1
|
Chen YL, Chen YC, Suzuki A. ImmunoCellCycle-ID - a high-precision immunofluorescence-based method for cell cycle identification. J Cell Sci 2024; 137:jcs263414. [PMID: 39564775 DOI: 10.1242/jcs.263414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/18/2024] [Indexed: 11/21/2024] Open
Abstract
The cell cycle is a fundamental process essential for cell proliferation, differentiation and development. It consists of four major phases: G1, S, G2 and M. These phases collectively drive the reproductive cycle and are meticulously regulated by various proteins that play crucial roles in both the prevention and progression of cancer. Traditional methods for studying these functions, such as flow cytometry, require a substantial number of cells to ensure accuracy. In this study, we have developed a user-friendly immunofluorescence-based method for identifying cell cycle stages, providing single-cell resolution and precise identification of G1, early/mid S, late S, early/mid G2, late G2, and each sub-stage of the M phase using fluorescence microscopy called ImmunoCellCycle-ID. This method provides high-precision cell cycle identification and can serve as an alternative to, or in combination with, traditional flow cytometry to dissect detailed sub-stages of the cell cycle in a variety of cell lines.
Collapse
Affiliation(s)
- Yu-Lin Chen
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin, 53705, USA
| | - Yu-Chia Chen
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin, 53705, USA
- Molecular and Cellular Pharmacology Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin, 53705, USA
| | - Aussie Suzuki
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin, 53705, USA
- Molecular and Cellular Pharmacology Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin, 53705, USA
- Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, 53705, USA
| |
Collapse
|
2
|
de Jaime-Soguero A, Hattemer J, Bufe A, Haas A, van den Berg J, van Batenburg V, Das B, di Marco B, Androulaki S, Böhly N, Landry JJM, Schoell B, Rosa VS, Villacorta L, Baskan Y, Trapp M, Benes V, Chabes A, Shahbazi M, Jauch A, Engel U, Patrizi A, Sotillo R, van Oudenaarden A, Bageritz J, Alfonso J, Bastians H, Acebrón SP. Developmental signals control chromosome segregation fidelity during pluripotency and neurogenesis by modulating replicative stress. Nat Commun 2024; 15:7404. [PMID: 39191776 DOI: 10.1038/s41467-024-51821-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 08/09/2024] [Indexed: 08/29/2024] Open
Abstract
Human development relies on the correct replication, maintenance and segregation of our genetic blueprints. How these processes are monitored across embryonic lineages, and why genomic mosaicism varies during development remain unknown. Using pluripotent stem cells, we identify that several patterning signals-including WNT, BMP, and FGF-converge into the modulation of DNA replication stress and damage during S-phase, which in turn controls chromosome segregation fidelity in mitosis. We show that the WNT and BMP signals protect from excessive origin firing, DNA damage and chromosome missegregation derived from stalled forks in pluripotency. Cell signalling control of chromosome segregation declines during lineage specification into the three germ layers, but re-emerges in neural progenitors. In particular, we find that the neurogenic factor FGF2 induces DNA replication stress-mediated chromosome missegregation during the onset of neurogenesis, which could provide a rationale for the elevated chromosomal mosaicism of the developing brain. Our results highlight roles for morphogens and cellular identity in genome maintenance that contribute to somatic mosaicism during mammalian development.
Collapse
Affiliation(s)
| | - Janina Hattemer
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Anja Bufe
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Alexander Haas
- Department of Molecular Oncology, Section for Cellular Oncology, University Medical Center Göttingen (UMG), Göttingen, Germany
| | - Jeroen van den Berg
- Oncode Institute, Utrecht, The Netherlands
- Hubrecht Institute, Utrecht, The Netherlands
- KNAW (Royal Netherlands Academy of Arts and Sciences), Utrecht, The Netherlands
- University Medical Center Utrecht, Utrecht, The Netherlands
| | - Vincent van Batenburg
- Oncode Institute, Utrecht, The Netherlands
- Hubrecht Institute, Utrecht, The Netherlands
- KNAW (Royal Netherlands Academy of Arts and Sciences), Utrecht, The Netherlands
- University Medical Center Utrecht, Utrecht, The Netherlands
| | - Biswajit Das
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Barbara di Marco
- Department of Clinical Neurobiology, University Hospital Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefania Androulaki
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Nicolas Böhly
- Department of Molecular Oncology, Section for Cellular Oncology, University Medical Center Göttingen (UMG), Göttingen, Germany
| | - Jonathan J M Landry
- Genomics Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Brigitte Schoell
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | | | - Laura Villacorta
- Genomics Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Yagmur Baskan
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Marleen Trapp
- Schaller Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Vladimir Benes
- Genomics Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Andrei Chabes
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | | | - Anna Jauch
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Ulrike Engel
- Nikon Imaging Center at the University of Heidelberg, Bioquant, Heidelberg, Germany
| | - Annarita Patrizi
- Schaller Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rocio Sotillo
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Alexander van Oudenaarden
- Oncode Institute, Utrecht, The Netherlands
- Hubrecht Institute, Utrecht, The Netherlands
- KNAW (Royal Netherlands Academy of Arts and Sciences), Utrecht, The Netherlands
- University Medical Center Utrecht, Utrecht, The Netherlands
| | - Josephine Bageritz
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Julieta Alfonso
- Department of Clinical Neurobiology, University Hospital Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Holger Bastians
- Department of Molecular Oncology, Section for Cellular Oncology, University Medical Center Göttingen (UMG), Göttingen, Germany
| | - Sergio P Acebrón
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
3
|
Keuper K, Bartek J, Maya-Mendoza A. The nexus of nuclear envelope dynamics, circular economy and cancer cell pathophysiology. Eur J Cell Biol 2024; 103:151394. [PMID: 38340500 DOI: 10.1016/j.ejcb.2024.151394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
The nuclear envelope (NE) is a critical component in maintaining the function and structure of the eukaryotic nucleus. The NE and lamina are disassembled during each cell cycle to enable an open mitosis. Nuclear architecture construction and deconstruction is a prime example of a circular economy, as it fulfills a highly efficient recycling program bound to continuous assessment of the quality and functionality of the building blocks. Alterations in the nuclear dynamics and lamina structure have emerged as important contributors to both oncogenic transformation and cancer progression. However, the knowledge of the NE breakdown and reassembly is still limited to a fraction of participating proteins and complexes. As cancer cells contain highly diverse nuclei in terms of DNA content, but also in terms of nuclear number, size, and shape, it is of great interest to understand the intricate relationship between these nuclear features in cancer cell pathophysiology. In this review, we provide insights into how those NE dynamics are regulated, and how lamina destabilization processes may alter the NE circular economy. Moreover, we expand the knowledge of the lamina-associated domain region by using strategic algorithms, including Artificial Intelligence, to infer protein associations, assess their function and location, and predict cancer-type specificity with implications for the future of cancer diagnosis, prognosis and treatment. Using this approach we identified NUP98 and MECP2 as potential proteins that exhibit upregulation in Acute Myeloid Leukemia (LAML) patients with implications for early diagnosis.
Collapse
Affiliation(s)
- Kristina Keuper
- DNA Replication and Cancer Group, Danish Cancer Institute, Copenhagen, Denmark; Genome Integrity Group, Danish Cancer Institute, Copenhagen, Denmark
| | - Jiri Bartek
- Genome Integrity Group, Danish Cancer Institute, Copenhagen, Denmark; Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SciLifeLab, Stockholm, Sweden
| | | |
Collapse
|
4
|
Zhang X, Kschischo M. Profiling Numerical and Structural Chromosomal Instability in Different Cancer Types. Methods Mol Biol 2024; 2825:345-360. [PMID: 38913320 DOI: 10.1007/978-1-0716-3946-7_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Many cancers display whole chromosome instability (W-CIN) and structural chromosomal instability (S-CIN), referring to increased rates of acquiring numerically and structurally abnormal chromosome changes. This protocol provides detailed steps to analyze the W-CIN and S-CIN across cancer types, intending to leverage large-scale bulk sequencing and SNP array data complemented with the computational models to gain a better understanding of W-CIN and S-CIN.
