1
|
Wang B, Liu W, Song B, Li Y, Wang Y, Tan B. Targeting LINC00665/miR-199b-5p/SERPINE1 axis to inhibit trastuzumab resistance and tumorigenesis of gastric cancer via PI3K/AKt pathway. Noncoding RNA Res 2025; 10:153-162. [PMID: 39399377 PMCID: PMC11467570 DOI: 10.1016/j.ncrna.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 10/15/2024] Open
Abstract
Long noncoding RNAs (lncRNAs) serve as critical mediators of tumor progression and drug resistance in cancer. Herein, we identified a lncRNA, LINC00665, associated with trastuzumab resistance and development in gastric cancer (GC). LINC00665 was highly expressed in GC tissues and high expression of LINC00665 was correlated with poor prognosis. LINC00665 knockdown was verified to suppress migration, invasion, and resistance to trastuzumab in GC. Furthermore, we found that LINC00665 participates in the infiltration of naive B cells, mast cells, and T follicular helper (Tfh) cells. Mechanistically, LINC00665 was confirmed to regulate tumorigenesis and trastuzumab resistance by activating PI3K/AKt pathway. LINC00665 sponged miR-199b-5p to interact with SERPINE1 expression, resulting in the increase of phosphorylation of AKt, thus participating in the PI3K/AKt pathway. To summarize, LINC00665 facilitated the tumorigenesis and trastuzumab resistance of GC by sponging miR-199b-5p and promoting SERPINE1 expression, which further activated PI3K/AKt signaling; this finding reveals a new mechanism by which LINC00665 modulates tumor development and drug resistance in GC.
Collapse
Affiliation(s)
- Bingyu Wang
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, 050017, Shijiazhuang, China
| | - Wenbo Liu
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, 050017, Shijiazhuang, China
| | - Buyun Song
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, 050017, Shijiazhuang, China
| | - Yong Li
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, 050017, Shijiazhuang, China
| | - Yingying Wang
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, 050017, Shijiazhuang, China
| | - Bibo Tan
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, 050017, Shijiazhuang, China
| |
Collapse
|
2
|
Liu J, Zhang Y, Wu J, Liu X, Li L, Zhang J. LncRNA FOXD2-AS1 promotes the growth, invasion and migration of OSCC cells by regulating the MiR-185-5p/PLOD1/Akt/mTOR pathway. Cancer Genet 2024; 284-285:48-57. [PMID: 38729078 DOI: 10.1016/j.cancergen.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/05/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
Although lncRNAs are recognized to contribute to the development of oral squamous-cell carcinoma (OSCC), their exact function in invasion and cell migration is not clear. In this research, we explored the molecular and cellular mechanisms of FOXD2-AS1 in OSCC. Prognostic and bioinformatics analyses were used to test for the differential expression of FOXD2-AS1-PLOD1. Following FOXD2-AS1 suppression or overexpression, changes in cell viability were measured using the CCK-8 test; changes in cell migration and invasion abilities were measured using the migration and the Transwell assay. The expression of associated genes and proteins was found using Western blot and RT-qPCR. Analysis of luciferase reporter genes was done to look for regulatory connections between various molecules. The FOXD2-AS1-PLOD1 pair, which was highly expressed in OSCC, was analyzed and experimentally verified to be closely related to the prognosis of OSCC, and a nomogram model and correction curve were constructed. The inhibition of FOXD2-AS1 resulted in the reduction of cell activity, migration, invasion ability and changes in genes related to invasion and migration. In vivo validation showed that inhibition of FOXD2-AS1 expression slowed tumor growth, and related proteins changed accordingly. The experiments verified that FOXD2-AS1 negatively regulated miR-185-5 p and that miR-185-5 p negatively regulated PLOD1. In addition, it was found that the expression of PLOD1, p-Akt and p-mTOR proteins in OSCC cells was reduced by the inhibition of FOXD2-AS1, and FOXD2-AS1 and PLOD1 were closely related to the Akt/mTOR pathway. Increased expression of FOXD2-AS1 promotes OSCC growth, invasion and migration, which is important in part by targeting miR-185-5 p/PLOD1/Akt/mTOR pathway activity.
