
- Embryo, Nonmammalian
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Mice
- MicroRNAs/agonists
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Neoplasm Invasiveness/genetics
- Neoplasm Invasiveness/pathology
- Neoplasm Invasiveness/prevention & control
- Neoplastic Stem Cells
- Neovascularization, Pathologic/drug therapy
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/pathology
- Neovascularization, Physiologic/drug effects
- Ovarian Neoplasms/blood supply
- Ovarian Neoplasms/drug therapy
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/pathology
- Ovary/pathology
- Primary Cell Culture
- RNA, Long Noncoding/metabolism
- Receptor, Platelet-Derived Growth Factor alpha/genetics
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
- Zebrafish
Collapse
Affiliation(s)
- Weiping Ye
- Department of Obstetrics and Gynecology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200086
| | - Zhentian Ni
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine
| | - Shen Yicheng
- Longhua hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200031
| | - Hao Pan
- College of Pharmacy, Chongqing Medical University, Chongqing, Sichuan 400016
| | | | - Ying Xiong
- Department of Obstetrics and Gynecology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200086
| | - Te Liu
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, P.R. China
| |
Collapse
|
39
|
Li W, Jin X, Zhao Y, Dai J, Cai Y. Long noncoding RNA GAS6-AS2 sponges microRNA-493, thereby enhancing the malignant characteristics of breast cancer cells via upregulation of FUT4. Pathol Res Pract 2019; 216:152772. [PMID: 31839366 DOI: 10.1016/j.prp.2019.152772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/16/2019] [Accepted: 11/27/2019] [Indexed: 10/25/2022]
Abstract
Long noncoding RNA (lncRNA) GAS6-AS2 serves as an oncogenic lncRNA in various types of human cancer. In this study, we attempted to examine the functions of GAS6-AS2 in breast cancer (BC) and explore the potential mechanisms involved. Reverse-transcription quantitative PCR was carried out to determine GAS6-AS2 expression in BC tissues and cell lines. Multiple functional experiments, including a Cell Counting Kit-8 assay, Transwell migration and invasion assays, and an in vivo nude-mouse xenograft experiment, were conducted to evaluate the effects of GAS6-AS2 in BC cells. GAS6-AS2 expression was high in BC tumors, manifesting a strong correlation with tumor size, lymph node metastasis, TNM stage, and shorter overall survival in patients with BC. A knockdown of GAS6-AS2 restricted BC cell proliferation, migration, and invasion in vitro and retarded tumor growth in vivo. With regard to its mechanism, GAS6-AS2 acted as a competing endogenous RNA that sponged microRNA-493 (miR-493), thereby increasing the expression of fucosyltransferase IV (FUT4). Either miR-493 inhibition or FUT4 upregulation abrogated the consequences of GAS6-AS2 knockdown in BC cells. These results revealed that GAS6-AS2 sponges miR-493 to enhance the malignant characteristics of BC in vitro and in vivo by increasing FUT4 expression. Thus, this lncRNA is an effective therapeutic target in BC and a promising diagnostic biomarker of this cancer.
Collapse
Affiliation(s)
- Wanfeng Li
- Department of Breast Surgery, Jilin Tumor Hospital, Jilin, 130012, PR China
| | - Xintian Jin
- Department of Thoracic Neoplasms, Jilin Tumor Hospital, Jilin, 130012, PR China
| | - Yueming Zhao
- Department of Oncology, Jilin Tumor Hospital, Jilin, 130012, PR China
| | - Jixin Dai
- Department of Oncology, Jilin Tumor Hospital, Jilin, 130012, PR China
| | - Yong Cai
- Department of Breast Surgery, Jilin Tumor Hospital, Jilin, 130012, PR China.
| |
Collapse
|
40
|
Huang QY, Liu GF, Qian XL, Tang LB, Huang QY, Xiong LX. Long Non-Coding RNA: Dual Effects on Breast Cancer Metastasis and Clinical Applications. Cancers (Basel) 2019; 11:E1802. [PMID: 31744046 PMCID: PMC6896003 DOI: 10.3390/cancers11111802] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/10/2019] [Accepted: 11/12/2019] [Indexed: 12/24/2022] Open
Abstract
As a highly heterogeneous malignancy, breast cancer (BC) has become the most significant threat to female health. Distant metastasis and therapy resistance of BC are responsible for most of the cases of mortality and recurrence. Distant metastasis relies on an array of processes, such as cell proliferation, epithelial-to-mesenchymal transition (EMT), mesenchymal-to-epithelial transition (MET), and angiogenesis. Long non-coding RNA (lncRNA) refers to a class of non-coding RNA with a length of over 200 nucleotides. Currently, a rising number of studies have managed to investigate the association between BC and lncRNA. In this study, we summarized how lncRNA has dual effects in BC metastasis by regulating invasion, migration, and distant metastasis of BC cells. We also emphasize that lncRNA has crucial regulatory effects in the stemness and angiogenesis of BC. Clinically, some lncRNAs can regulate chemotherapy sensitivity in BC patients and may function as novel biomarkers to diagnose or predict prognosis for BC patients. The exact impact on clinical relevance deserves further study. This review can be an approach to understanding the dual effects of lncRNAs in BC, thereby linking lncRNAs to quasi-personalized treatment in the future.
Collapse
Affiliation(s)
- Qi-Yuan Huang
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China; (Q.-Y.H.); (X.-L.Q.); (L.-B.T.); (Q.-Y.H.)
- Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Guo-Feng Liu
- First Clinical Medical College, Nanchang University, Nanchang 330006, China;
| | - Xian-Ling Qian
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China; (Q.-Y.H.); (X.-L.Q.); (L.-B.T.); (Q.-Y.H.)
- First Clinical Medical College, Nanchang University, Nanchang 330006, China;
| | - Li-Bo Tang
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China; (Q.-Y.H.); (X.-L.Q.); (L.-B.T.); (Q.-Y.H.)
- Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Qing-Yun Huang
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China; (Q.-Y.H.); (X.-L.Q.); (L.-B.T.); (Q.-Y.H.)
| | - Li-Xia Xiong
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China; (Q.-Y.H.); (X.-L.Q.); (L.-B.T.); (Q.-Y.H.)
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, Nanchang 330006, China
| |
Collapse
|