Collapse
Affiliation(s)
- Xiaoxiao Zhang
- Department of Mathematics and Technology, University of Applied Sciences Koblenz, Remagen, Germany
- Department of Informatics, Technical University of Munich, Munich, Germany
| | - Maik Kschischo
- Department of Mathematics and Technology, University of Applied Sciences Koblenz, Remagen, Germany.
- Institute for Computer Science, University of Koblenz, Koblenz, Germany.
| |
Collapse
|
5
|
Rodrigues P, Bangali H, Ali E, Nauryzbaevish AS, Hjazi A, Fenjan MN, Alawadi A, Alsaalamy A, Alasheqi MQ, Mustafa YF. The mechanistic role of NAT10 in cancer: Unraveling the enigmatic web of oncogenic signaling. Pathol Res Pract 2024; 253:154990. [PMID: 38056132 DOI: 10.1016/j.prp.2023.154990] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
N-acetyltransferase 10 (NAT10), a versatile enzyme, has gained considerable attention as a significant player in the complex realm of cancer biology. Its enigmatic role in tumorigenesis extends across a wide array of cellular processes, impacting cell growth, differentiation, survival, and genomic stability. Within the intricate network of oncogenic signaling, NAT10 emerges as a crucial agent in multiple cancer types, such as breast, lung, colorectal, and leukemia. This compelling research addresses the intricate complexity of the mechanistic role of NAT10 in cancer development. By elucidating its active participation in essential physiological processes, we investigate the regulatory role of NAT10 in cell cycle checkpoints, coordination of chromatin remodeling, and detailed modulation of the delicate balance between apoptosis and cell survival. Perturbations in NAT10 expression and function have been linked to oncogenesis, metastasis, and drug resistance in a variety of cancer types. Furthermore, the bewildering interactions between NAT10 and key oncogenic factors, such as p53 and c-Myc, are deciphered, providing profound insights into the molecular underpinnings of cancer pathogenesis. Equally intriguing, the paradoxical role of NAT10 as a potential tumor suppressor or oncogene is influenced by context-dependent factors and the cellular microenvironment. This study explores the fascinating interplay of genetic changes, epigenetic changes, and post-translational modifications that shape the dual character of NAT10, revealing the delicate balance between cancer initiation and suppression. Taken together, this overview delves deeply into the enigmatic role of NAT10 in cancer, elucidating its multifaceted roles and its complex interplay with oncogenic networks.
Collapse
Affiliation(s)
- Paul Rodrigues
- Department of Computer Engineering, College of Computer Science, King Khalid University, Al-Faraa, Saudi Arabia.
| | - Harun Bangali
- Department of Computer Engineering, College of Computer Science, King Khalid University, Al-Faraa, Saudi Arabia
| | - Eyhab Ali
- College of Chemistry, Al-Zahraa University for Women, Karbala, Iraq
| | - Abdreshov Serik Nauryzbaevish
- Institute of Genetics and Physiology SC MSHE RK, Laboratory of Physiology Lymphatic System, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mohammed N Fenjan
- College of Health and Medical Technology, Al-Ayen University, Thi-Qar, Iraq
| | - Ahmed Alawadi
- College of Technical Engineering, the Islamic University, Najaf, Iraq; College of Technical Engineering, the Islamic University of Al Diwaniyah, Iraq; College of Technical Engineering, the Islamic University of Babylon, Iraq
| | - Ali Alsaalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna 66002, Iraq
| | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| |
Collapse
|
6
|
Dwivedi D, Harry D, Meraldi P. Mild replication stress causes premature centriole disengagement via a sub-critical Plk1 activity under the control of ATR-Chk1. Nat Commun 2023; 14:6088. [PMID: 37773176 PMCID: PMC10541884 DOI: 10.1038/s41467-023-41753-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 09/18/2023] [Indexed: 10/01/2023] Open
Abstract
A tight synchrony between the DNA and centrosome cycle is essential for genomic integrity. Centriole disengagement, which licenses centrosomes for duplication, occurs normally during mitotic exit. We recently demonstrated that mild DNA replication stress typically seen in cancer cells causes premature centriole disengagement in untransformed mitotic human cells, leading to transient multipolar spindles that favour chromosome missegregation. How mild replication stress accelerates the centrosome cycle at the molecular level remained, however, unclear. Using ultrastructure expansion microscopy, we show that mild replication stress induces premature centriole disengagement already in G2 via the ATR-Chk1 axis of the DNA damage repair pathway. This results in a sub-critical Plk1 kinase activity that primes the pericentriolar matrix for Separase-dependent disassembly but is insufficient for rapid mitotic entry, causing premature centriole disengagement in G2. We postulate that the differential requirement of Plk1 activity for the DNA and centrosome cycles explains how mild replication stress disrupts the synchrony between both processes and contributes to genomic instability.
Collapse
Affiliation(s)
- Devashish Dwivedi
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva 4, Geneva, Switzerland
- Translational Research Centre in Onco-hematology, Faculty of Medicine, University of Geneva, 1211 Geneva 4, Geneva, Switzerland
| | - Daniela Harry
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva 4, Geneva, Switzerland
- Translational Research Centre in Onco-hematology, Faculty of Medicine, University of Geneva, 1211 Geneva 4, Geneva, Switzerland
| | - Patrick Meraldi
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva 4, Geneva, Switzerland.
- Translational Research Centre in Onco-hematology, Faculty of Medicine, University of Geneva, 1211 Geneva 4, Geneva, Switzerland.
| |
Collapse
|
7
|
Labrousse G, Vande Perre P, Parra G, Jaffrelot M, Leroy L, Chibon F, Escudie F, Selves J, Hoffmann JS, Guimbaud R, Lutzmann M. The hereditary N363K POLE exonuclease mutant extends PPAP tumor spectrum to glioblastomas by causing DNA damage and aneuploidy in addition to increased mismatch mutagenicity. NAR Cancer 2023; 5:zcad011. [PMID: 36915289 PMCID: PMC10006997 DOI: 10.1093/narcan/zcad011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 01/27/2023] [Accepted: 02/22/2023] [Indexed: 03/13/2023] Open
Abstract
The exonuclease domain of DNA polymerases epsilon's catalytic subunit (POLE) removes misincorporated nucleotides, called proofreading. POLE-exonuclease mutations cause colorectal- and endometrial cancers with an extreme burden of single nucleotide substitutions. We recently reported that particularly the hereditary POLE exonuclease mutation N363K predisposes in addition to aggressive giant cell glioblastomas. We knocked-in this mutation homozygously into human cell lines and compared its properties to knock-ins of the likewise hereditary POLE L424V mutation and to a complete proofreading-inactivating mutation (exo-null). We found that N363K cells have higher mutation rates as both L424V- or exo-null mutant cells. In contrast to L424V cells, N363K cells expose a growth defect, replication stress and DNA damage. In non-transformed cells, these burdens lead to aneuploidy but macroscopically normal nuclei. In contrast, transformed N363K cells phenocopy the enlarged and disorganized nuclei of giant cell glioblastomas. Taken together, our data characterize a POLE exonuclease domain mutant that not only causes single nucleotide hypermutation, but in addition DNA damage and chromosome instability, leading to an extended tumor spectrum. Our results expand the understanding of the polymerase exonuclease domain and suggest that an assessment of both the mutational potential and the genetic instability might refine classification and treatment of POLE-mutated tumors.