Collapse
Affiliation(s)
- Jian Liu
- Department of Stomatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei, PR China
| | - Yong Zhang
- Department of Stomatology, Hebei General Hospital, Shijiazhuang 050011, Hebei, PR China
| | - Jingjing Wu
- Department of Stomatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei, PR China
| | - Xin Liu
- Department of Stomatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei, PR China
| | - Lifang Li
- Department of Stomatology, Hebei Provincial Hospital of Chinese Medicine, Shijiazhuang 050011, Hebei, PR China
| | - Jinhong Zhang
- Department of Stomatology, The First Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei, PR China.
| |
Collapse
|
3
|
Wang W, Yun B, Hoyle RG, Ma Z, Zaman SU, Xiong G, Yi C, Xie N, Zhang M, Liu X, Bandyopadhyay D, Li J, Wang C. CYTOR Facilitates Formation of FOSL1 Phase Separation and Super Enhancers to Drive Metastasis of Tumor Budding Cells in Head and Neck Squamous Cell Carcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305002. [PMID: 38032139 PMCID: PMC10811474 DOI: 10.1002/advs.202305002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/31/2023] [Indexed: 12/01/2023]
Abstract
Tumor budding (TB) is a small tumor cell cluster with highly aggressive behavior located ahead of the invasive tumor front. However, the molecular and biological characteristics of TB and the regulatory mechanisms governing TB phenotypes remain unclear. This study reveals that TB exhibits a particular dynamic gene signature with stemness and partial epithelial-mesenchymal transition (p-EMT). Importantly, nuclear expression of CYTOR is identified to be the key regulator governing stemness and the p-EMT phenotype of TB cells, and targeting CYTOR significantly inhibits TB formation, tumor growth and lymph node metastasis in head and neck squamous cell carcinoma (HNSCC). Mechanistically, CYTOR promotes tumorigenicity and metastasis of TB cells by facilitating the formation of FOSL1 phase-separated condensates to establish FOSL1-dependent super enhancers (SEs). Depletion of CYTOR leads to the disruption of FOSL1-dependent SEs, which results in the inactivation of cancer stemness and pro-metastatic genes. In turn, activation of FOSL1 promotes the transcription of CYTOR. These findings indicate that CYTOR is a super-lncRNA that controls the stemness and metastasis of TB cells through facilitating the formation of FOSL1 phase separation and SEs, which may be an attractive target for therapeutic interventions in HNSCC.
Collapse
Affiliation(s)
- Wenjin Wang
- Hospital of StomatologySun Yat‐sen UniversityGuangzhou510055China
- Guangdong Provincial Key Laboratory of StomatologyGuangzhou510080China
- Guanghua School of StomatologySun Yat‐sen UniversityGuangzhou510055China
| | - Bokai Yun
- Hospital of StomatologySun Yat‐sen UniversityGuangzhou510055China
- Guangdong Provincial Key Laboratory of StomatologyGuangzhou510080China
- Guanghua School of StomatologySun Yat‐sen UniversityGuangzhou510055China
| | - Rosalie G Hoyle
- Department of Medicinal ChemistrySchool of PharmacyVirginia Commonwealth UniversityRichmondVA23298‐0540USA
| | - Zhikun Ma
- Department of Medicinal ChemistrySchool of PharmacyVirginia Commonwealth UniversityRichmondVA23298‐0540USA
| | - Shadid Uz Zaman
- Department of Medicinal ChemistrySchool of PharmacyVirginia Commonwealth UniversityRichmondVA23298‐0540USA
| | - Gan Xiong
- Hospital of StomatologySun Yat‐sen UniversityGuangzhou510055China
- Guangdong Provincial Key Laboratory of StomatologyGuangzhou510080China
- Guanghua School of StomatologySun Yat‐sen UniversityGuangzhou510055China
| | - Chen Yi
- Hospital of StomatologySun Yat‐sen UniversityGuangzhou510055China
- Guangdong Provincial Key Laboratory of StomatologyGuangzhou510080China
- Guanghua School of StomatologySun Yat‐sen UniversityGuangzhou510055China
| | - Nan Xie
- Hospital of StomatologySun Yat‐sen UniversityGuangzhou510055China
- Guangdong Provincial Key Laboratory of StomatologyGuangzhou510080China
- Guanghua School of StomatologySun Yat‐sen UniversityGuangzhou510055China
| | - Ming Zhang
- Hospital of StomatologySun Yat‐sen UniversityGuangzhou510055China
- Guangdong Provincial Key Laboratory of StomatologyGuangzhou510080China
- Guanghua School of StomatologySun Yat‐sen UniversityGuangzhou510055China
| | - Xiqiang Liu
- Department of Oral and Maxillofacial SurgeryNanfang Hospital, Southern Medical UniversityGuangzhou510515China