Collapse
Affiliation(s)
- Guillaume Labrousse
- Cancer Research Center of Toulouse, CRCT, 2 Avenue Hubert Curien, 31000Toulouse, France
| | - Pierre Vande Perre
- Cancer Research Center of Toulouse, CRCT, 2 Avenue Hubert Curien, 31000Toulouse, France
- Oncogenetics Department, Institute Claudius Regaud, IUCT-Oncopole, Toulouse, France
| | - Genis Parra
- Center for Genomic Analysis, CNAG, Carrer de Baldiri Reixac 4, Barcelona, Spain
| | - Marion Jaffrelot
- Cancer Research Center of Toulouse, CRCT, 2 Avenue Hubert Curien, 31000Toulouse, France
- Oncogenetics Department, Institute Claudius Regaud, IUCT-Oncopole, Toulouse, France
- Department of Digestive Oncology, IUCT Rangueil-Larrey, CHU de Toulouse, Toulouse, France
| | - Laura Leroy
- Cancer Research Center of Toulouse, CRCT, 2 Avenue Hubert Curien, 31000Toulouse, France
| | - Frederic Chibon
- Cancer Research Center of Toulouse, CRCT, 2 Avenue Hubert Curien, 31000Toulouse, France
| | - Frederic Escudie
- Laboratoire d’Excellence Toulouse Cancer (TOUCAN), Laboratoire de Pathologie, Institut Universitaire du Cancer-Toulouse, Oncopole, 1 Avenue Irene-Joliot-Curie, 31059Toulouse, France
| | - Janick Selves
- Cancer Research Center of Toulouse, CRCT, 2 Avenue Hubert Curien, 31000Toulouse, France
- Laboratoire d’Excellence Toulouse Cancer (TOUCAN), Laboratoire de Pathologie, Institut Universitaire du Cancer-Toulouse, Oncopole, 1 Avenue Irene-Joliot-Curie, 31059Toulouse, France
| | - Jean-Sebastien Hoffmann
- Cancer Research Center of Toulouse, CRCT, 2 Avenue Hubert Curien, 31000Toulouse, France
- Laboratoire d’Excellence Toulouse Cancer (TOUCAN), Laboratoire de Pathologie, Institut Universitaire du Cancer-Toulouse, Oncopole, 1 Avenue Irene-Joliot-Curie, 31059Toulouse, France
| | - Rosine Guimbaud
- Oncogenetics Department, Institute Claudius Regaud, IUCT-Oncopole, Toulouse, France
- Department of Digestive Oncology, IUCT Rangueil-Larrey, CHU de Toulouse, Toulouse, France
| | - Malik Lutzmann
- Cancer Research Center of Toulouse, CRCT, 2 Avenue Hubert Curien, 31000Toulouse, France
- Institute of Human Genetics, IGH, UMR 9002, Centre National de la Recherche Scientifique, University of Montpellier, 34396Montpellier, France
| |
Collapse
|
8
|
Zahnreich S, Yusifli K, Poplawski A, Eckhard LS, Mirsch J, Hankeln T, Galetzka D, Marron M, Scholz-Kreisel P, Spix C, Schmidberger H. Replication stress drives chromosomal instability in fibroblasts of childhood cancer survivors with second primary neoplasms. DNA Repair (Amst) 2023; 122:103435. [PMID: 36549044 DOI: 10.1016/j.dnarep.2022.103435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/20/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
New development and optimization of oncologic strategies are steadily increasing the number of long-term cancer survivors being at risk of developing second primary neoplasms (SPNs) as a late consequence of genotoxic cancer therapies with the highest risk among former childhood cancer patients. Since risk factors and predictive biomarkers for therapy-associated SPN remain unknown, we examined the sensitivity to mild replication stress as a driver of genomic instability and carcinogenesis in fibroblasts from 23 long-term survivors of a pediatric first primary neoplasm (FPN), 22 patients with the same FPN and a subsequent SPN, and 22 controls with no neoplasm (NN) using the cytokinesis-block micronucleus (CBMN) assay. Mild replication stress was induced with the DNA-polymerase inhibitor aphidicolin (APH). Fibroblasts from patients with the DNA repair deficiency syndromes Bloom, Seckel, and Fanconi anemia served as positive controls and for validation of the CBMN assay supplemented by analysis of chromosomal aberrations, DNA repair foci (γH2AX/53BP1), and cell cycle regulation. APH treatment resulted in G2/M arrest and underestimation of cytogenetic damage beyond G2, which could be overcome by inhibition of Chk1. Basal micronuclei were significantly increased in DNA repair deficiency syndromes but comparable between NN, FPN, and SPN donors. After APH-induced replication stress, the average yield of micronuclei was significantly elevated in SPN donors compared to FPN (p = 0.013) as well as NN (p = 0.03) donors but substantially lower than for DNA repair deficiency syndromes. Our findings suggest that mild impairment of the response to replication stress induced by genotoxic impacts of DNA-damaging cancer therapies promotes genomic instability in a subset of long-term cancer survivors and may drive the development of an SPN. Our study provides a basis for detailed mechanistic studies as well as predictive bioassays for clinical surveillance, to identify cancer patients at high risk for SPNs at first diagnosis.
Collapse
Affiliation(s)
- Sebastian Zahnreich
- Department of Radiation Oncology and Radiation Therapy, University Medical Centre of the Johannes Gutenberg University Mainz, Germany.
| | - Kamran Yusifli
- Department of Radiation Oncology and Radiation Therapy, University Medical Centre of the Johannes Gutenberg University Mainz, Germany
| | - Alicia Poplawski
- Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Centre of the Johannes Gutenberg University Mainz, Germany
| | - Lukas Stefan Eckhard
- Department of Orthopedic Surgery, University Medical Centre of the Johannes Gutenberg University Mainz, Germany
| | - Johanna Mirsch
- Radiation Biology and DNA Repair, Technical University of Darmstadt, Germany
| | - Thomas Hankeln
- Institute of Organismic and Molecular Evolution, Molecular Genetics and Genome Analysis, Johannes Gutenberg University Mainz, Germany
| | - Danuta Galetzka
- Department of Radiation Oncology and Radiation Therapy, University Medical Centre of the Johannes Gutenberg University Mainz, Germany
| | - Manuela Marron
- Leibniz Institute for Prevention Research and Epidemiology - BIPS, Germany
| | - Peter Scholz-Kreisel
- Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Centre of the Johannes Gutenberg University Mainz, Germany; Federal Office for Radiation Protection, Munich (Neuherberg), Germany
| | - Claudia Spix
- German Childhood Cancer Registry, Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Centre of the Johannes Gutenberg University Mainz, Germany
| | - Heinz Schmidberger
- Department of Radiation Oncology and Radiation Therapy, University Medical Centre of the Johannes Gutenberg University Mainz, Germany
| |
Collapse
|
9
|
Gordon MR, Zhu J, Sun G, Li R. Suppression of chromosome instability by targeting a DNA helicase in budding yeast. Mol Biol Cell 2023; 34:ar3. [PMID: 36350688 PMCID: PMC9816644 DOI: 10.1091/mbc.e22-09-0395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 11/10/2022] Open
Abstract
Chromosome instability (CIN) is an important driver of cancer initiation, progression, drug resistance, and aging. As such, genes whose inhibition suppresses CIN are potential therapeutic targets. We report here that deletion of an accessory DNA helicase, Rrm3, suppresses high CIN caused by a wide range of genetic or pharmacological perturbations in yeast. Although this helicase mutant has altered cell cycle dynamics, suppression of CIN by rrm3∆ is independent of the DNA damage and spindle assembly checkpoints. Instead, the rrm3∆ mutant may have increased kinetochore-microtubule error correction due to an altered localization of Aurora B kinase and associated phosphatase, PP2A-Rts1.
Collapse
Affiliation(s)
- Molly R. Gordon
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Jin Zhu
- Mechanobiology Institute and
| | - Gordon Sun
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Biomedical Engineering and
| | - Rong Li
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Mechanobiology Institute and
- Department of Biological Sciences, National University of Singapore, 117411
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218
| |
Collapse
|
10
|
Böhly N, Schmidt AK, Zhang X, Slusarenko BO, Hennecke M, Kschischo M, Bastians H. Increased replication origin firing links replication stress to whole chromosomal instability in human cancer. Cell Rep 2022; 41:111836. [PMID: 36516748 DOI: 10.1016/j.celrep.2022.111836] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 09/12/2022] [Accepted: 11/22/2022] [Indexed: 12/14/2022] Open
Abstract
Chromosomal instability (CIN) is a hallmark of cancer and comprises structural CIN (S-CIN) and numerical or whole chromosomal CIN (W-CIN). Recent work indicated that replication stress (RS), known to contribute to S-CIN, also affects mitotic chromosome segregation, possibly explaining the common co-existence of S-CIN and W-CIN in human cancer. Here, we show that RS-induced increased origin firing is sufficient to trigger W-CIN in human cancer cells. We discovered that overexpression of origin firing genes, including GINS1 and CDC45, correlates with W-CIN in human cancer specimens and causes W-CIN in otherwise chromosomally stable human cells. Furthermore, modulation of the ATR-CDK1-RIF1 axis increases the number of firing origins and leads to W-CIN. Importantly, chromosome missegregation upon additional origin firing is mediated by increased mitotic microtubule growth rates, a mitotic defect prevalent in chromosomally unstable cancer cells. Thus, our study identifies increased replication origin firing as a cancer-relevant trigger for chromosomal instability.
Collapse
Affiliation(s)
- Nicolas Böhly
- Georg August University Göttingen, University Medical Center Göttingen (UMG), Department of Molecular Oncology, Section for Cellular Oncology, 37077 Göttingen, Germany
| | - Ann-Kathrin Schmidt
- Georg August University Göttingen, University Medical Center Göttingen (UMG), Department of Molecular Oncology, Section for Cellular Oncology, 37077 Göttingen, Germany
| | - Xiaoxiao Zhang
- University of Applied Sciences Koblenz, Department of Mathematics and Technology, 53424 Remagen, Germany; Technical University of Munich, Department of Informatics, 81675 Munich, Germany
| | - Benjamin O Slusarenko
- Georg August University Göttingen, University Medical Center Göttingen (UMG), Department of Molecular Oncology, Section for Cellular Oncology, 37077 Göttingen, Germany
| | - Magdalena Hennecke
- Georg August University Göttingen, University Medical Center Göttingen (UMG), Department of Molecular Oncology, Section for Cellular Oncology, 37077 Göttingen, Germany
| | - Maik Kschischo
- University of Applied Sciences Koblenz, Department of Mathematics and Technology, 53424 Remagen, Germany
| | - Holger Bastians
- Georg August University Göttingen, University Medical Center Göttingen (UMG), Department of Molecular Oncology, Section for Cellular Oncology, 37077 Göttingen, Germany.
| |
Collapse
|
11
|
Muralimanoharan S, Shamby R, Stansbury N, Schenken R, de la Pena Avalos B, Javanmardi S, Dray E, Sung P, Boyer TG. Aberrant R-loop-induced replication stress in MED12-mutant uterine fibroids. Sci Rep 2022; 12:6169. [PMID: 35418189 PMCID: PMC9008039 DOI: 10.1038/s41598-022-10188-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/31/2022] [Indexed: 11/09/2022] Open
Abstract
Uterine fibroid (UF) driver mutations in Mediator complex subunit 12 (MED12) trigger genomic instability and tumor development through unknown mechanisms. Herein, we show that MED12 mutations trigger aberrant R-loop-induced replication stress, suggesting a possible route to genomic instability and a novel therapeutic vulnerability in this dominant UF subclass. Immunohistochemical analyses of patient-matched tissue samples revealed that MED12 mutation-positive UFs, compared to MED12 mutation-negative UFs and myometrium, exhibited significantly higher levels of R-loops and activated markers of Ataxia Telangiectasia and Rad3-related (ATR) kinase-dependent replication stress signaling in situ. Single molecule DNA fiber analysis revealed that primary cells from MED12 mutation-positive UFs, compared to those from patient-matched MED12 mutation-negative UFs and myometrium, exhibited defects in replication fork dynamics, including reduced fork speeds, increased and decreased numbers of stalled and restarted forks, respectively, and increased asymmetrical bidirectional forks. Notably, these phenotypes were recapitulated and functionally linked in cultured uterine smooth muscle cells following chemical inhibition of Mediator-associated CDK8/19 kinase activity that is known to be disrupted by UF driver mutations in MED12. Thus, Mediator kinase inhibition triggered enhanced R-loop formation and replication stress leading to an S-phase cell cycle delay, phenotypes that were rescued by overexpression of the R-loop resolving enzyme RNaseH. Altogether, these findings reveal MED12-mutant UFs to be uniquely characterized by aberrant R-loop induced replication stress, suggesting a possible basis for genomic instability and new avenues for therapeutic intervention that involve the replication stress phenotype in this dominant UF subtype.
Collapse
Affiliation(s)
- Sribalasubashini Muralimanoharan
- Department of Molecular Medicine, UT Health San Antonio, STRF, 8210 Floyd Curl Drive, Mail Code 8257, San Antonio, TX, 78229-3900, USA
| | - Ross Shamby
- Department of Molecular Medicine, UT Health San Antonio, STRF, 8210 Floyd Curl Drive, Mail Code 8257, San Antonio, TX, 78229-3900, USA
| | - Nicholas Stansbury
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, TX, USA
| | - Robert Schenken
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, TX, USA
| | | | - Samin Javanmardi
- Department of Molecular Medicine, UT Health San Antonio, STRF, 8210 Floyd Curl Drive, Mail Code 8257, San Antonio, TX, 78229-3900, USA
| | - Eloise Dray
- Department of Biochemistry and Structural Biology, UT Health San Antonio, San Antonio, TX, USA
| | - Patrick Sung
- Department of Biochemistry and Structural Biology, UT Health San Antonio, San Antonio, TX, USA
| | - Thomas G Boyer
- Department of Molecular Medicine, UT Health San Antonio, STRF, 8210 Floyd Curl Drive, Mail Code 8257, San Antonio, TX, 78229-3900, USA.
| |
Collapse
|
12
|
Zhang X, Kschischo M. Distinct and Common Features of Numerical and Structural Chromosomal Instability across Different Cancer Types. Cancers (Basel) 2022; 14:1424. [PMID: 35326573 PMCID: PMC8946057 DOI: 10.3390/cancers14061424] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/23/2022] [Accepted: 02/27/2022] [Indexed: 01/27/2023] Open
Abstract
A large proportion of tumours is characterised by numerical or structural chromosomal instability (CIN), defined as an increased rate of gaining or losing whole chromosomes (W-CIN) or of accumulating structural aberrations (S-CIN). Both W-CIN and S-CIN are associated with tumourigenesis, cancer progression, treatment resistance and clinical outcome. Although W-CIN and S-CIN can co-occur, they are initiated by different molecular events. By analysing tumour genomic data from 33 cancer types, we show that the majority of tumours with high levels of W-CIN underwent whole genome doubling, whereas S-CIN levels are strongly associated with homologous recombination deficiency. Both CIN phenotypes are prognostic in several cancer types. Most drugs are less efficient in high-CIN cell lines, but we also report compounds and drugs which should be investigated as targets for W-CIN or S-CIN. By analysing associations between CIN and bio-molecular entities with pathway and gene expression levels, we complement gene signatures of CIN and report that the drug resistance gene CKS1B is strongly associated with S-CIN. Finally, we propose a potential copy number-dependent mechanism to activate the PI3K pathway in high-S-CIN tumours.