| | - Dipankar Bandyopadhyay
- Department of BiostatisticsSchool of MedicineVirginia Commonwealth UniversityRichmondVA23298‐0540USA
- Massey Cancer CenterVirginia Commonwealth UniversityRichmondVA23298‐0540USA
| | - Jiong Li
- Department of Medicinal ChemistrySchool of PharmacyVirginia Commonwealth UniversityRichmondVA23298‐0540USA
- Massey Cancer CenterVirginia Commonwealth UniversityRichmondVA23298‐0540USA
- Department of Oral and Craniofacial Molecular BiologySchool of DentistryVirginia Commonwealth UniversityRichmondVA23298‐0540USA
- Philips Institute for Oral Health ResearchSchool of DentistryVirginia Commonwealth UniversityRichmondVA23298‐0540USA
| | - Cheng Wang
- Hospital of StomatologySun Yat‐sen UniversityGuangzhou510055China
- Guangdong Provincial Key Laboratory of StomatologyGuangzhou510080China
- Guanghua School of StomatologySun Yat‐sen UniversityGuangzhou510055China
| |
Collapse
|
4
|
Hypoxia-induced ROS aggravate tumor progression through HIF-1α-SERPINE1 signaling in glioblastoma. J Zhejiang Univ Sci B 2023; 24:32-49. [PMID: 36632749 PMCID: PMC9837376 DOI: 10.1631/jzus.b2200269] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Hypoxia, as an important hallmark of the tumor microenvironment, is a major cause of oxidative stress and plays a central role in various malignant tumors, including glioblastoma. Elevated reactive oxygen species (ROS) in a hypoxic microenvironment promote glioblastoma progression; however, the underlying mechanism has not been clarified. Herein, we found that hypoxia promoted ROS production, and the proliferation, migration, and invasion of glioblastoma cells, while this promotion was restrained by ROS scavengers N-acetyl-L-cysteine (NAC) and diphenyleneiodonium chloride (DPI). Hypoxia-induced ROS activated hypoxia-inducible factor-1α (HIF-1α) signaling, which enhanced cell migration and invasion by epithelial-mesenchymal transition (EMT). Furthermore, the induction of serine protease inhibitor family E member 1 (SERPINE1) was ROS-dependent under hypoxia, and HIF-1α mediated SERPINE1 increase induced by ROS via binding to the SERPINE1 promoter region, thereby facilitating glioblastoma migration and invasion. Taken together, our data revealed that hypoxia-induced ROS reinforce the hypoxic adaptation of glioblastoma by driving the HIF-1α-SERPINE1 signaling pathway, and that targeting ROS may be a promising therapeutic strategy for glioblastoma.
Collapse
|
5
|
Hashemi M, Hajimazdarany S, Mohan CD, Mohammadi M, Rezaei S, Olyaee Y, Goldoost Y, Ghorbani A, Mirmazloomi SR, Gholinia N, Kakavand A, Salimimoghadam S, Ertas YN, Rangappa KS, Taheriazam A, Entezari M. Long non-coding RNA/epithelial-mesenchymal transition axis in human cancers: Tumorigenesis, chemoresistance, and radioresistance. Pharmacol Res 2022; 186:106535. [DOI: 10.1016/j.phrs.2022.106535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/22/2022] [Accepted: 10/30/2022] [Indexed: 11/07/2022]
|
6
|
Joachims ML, Khatri B, Li C, Tessneer KL, Ice JA, Stolarczyk AM, Means N, Grundahl KM, Glenn SB, Kelly JA, Lewis DM, Radfar L, Stone DU, Guthridge JM, James JA, Scofield RH, Wiley GB, Wren JD, Gaffney PM, Montgomery CG, Sivils KL, Rasmussen A, Farris AD, Adrianto I, Lessard CJ. Dysregulated long non-coding RNA in Sjögren's disease impacts both interferon and adaptive immune responses. RMD Open 2022; 8:e002672. [PMID: 36456101 PMCID: PMC9717416 DOI: 10.1136/rmdopen-2022-002672] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/09/2022] [Indexed: 12/03/2022] Open
Abstract
OBJECTIVE Sjögren's disease (SjD) is an autoimmune disease characterised by inflammatory destruction of exocrine glands. Patients with autoantibodies to Ro/SSA (SjDRo+) exhibit more severe disease. Long non-coding RNAs (lncRNAs) are a functionally diverse class of non-protein-coding RNAs whose role in autoimmune disease pathology has not been well characterised. METHODS Whole blood RNA-sequencing (RNA-seq) was performed on SjD cases (n=23 Ro/SSA negative (SjDRo-); n=27 Ro/SSA positive (SjDRo+) and healthy controls (HCs; n=27). Bioinformatics and pathway analyses of differentially expressed (DE) transcripts (log2 fold change ≥2 or ≤0.5; padj<0.05) were used to predict lncRNA function. LINC01871 was characterised by RNA-seq analyses of HSB-2 cells with CRISPR-targeted LINC01871 deletion (LINC01871-/ -) and in vitro stimulation assays. RESULTS Whole blood RNA-seq revealed