Collapse
Affiliation(s)
- Xiaoxiao Zhang
- Department of Mathematics and Technology, University of Applied Sciences Koblenz, 53424 Remagen, Germany;
- Department of Informatics, Technical University of Munich, 81675 Munich, Germany
| | - Maik Kschischo
- Department of Mathematics and Technology, University of Applied Sciences Koblenz, 53424 Remagen, Germany;
| |
Collapse
|
13
|
Wu R, Guzman-Sepulveda J, Kalra A, Tuszynski J, Dogariu A. Thermal hysteresis in microtubule assembly/disassembly dynamics: The aging-induced degradation of tubulin dimers. Biochem Biophys Rep 2022; 29:101199. [PMID: 35036585 PMCID: PMC8749447 DOI: 10.1016/j.bbrep.2021.101199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/29/2021] [Accepted: 12/31/2021] [Indexed: 11/08/2022] Open
Abstract
The assembly/disassembly of biological macromolecules plays an important role in their biological functionalities. Although the dynamics of tubulin polymers and their super-assembly into microtubule structures is critical for many cellular processes, details of their cyclical polymerization/depolymerization are not fully understood. Here, we use a specially designed light scattering technique to continuously examine the effects of temperature cycling on the process of microtubule assembly/disassembly. We observe a thermal hysteresis loop during tubulin assembly/disassembly, consistently with earlier reports on the coexistence of tubulin and microtubules as a phase transition. In a cyclical process, the structural hysteresis has a kinetic component that depends on the rate of temperature change but also an intrinsic thermodynamic component that depends on the protein topology, possibly related to irreversible processes. Analyzing the evolution of such thermal hysteresis loops over successive cycles, we found that the assembly/disassembly ceases after some time, which is indicative of protein aging leading to its inability to self-assemble after a finite number of temperature cycles. The emergence of assembly-incompetent tubulin could have major consequences for human pathologies related to microtubules, including aging, neurodegenerative diseases and cancer.
Collapse
Affiliation(s)
- R. Wu
- CREOL, College of Optics and Photonics, University of Central Florida, Orlando, FL, 32816, USA
| | - J.R. Guzman-Sepulveda
- CREOL, College of Optics and Photonics, University of Central Florida, Orlando, FL, 32816, USA
| | - A.P. Kalra
- Department of Physics, University of Alberta, 11335 Saskatchewan Dr NW, Edmonton, Alberta, T6G 2M9, Canada
| | - J.A. Tuszynski
- Department of Physics, University of Alberta, 11335 Saskatchewan Dr NW, Edmonton, Alberta, T6G 2M9, Canada
- DIMEAS, Polytechnic di Torino, Turin, I-10129, Italy
| | - A. Dogariu
- CREOL, College of Optics and Photonics, University of Central Florida, Orlando, FL, 32816, USA
| |
Collapse
|
14
|
Garribba L, Santaguida S. The Dynamic Instability of the Aneuploid Genome. Front Cell Dev Biol 2022; 10:838928. [PMID: 35265623 PMCID: PMC8899291 DOI: 10.3389/fcell.2022.838928] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 02/02/2022] [Indexed: 11/30/2022] Open
Abstract
Proper partitioning of replicated sister chromatids at each mitosis is crucial for maintaining cell homeostasis. Errors in this process lead to aneuploidy, a condition in which daughter cells harbor genome imbalances. Importantly, aneuploid cells often experience DNA damage, which in turn could drive genome instability. This might be the product of DNA damage accumulation in micronuclei and/or a consequence of aneuploidy-induced replication stress in S-phase. Although high levels of genome instability are associated with cell cycle arrest, they can also confer a proliferative advantage in some circumstances and fuel tumor growth. Here, we review the main consequences of chromosome segregation errors on genome stability, with a special focus on the bidirectional relationship between aneuploidy and DNA damage. Also, we discuss recent findings showing how increased genome instability can provide a proliferation improvement under specific conditions, including chemotherapeutic treatments.
Collapse
Affiliation(s)
- Lorenza Garribba
- Department of Experimental Oncology at IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Stefano Santaguida
- Department of Experimental Oncology at IEO, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
15
|
Abstract
Aneuploidy, a genomic alternation characterized by deviations in the copy number of chromosomes, affects organisms from early development through to aging. Although it is a main cause of human pregnancy loss and a hallmark of cancer, how aneuploidy affects cellular function has been elusive. The last two decades have seen rapid advances in the understanding of the causes and consequences of aneuploidy at the molecular and cellular levels. These studies have uncovered effects of aneuploidy that can be beneficial or detrimental to cells and organisms in an environmental context-dependent and karyotype-dependent manner. Aneuploidy also imposes general stress on cells that stems from an imbalanced genome and, consequently, also an imbalanced proteome. These insights provide the fundamental framework for understanding the impact of aneuploidy in genome evolution, human pathogenesis and drug resistance.
Collapse
|
16
|
Shinriki S, Hirayama M, Nagamachi A, Yokoyama A, Kawamura T, Kanai A, Kawai H, Iwakiri J, Liu R, Maeshiro M, Tungalag S, Tasaki M, Ueda M, Tomizawa K, Kataoka N, Ideue T, Suzuki Y, Asai K, Tani T, Inaba T, Matsui H. DDX41 coordinates RNA splicing and transcriptional elongation to prevent DNA replication stress in hematopoietic cells. Leukemia 2022; 36:2605-2620. [PMID: 36229594 PMCID: PMC9613458 DOI: 10.1038/s41375-022-01708-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 11/09/2022]
Abstract
Myeloid malignancies with DDX41 mutations are often associated with bone marrow failure and cytopenia before overt disease manifestation. However, the mechanisms underlying these specific conditions remain elusive. Here, we demonstrate that loss of DDX41 function impairs efficient RNA splicing, resulting in DNA replication stress with excess R-loop formation. Mechanistically, DDX41 binds to the 5' splice site (5'SS) of coding RNA and coordinates RNA splicing and transcriptional elongation; loss of DDX41 prevents splicing-coupled transient pausing of RNA polymerase II at 5'SS, causing aberrant R-loop formation and transcription-replication collisions. Although the degree of DNA replication stress acquired in S phase is small, cells undergo mitosis with under-replicated DNA being remained, resulting in micronuclei formation and significant DNA damage, thus leading to impaired cell proliferation and genomic instability. These processes may be responsible for disease phenotypes associated with DDX41 mutations.