autoantibody-specific transcription profiles and disproportionate downregulation of DE transcripts in SjD cases relative to HCs. Sixteen DE lncRNAs exhibited correlated expression with the interferon (IFN)-regulated gene, RSAD2, in SjDRo+ (r≥0.65 or ≤-0.6); four antisense lncRNAs exhibited IFN-regulated expression in immune cell lines. LINC01871 was upregulated in all SjD cases. RNA-seq and pathway analyses of LINC01871-/ - cells implicated roles in cytotoxic function, differentiation and IFNγ induction. LINC01871 was induced by IFNγ in a myeloid cell line and regulated by calcineurin/NFAT pathway and T cell receptor (TCR) signalling in primary human T cells. CONCLUSION LINC01871 influences expression of many immune cell genes and growth factors, is IFNγ inducible, and regulated by calcineurin signalling and TCR ligand engagement. Altered LINC01871 expression may influence the dysregulated T cell inflammatory pathways implicated in SjD.
Collapse
Affiliation(s)
- Michelle L Joachims
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Bhuwan Khatri
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Chuang Li
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Kandice L Tessneer
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - John A Ice
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Anna M Stolarczyk
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Nicolas Means
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Kiely M Grundahl
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Stuart B Glenn
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Jennifer A Kelly
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - David M Lewis
- Department of Oral and Maxillofacial Pathology, The University of Oklahoma College of Dentistry, Oklahoma City, Oklahoma, USA
| | - Lida Radfar
- Oral Diagnosis and Radiology Department, The University of Oklahoma College of Dentistry, Oklahoma City, Oklahoma, USA
| | - Donald U Stone
- Department of Ophthalmology, Dean McGee Eye Institute, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Joel M Guthridge
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Judith A James
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - R Hal Scofield
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- US Department of Veteran Affairs Medical Center, Oklahoma City, Oklahoma, USA
| | - Graham B Wiley
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Jonathan D Wren
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Patrick M Gaffney
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Courtney G Montgomery
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Kathy L Sivils
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Astrid Rasmussen
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - A Darise Farris
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Indra Adrianto
- Center for Bioinformatics, Department of Public Health Sciences, Henry Ford Health System, Detroit, Michigan, USA
| | - Christopher J Lessard
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
7
|
Gao C, Hu W, Zhao J, Ni X, Xu Y. LncRNA HCG18 promotes M2 macrophage polarization to accelerate cetuximab resistance in colorectal cancer through regulating miR-365a-3p/FOXO1/CSF-1 axis. Pathol Res Pract 2022; 240:154227. [DOI: 10.1016/j.prp.2022.154227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/31/2022] [Accepted: 11/13/2022] [Indexed: 11/17/2022]
|
8
|
Qin Y, Liang R, Lu P, Lai L, Zhu X. Depicting the Implication of miR-378a in Cancers. Technol Cancer Res Treat 2022; 21:15330338221134385. [PMID: 36285472 PMCID: PMC9608056 DOI: 10.1177/15330338221134385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
MicroRNA-378a (miR-378a), including miR-378a-3p and miR-378a-5p, are encoded in PPARGC1B gene. miR-378a is essential for tumorigenesis and is an independent prognostic biomarker for various malignant tumors. Aberrant expression of miR-378a affects several physiological and pathological processes, including proliferation, apoptosis, tumorigenesis, cancer invasion, metastasis, and therapeutic resistance. Interestingly, miR-378a has a dual functional role in either promoting or inhibiting tumorigenesis, independent of the cancer type. In this review, we comprehensively summarized the role and regulatory mechanisms of miR-378a in cancer development, hoping to provide a direction for its potential use in cancer therapy.