Collapse
Affiliation(s)
- Satoru Shinriki
- Department of Molecular Laboratory Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.
| | - Mayumi Hirayama
- grid.274841.c0000 0001 0660 6749Department of Molecular Laboratory Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan ,grid.274841.c0000 0001 0660 6749Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Akiko Nagamachi
- grid.257022.00000 0000 8711 3200Department of Molecular Oncology and Leukemia Program Project, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Akihiko Yokoyama
- grid.272242.30000 0001 2168 5385Tsuruoka Metabolomics Laboratory, National Cancer Center, Yamagata, Japan
| | - Takeshi Kawamura
- grid.26999.3d0000 0001 2151 536XIsotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Akinori Kanai
- grid.26999.3d0000 0001 2151 536XLaboratory of Systems Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Hidehiko Kawai
- grid.257022.00000 0000 8711 3200Department of Nucleic Acids Biochemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Junichi Iwakiri
- grid.26999.3d0000 0001 2151 536XLaboratory of Genome Informatics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Rin Liu
- grid.274841.c0000 0001 0660 6749Department of Molecular Laboratory Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan ,grid.274841.c0000 0001 0660 6749Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Manabu Maeshiro
- grid.274841.c0000 0001 0660 6749Department of Molecular Laboratory Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan ,grid.274841.c0000 0001 0660 6749Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Saruul Tungalag
- grid.274841.c0000 0001 0660 6749Department of Molecular Laboratory Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Masayoshi Tasaki
- grid.274841.c0000 0001 0660 6749Department of Biomedical Laboratory Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Mitsuharu Ueda
- grid.274841.c0000 0001 0660 6749Department of Neurology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kazuhito Tomizawa
- grid.274841.c0000 0001 0660 6749Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Naoyuki Kataoka
- grid.26999.3d0000 0001 2151 536XLaboratory of Cellular Biochemistry, Department of Animal Resource Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Takashi Ideue
- grid.274841.c0000 0001 0660 6749Department of Biological Sciences, Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Yutaka Suzuki
- grid.26999.3d0000 0001 2151 536XLaboratory of Systems Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Kiyoshi Asai
- grid.26999.3d0000 0001 2151 536XLaboratory of Genome Informatics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Tokio Tani
- grid.274841.c0000 0001 0660 6749Department of Biological Sciences, Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Toshiya Inaba
- grid.257022.00000 0000 8711 3200Department of Molecular Oncology and Leukemia Program Project, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Hirotaka Matsui
- Department of Molecular Laboratory Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
17
|
Koch J, Lang A, Whongsiri P, Schulz WA, Hoffmann MJ, Greife A. KDM6A mutations promote acute cytoplasmic DNA release, DNA damage response and mitosis defects. BMC Mol Cell Biol 2021; 22:54. [PMID: 34702163 PMCID: PMC8549169 DOI: 10.1186/s12860-021-00394-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 10/13/2021] [Indexed: 12/20/2022] Open
Abstract
Background KDM6A, encoding a histone demethylase, is one of the top ten mutated epigenetic cancer genes. The effect of mutations on its structure and function are however poorly characterized. Methods Database search identified nonsense and missense mutations in the N-terminal TPR motifs and the C-terminal, catalytic JmjC domain, but also in the intrinsically disordered region connecting both these two well-structured domains. KDM6A variants with cancer-derived mutations were generated using site directed mutagenesis and fused to eGFP serving as an all-in-one affinity and fluorescence tag to study demethylase activity by an ELISA-based assay in vitro, apoptosis by FACS, complex assembly by Co-immunoprecipitation and localization by microscopy in urothelial cells and apoptosis by FACS. Results Independent of the mutation and demethylase activity, all KDM6A variants were detectable in the nucleus. Truncated KDM6A variants displayed changes in complex assemblies affecting (1) known interactions with the COMPASS complex component RBBP5 and (2) KDM6A-DNA associated assemblies with the nuclear protein Nucleophosmin. Some KDM6A variants induced a severe cellular phenotype characterized by multiple acute effects on nuclear integrity, namely, release of nuclear DNA into the cytoplasm, increased level of DNA damage indicators RAD51 and p-γH2A.X, and mitosis defects. These damaging effects were correlated with increased cell death. Conclusion These observations reveal novel effects of pathogenic variants pointing at new specific functions of KDM6A variants. The underlying mechanisms and affected pathways have to be investigated in future research to understand how tumor cells cope with and benefit from KDM6A truncations. Supplementary Information The online version contains supplementary material available at 10.1186/s12860-021-00394-2.
Collapse
Affiliation(s)
- J Koch
- Department of Molecular Physical Chemistry, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - A Lang
- Department of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - P Whongsiri
- Department of Urology, Medical Faculty, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany.,Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University Bangkog, Bangkok, Thailand
| | - W A Schulz
- Department of Urology, Medical Faculty, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - M J Hoffmann
- Department of Urology, Medical Faculty, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - A Greife
- Department of Molecular Physical Chemistry, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany.
| |
Collapse
|
18
|
Pal S, Nixon BR, Glennon MS, Shridhar P, Satterfield SL, Su YR, Becker JR. Replication Stress Response Modifies Sarcomeric Cardiomyopathy Remodeling. J Am Heart Assoc 2021; 10:e021768. [PMID: 34323119 PMCID: PMC8475701 DOI: 10.1161/jaha.121.021768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Background Sarcomere gene mutations lead to cardiomyocyte hypertrophy and pathological myocardial remodeling. However, there is considerable phenotypic heterogeneity at both the cellular and the organ level, suggesting modifiers regulate the effects of these mutations. We hypothesized that sarcomere dysfunction leads to cardiomyocyte genotoxic stress, and this modifies pathological ventricular remodeling. Methods and Results Using a murine model deficient in the sarcomere protein, Mybpc3−/− (cardiac myosin‐binding protein 3), we discovered that there was a surge in cardiomyocyte nuclear DNA damage during the earliest stages of cardiomyopathy. This was accompanied by a selective increase in ataxia telangiectasia and rad3‐related phosphorylation and increased p53 protein accumulation. The cause of the DNA damage and DNA damage pathway activation was dysregulated cardiomyocyte DNA synthesis, leading to replication stress. We discovered that selective inhibition of ataxia telangiectasia and rad3 related or cardiomyocyte deletion of p53 reduced pathological left ventricular remodeling and cardiomyocyte hypertrophy in Mybpc3−/− animals. Mice and humans harboring other types of sarcomere gene mutations also had evidence of activation of the replication stress response, and this was associated with cardiomyocyte aneuploidy in all models studied. Conclusions Collectively, our results show that sarcomere mutations lead to activation of the cardiomyocyte replication stress response, which modifies pathological myocardial remodeling in sarcomeric cardiomyopathy.
Collapse
Affiliation(s)
- Soumojit Pal
- Division of Cardiology Department of Medicine Heart, Lung Blood and Vascular Medicine InstituteSchool of MedicineUniversity of PittsburghUniversity of Pittsburgh Medical Center PA
| | - Benjamin R Nixon
- Division of Cardiology Department of Medicine Heart, Lung Blood and Vascular Medicine InstituteSchool of MedicineUniversity of PittsburghUniversity of Pittsburgh Medical Center PA
| | - Michael S Glennon
- Division of Cardiology Department of Medicine Heart, Lung Blood and Vascular Medicine InstituteSchool of MedicineUniversity of PittsburghUniversity of Pittsburgh Medical Center PA
| | - Puneeth Shridhar
- Division of Cardiology Department of Medicine Heart, Lung Blood and Vascular Medicine InstituteSchool of MedicineUniversity of PittsburghUniversity of Pittsburgh Medical Center PA.,Department of Bioengineering Swanson School of Engineering University of Pittsburgh PA
| | - Sidney L Satterfield
- Division of Cardiology Department of Medicine Heart, Lung Blood and Vascular Medicine InstituteSchool of MedicineUniversity of PittsburghUniversity of Pittsburgh Medical Center PA
| | - Yan Ru Su
- Division of Cardiology Department of Medicine Vanderbilt University Medical Center Nashville TN
| | - Jason R Becker
- Division of Cardiology Department of Medicine Heart, Lung Blood and Vascular Medicine InstituteSchool of MedicineUniversity of PittsburghUniversity of Pittsburgh Medical Center PA
| |
Collapse
|
19
|
Abstract
Unlike bacteria, mammalian cells need to complete DNA replication before segregating their chromosomes for the maintenance of genome integrity. Thus, cells have evolved efficient pathways to restore stalled and/or collapsed replication forks during S-phase, and when necessary, also to delay cell cycle progression to ensure replication completion. However, strong evidence shows that cells can proceed to mitosis with incompletely replicated DNA when under mild replication stress (RS) conditions. Consequently, the incompletely replicated genomic gaps form, predominantly at common fragile site regions, where the converging fork-like DNA structures accumulate. These branched structures pose a severe threat to the faithful disjunction of chromosomes as they physically interlink the partially duplicated sister chromatids. In this review, we provide an overview discussing how cells respond and deal with the under-replicated DNA structures that escape from the S/G2 surveillance system. We also focus on recent research of a mitotic break-induced replication pathway (also known as mitotic DNA repair synthesis), which has been proposed to operate during prophase in an attempt to finish DNA synthesis at the under-replicated genomic regions. Finally, we discuss recent data on how mild RS may cause chromosome instability and mutations that accelerate cancer genome evolution.
Collapse
Affiliation(s)
- Camelia Mocanu
- Chromosome Dynamics and Stability Group, Genome Damage and Stability Centre, University of Sussex, Brighton BN1 7BG, UK
| | - Kok-Lung Chan
- Chromosome Dynamics and Stability Group, Genome Damage and Stability Centre, University of Sussex, Brighton BN1 7BG, UK
| |
Collapse
|
20
|
Acute systemic loss of Mad2 leads to intestinal atrophy in adult mice. Sci Rep 2021; 11:68. [PMID: 33420244 PMCID: PMC7794249 DOI: 10.1038/s41598-020-80169-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 12/15/2020] [Indexed: 11/08/2022] Open
Abstract
Chromosomal instability (CIN) is a hallmark of cancer, leading to aneuploid cells. To study the role that CIN plays in tumor evolution, several mouse models have been engineered over the last 2 decades. These models have unequivocally shown that systemic high-grade CIN is embryonic lethal. We and others have previously shown that embryonic lethality can be circumvented by provoking CIN in a tissue-specific fashion. In this study, we provoke systemic high-grade CIN in adult mice as an alternative to circumvent embryonic lethality. For this, we disrupt the spindle assembly checkpoint (SAC) by alleviating Mad2 or truncating Mps1, both essential genes for SAC functioning, with or without p53 inactivation. We find that disruption of the SAC leads to rapid villous atrophy, atypia and apoptosis of the epithelia of the jejunum and ileum, substantial weight loss, and death within 2-3 weeks after the start of the CIN insult. Despite this severe intestinal phenotype, most other tissues are unaffected, except for minor abnormalities in spleen, presumably due to the lower proliferation rate in these tissues. We conclude that high-grade CIN in vivo in adult mice is most toxic to the high cell turnover intestinal epithelia.
Collapse
|
21
|
The p53/p73 - p21 CIP1 tumor suppressor axis guards against chromosomal instability by restraining CDK1 in human cancer cells. Oncogene 2021; 40:436-451. [PMID: 33168930 PMCID: PMC7808936 DOI: 10.1038/s41388-020-01524-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/02/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022]
Abstract
Whole chromosome instability (W-CIN) is a hallmark of human cancer and contributes to the evolvement of aneuploidy. W-CIN can be induced by abnormally increased microtubule plus end assembly rates during mitosis leading to the generation of lagging chromosomes during anaphase as a major form of mitotic errors in human cancer cells. Here, we show that loss of the tumor suppressor genes TP53 and TP73 can trigger increased mitotic microtubule assembly rates, lagging chromosomes, and W-CIN. CDKN1A, encoding for the CDK inhibitor p21CIP1, represents a critical target gene of p53/p73. Loss of p21CIP1 unleashes CDK1 activity which causes W-CIN in otherwise chromosomally stable cancer cells. Consequently, induction of CDK1 is sufficient to induce abnormal microtubule assembly rates and W-CIN. Vice versa, partial inhibition of CDK1 activity in chromosomally unstable cancer cells corrects abnormal microtubule behavior and suppresses W-CIN. Thus, our study shows that the p53/p73 - p21CIP1 tumor suppressor axis, whose loss is associated with W-CIN in human cancer, safeguards against chromosome missegregation and aneuploidy by preventing abnormally increased CDK1 activity.
Collapse
|
22
|
Tamura N, Shaikh N, Muliaditan D, Soliman TN, McGuinness JR, Maniati E, Moralli D, Durin MA, Green CM, Balkwill FR, Wang J, Curtius K, McClelland SE. Specific Mechanisms of Chromosomal Instability Indicate Therapeutic Sensitivities in High-Grade Serous Ovarian Carcinoma. Cancer Res 2020; 80:4946-4959. [PMID: 32998996 DOI: 10.1158/0008-5472.can-19-0852] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 07/23/2020] [Accepted: 09/25/2020] [Indexed: 11/16/2022]
Abstract
Chromosomal instability (CIN) comprises continual gain and loss of chromosomes or parts of chromosomes and occurs in the majority of cancers, often conferring poor prognosis. Because of a scarcity of functional studies and poor understanding of how genetic or gene expression landscapes connect to specific CIN mechanisms, causes of CIN in most cancer types remain unknown. High-grade serous ovarian carcinoma (HGSC), the most common subtype of ovarian cancer, is the major cause of death due to gynecologic malignancy in the Western world, with chemotherapy resistance developing in almost all patients. HGSC exhibits high rates of chromosomal aberrations and knowledge of causative mechanisms would represent an important step toward combating this disease. Here we perform the first in-depth functional characterization of mechanisms driving CIN in HGSC in seven cell lines that accurately recapitulate HGSC genetics. Multiple mechanisms coexisted to drive CIN in HGSC, including elevated microtubule dynamics and DNA replication stress that can be partially rescued to reduce CIN by low doses of paclitaxel and nucleoside supplementation, respectively. Distinct CIN mechanisms indicated relationships with HGSC-relevant therapy including PARP inhibition and microtubule-targeting agents. Comprehensive genomic and transcriptomic profiling revealed deregulation of various genes involved in genome stability but were not directly predictive of specific CIN mechanisms, underscoring the importance of functional characterization to identify causes of CIN. Overall, we show that HGSC CIN is complex and suggest that specific CIN mechanisms could be used as functional biomarkers to indicate appropriate therapy. SIGNIFICANCE: These findings characterize multiple deregulated mechanisms of genome stability that lead to CIN in ovarian cancer and demonstrate the benefit of integrating analysis of said mechanisms into predictions of therapy response.
Collapse
Affiliation(s)
- Naoka Tamura
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Nadeem Shaikh
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Daniel Muliaditan
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Tanya N Soliman
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | | | - Eleni Maniati
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Daniela Moralli
- Chromosome Dynamics, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Mary-Anne Durin
- Chromosome Dynamics, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Catherine M Green
- Chromosome Dynamics, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Frances R Balkwill
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Jun Wang
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Kit Curtius
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
- Division of Biomedical Informatics, Department of Medicine, University of California San Diego, La Jolla, California
- Moores Cancer Center, University of California San Diego, La Jolla, California
| | - Sarah E McClelland
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom.
| |
Collapse
|
23
|
Cao Y, Yao M, Wu Y, Ma N, Liu H, Zhang B. N-Acetyltransferase 10 Promotes Micronuclei Formation to Activate the Senescence-Associated Secretory Phenotype Machinery in Colorectal Cancer Cells. Transl Oncol 2020; 13:100783. [PMID: 32428852 PMCID: PMC7232111 DOI: 10.1016/j.tranon.2020.100783] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 12/01/2022] Open
Abstract
The formation of micronuclei (MN) is prevalent in human cancer cells and its role in activating the senescence-associated secretory phenotype (SASP) machinery has been identified recently. However, the role of MN in regulation of SASP signaling still needs to define in practical cancers. Here, we reported that in colorectal cancer cells the expression of NAT10 (N-acetyltransferase 10) could mediate MN formation through DNA replication and NAT10-positive MN could activate SASP by binding to cGAS. The chemical inhibition of NAT10 by Remodelin or genomic depletion could markedly reduce MN formation, SASP activation, and senescence in colorectal cancer cells. Cell stress such as oxidative or hypoxia could upregulate NAT10 and its associated MN formation senescence and expression of SASP factors. Statistical analysis of clinical specimens revealed correlations between NAT10 expression, MN formation, SASP signaling, and the clinicopathological features of colorectal cancer. Our data suggest that NAT10 increasing MN formation and SASP pathway activation, promoting colorectal cancer progression.