Collapse
Affiliation(s)
- Yuelan Qin
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, People's Republic of China
| | - Renba Liang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Pingan Lu
- Faculty of Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Lin Lai
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, People's Republic of China
| | - Xiaodong Zhu
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, People's Republic of China,Affiliated Wuming Hospital of Guangxi Medical University, Nanning, People's Republic of China,Key Laboratory of Early Prevention and Treatment for Regional High-Incidence-Tumor, Guangxi Medical University, Ministry of Education, Nanning, People's Republic of China,Xiaodong Zhu, Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, 22 Shuang Yong Road, Nanning 530021, People's Republic of China.
| |
Collapse
|
9
|
Zhou R, Gao Z, Ju Y. Novel six-gene prognostic signature based on colon adenocarcinoma immune-related genes. BMC Bioinformatics 2022; 23:418. [PMID: 36221049 PMCID: PMC9552517 DOI: 10.1186/s12859-022-04909-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/23/2022] [Indexed: 12/05/2022] Open
Abstract
Background Colon adenocarcinoma (COAD) is one of the most common gastrointestinal tumors worldwide, and immunotherapy is one of the most promising treatments for it. Identifying immune genes involved in the development and maintenance of cancer is key to the use of tumor immunotherapy. This study aimed to determine the prognostic value of immune genes in patients with COAD and to establish an immune-related gene signature. Differentially expressed genes, immune-related genes (DEIGs), and transcription factors (DETFs) were screened using the following databases: Cistrome, The Cancer Genome Atlas (TCGA), the Immunology Database and Analysis Portal, and InnateDB. We constructed a network showing the regulation of DEIGs by DETFs. Using weighted gene co-expression network analysis, we prepared 5 co-expressed gene modules; 6 hub genes (CD1A, CD1B, FGF9, GRP, SERPINE1, and F2RL2) obtained using univariate and multivariate regression analysis were used to construct a risk model. Patients from TCGA database were divided into high- and low-risk groups based on whether their risk score was greater or less than the mean; the public dataset GSE40967, which contains gene expression profiles of 566 colon cancer patients, was used for validation. Results Survival analysis, somatic gene mutations, and tumor-infiltrating immune cells differed significantly between the high- and low-risk groups. Conclusions This immune-related gene signature could play an important role in guiding treatment, making prognoses, and potentially developing future clinical applications. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-022-04909-2.
Collapse
Affiliation(s)
- Rui Zhou
- Surgical Department of Gastrointestinal Surgery, Shunde Hospital of Southern Medical University, No. 1 Jiazi Road, Shunde District, Foshan, 528399, Guangdong, China
| | - Zhuowei Gao
- Medical Department of Traditional Chinese Medicine, Shunde Hospital of Guangzhou University of Traditional Chinese Medicine, No. 12, Jinsha Avenue, Shunde District, Foshan, 510006, Guangdong, China
| | - Yongle Ju
- Surgical Department of Gastrointestinal Surgery, Shunde Hospital of Southern Medical University, No. 1 Jiazi Road, Shunde District, Foshan, 528399, Guangdong, China.
| |
Collapse
|
10
|
Entezari M, Taheriazam A, Orouei S, Fallah S, Sanaei A, Hejazi ES, Kakavand A, Rezaei S, Heidari H, Behroozaghdam M, Daneshi S, Salimimoghadam S, Mirzaei S, Hashemi M, Samarghandian S. LncRNA-miRNA axis in tumor progression and therapy response: An emphasis on molecular interactions and therapeutic interventions. Biomed Pharmacother 2022; 154:113609. [PMID: 36037786 DOI: 10.1016/j.biopha.2022.113609] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 02/06/2023] Open
Abstract
Epigenetic factors are critical regulators of biological and pathological mechanisms and they could interact with different molecular pathways. Targeting epigenetic factors has been an idea approach in disease therapy, especially cancer. Accumulating evidence has highlighted function of long non-coding RNAs (lncRNAs) as epigenetic factors in cancer initiation and development and has focused on their association with downstream targets. microRNAs (miRNAs) are the most well-known targets of lncRNAs and present review focuses on lncRNA-miRNA axis in malignancy and therapy resistance of tumors. LncRNA-miRNA regulates cell death mechanisms such as apoptosis and autophagy in cancers. This axis affects tumor metastasis via regulating EMT and MMPs. Besides, lncRNA-miRNA axis determines sensitivity of tumor cells to chemotherapy, radiotherapy and immunotherapy. Based on the studies, lncRNAs can be affected by drugs and genetic tools in cancer therapy and this may affect expression level of miRNAs as their downstream targets, leading to cancer suppression/progression. LncRNAs have both tumor-promoting and tumor-suppressor functions in cancer and this unique function of lncRNAs has complicated their implication in tumor therapy. LncRNA-miRNA axis can also affect other signaling networks in cancer such as PI3K/Akt, STAT3, Wnt/β-catenin and EZH2 among others. Notably, lncRNA/miRNA axis can be considered as a signature for diagnosis and prognosis in cancers.