Collapse
Affiliation(s)
- Yanan Cao
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Mengfei Yao
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Yaqian Wu
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Ningning Ma
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Haijing Liu
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Bo Zhang
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China.
| |
Collapse
|
24
|
Wilhelm T, Said M, Naim V. DNA Replication Stress and Chromosomal Instability: Dangerous Liaisons. Genes (Basel) 2020; 11:E642. [PMID: 32532049 PMCID: PMC7348713 DOI: 10.3390/genes11060642] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 12/16/2022] Open
Abstract
Chromosomal instability (CIN) is associated with many human diseases, including neurodevelopmental or neurodegenerative conditions, age-related disorders and cancer, and is a key driver for disease initiation and progression. A major source of structural chromosome instability (s-CIN) leading to structural chromosome aberrations is "replication stress", a condition in which stalled or slowly progressing replication forks interfere with timely and error-free completion of the S phase. On the other hand, mitotic errors that result in chromosome mis-segregation are the cause of numerical chromosome instability (n-CIN) and aneuploidy. In this review, we will discuss recent evidence showing that these two forms of chromosomal instability can be mechanistically interlinked. We first summarize how replication stress causes structural and numerical CIN, focusing on mechanisms such as mitotic rescue of replication stress (MRRS) and centriole disengagement, which prevent or contribute to specific types of structural chromosome aberrations and segregation errors. We describe the main outcomes of segregation errors and how micronucleation and aneuploidy can be the key stimuli promoting inflammation, senescence, or chromothripsis. At the end, we discuss how CIN can reduce cellular fitness and may behave as an anticancer barrier in noncancerous cells or precancerous lesions, whereas it fuels genomic instability in the context of cancer, and how our current knowledge may be exploited for developing cancer therapies.
Collapse
Affiliation(s)
- Therese Wilhelm
- CNRS UMR9019 Genome Integrity and Cancers, Université Paris Saclay, Gustave Roussy, 94805 Villejuif, France; (T.W.); (M.S.)
- UMR144 Cell Biology and Cancer, Institut Curie, 75005 Paris, France
| | - Maha Said
- CNRS UMR9019 Genome Integrity and Cancers, Université Paris Saclay, Gustave Roussy, 94805 Villejuif, France; (T.W.); (M.S.)
| | - Valeria Naim
- CNRS UMR9019 Genome Integrity and Cancers, Université Paris Saclay, Gustave Roussy, 94805 Villejuif, France; (T.W.); (M.S.)
| |
Collapse
|
25
|
Galofré C, Gönül Geyik Ö, Asensio E, Wangsa D, Hirsch D, Parra C, Saez J, Mollà M, Yüce Z, Castells A, Ried T, Camps J. Tetraploidy-Associated Genetic Heterogeneity Confers Chemo-Radiotherapy Resistance to Colorectal Cancer Cells. Cancers (Basel) 2020; 12:cancers12051118. [PMID: 32365785 PMCID: PMC7281619 DOI: 10.3390/cancers12051118] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/23/2020] [Accepted: 04/27/2020] [Indexed: 12/18/2022] Open
Abstract
Tetraploidy, or whole-genome duplication, is a common phenomenon in cancer and preludes chromosome instability, which strongly correlates with disease progression, metastasis, and treatment failure. Therefore, it is reasonable to hypothesize that tetraploidization confers multidrug resistance. Nevertheless, the contribution of whole-genome duplication to chemo-radiotherapy resistance remains unclear. Here, using isogenic diploid and near-tetraploid clones from three colorectal cancer cell lines and one non-transformed human epithelial cell line, we show a consistent growth impairment but a divergent tumorigenic potential of near-tetraploid cells. Next, we assessed the effects of first-line chemotherapeutic drugs, other commonly used agents and ionizing radiation, and found that whole-genome duplication promoted increased chemotherapy resistance and also conferred protection against irradiation. When testing the activation of apoptosis, we observed that tetraploid cells were less prone to caspase 3 activation after treatment with first-line chemotherapeutic agents. Furthermore, we found that pre-treatment with ataxia telangiectasia and Rad3 related (ATR) inhibitors, which targets response to replication stress, significantly enhanced the sensitivity of tetraploid cells to first-line chemotherapeutic agents as well as to ionizing radiation. Our findings provide further insight into how tetraploidy results in greater levels of tolerance to chemo-radiotherapeutic agents and, moreover, we show that ATR inhibitors can sensitize near-tetraploid cells to commonly used chemo-radiotherapy regimens.
Collapse
Affiliation(s)
- Claudia Galofré
- Gastrointestinal and Pancreatic Oncology Team, Institut D’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 08036 Barcelona, Spain; (C.G.); (E.A.); (C.P.); (A.C.)
| | - Öykü Gönül Geyik
- Section for Cancer Genomics, Genetics Branch, National Cancer Institute, National Institute of Health, Bethesda, MD 20817, USA; (Ö.G.G.); (D.W.); (D.H.)
- Department of Medical Biology, Faculty of Medicine, Dokuz Eylul University, 35330 Izmir, Turkey;
| | - Elena Asensio
- Gastrointestinal and Pancreatic Oncology Team, Institut D’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 08036 Barcelona, Spain; (C.G.); (E.A.); (C.P.); (A.C.)
| | - Darawalee Wangsa
- Section for Cancer Genomics, Genetics Branch, National Cancer Institute, National Institute of Health, Bethesda, MD 20817, USA; (Ö.G.G.); (D.W.); (D.H.)
| | - Daniela Hirsch
- Section for Cancer Genomics, Genetics Branch, National Cancer Institute, National Institute of Health, Bethesda, MD 20817, USA; (Ö.G.G.); (D.W.); (D.H.)
| | - Carolina Parra
- Gastrointestinal and Pancreatic Oncology Team, Institut D’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 08036 Barcelona, Spain; (C.G.); (E.A.); (C.P.); (A.C.)
| | - Jordi Saez
- Radiation Oncology Department, Hospital Clínic de Barcelona, 08036 Barcelona, Spain; (J.S.); (M.M.)
| | - Meritxell Mollà
- Radiation Oncology Department, Hospital Clínic de Barcelona, 08036 Barcelona, Spain; (J.S.); (M.M.)
| | - Zeynep Yüce
- Department of Medical Biology, Faculty of Medicine, Dokuz Eylul University, 35330 Izmir, Turkey;
| | - Antoni Castells
- Gastrointestinal and Pancreatic Oncology Team, Institut D’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 08036 Barcelona, Spain; (C.G.); (E.A.); (C.P.); (A.C.)
| | - Thomas Ried
- Section for Cancer Genomics, Genetics Branch, National Cancer Institute, National Institute of Health, Bethesda, MD 20817, USA; (Ö.G.G.); (D.W.); (D.H.)
- Correspondence: (T.R.); (J.C.)
| | - Jordi Camps
- Gastrointestinal and Pancreatic Oncology Team, Institut D’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 08036 Barcelona, Spain; (C.G.); (E.A.); (C.P.); (A.C.)
- Unitat de Biologia Cel·lular i Genètica Mèdica, Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Correspondence: (T.R.); (J.C.)
| |
Collapse
|