Collapse
Affiliation(s)
- Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran
| | - Sima Orouei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran; Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Islamic Republic of Iran
| | - Shayan Fallah
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Arezoo Sanaei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran
| | - Elahe Sadat Hejazi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran
| | - Amirabbas Kakavand
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran
| | - Shamin Rezaei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran
| | - Hajar Heidari
- Department of Biomedical Sciences School of Public Health University at Albany State University of New York, Albany, NY 12208, USA
| | - Mitra Behroozaghdam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran
| | - Salman Daneshi
- Department of Public Health, School of Health, Jiroft University of Medical Sciences, Jiroft, Islamic Republic of Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Islamic Republic of Iran
| | - Sepideh Mirzaei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran; Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Islamic Republic of Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran.
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Islamic Republic of Iran.
| |
Collapse
|
11
|
Zhou X, Ao X, Jia Z, Li Y, Kuang S, Du C, Zhang J, Wang J, Liu Y. Non-coding RNA in cancer drug resistance: Underlying mechanisms and clinical applications. Front Oncol 2022; 12:951864. [PMID: 36059609 PMCID: PMC9428469 DOI: 10.3389/fonc.2022.951864] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/02/2022] [Indexed: 12/11/2022] Open
Abstract
Cancer is one of the most frequently diagnosed malignant diseases worldwide, posing a serious, long-term threat to patients’ health and life. Systemic chemotherapy remains the first-line therapeutic approach for recurrent or metastatic cancer patients after surgery, with the potential to effectively extend patient survival. However, the development of drug resistance seriously limits the clinical efficiency of chemotherapy and ultimately results in treatment failure and patient death. A large number of studies have shown that non-coding RNAs (ncRNAs), particularly microRNAs, long non-coding RNAs, and circular RNAs, are widely involved in the regulation of cancer drug resistance. Their dysregulation contributes to the development of cancer drug resistance by modulating the expression of specific target genes involved in cellular apoptosis, autophagy, drug efflux, epithelial-to-mesenchymal transition (EMT), and cancer stem cells (CSCs). Moreover, some ncRNAs also possess great potential as efficient, specific biomarkers in diagnosis and prognosis as well as therapeutic targets in cancer patients. In this review, we summarize the recent findings on the emerging role and underlying mechanisms of ncRNAs involved in cancer drug resistance and focus on their clinical applications as biomarkers and therapeutic targets in cancer treatment. This information will be of great benefit to early diagnosis and prognostic assessments of cancer as well as the development of ncRNA-based therapeutic strategies for cancer patients.
Collapse
Affiliation(s)
- Xuehao Zhou
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Xiang Ao
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Zhaojun Jia
- College of New Materials and Chemical Engineering, Beijing Key Laboratory of Enze Biomass Fine Chemicals, Beijing Institute of Petrochemical Technology, Beijing, China
| | - Yiwen Li
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Shouxiang Kuang
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Chengcheng Du
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Jinyu Zhang
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Jianxun Wang
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Ying Liu
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China.,Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
| |
Collapse
|
12
|
Li R, Gao X, Sun H, Sun L, Hu X. Expression characteristics of long non-coding RNA in colon adenocarcinoma and its potential value for judging the survival and prognosis of patients: bioinformatics analysis based on The Cancer Genome Atlas database. J Gastrointest Oncol 2022; 13:1178-1187. [PMID: 35837189 DOI: 10.21037/jgo-22-384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/27/2022] [Indexed: 11/06/2022] Open
Abstract
Background To investigate the expression characteristics of long non-coding RNA (lncRNA) in colon adenocarcinoma (COAD) and its potential value in predicting the prognosis of patient survival. Methods We downloaded COAD-related RNA sequencing (RNA-seq) data and patient survival data from The Cancer Genome Atlas (TCGA). The data were analyzed for lncRNA expression differences, subjected to Cox regression analysis for survival rate, and Kaplan-Meier (KM) survival curves were plotted to analyze the role of the key genes related to prognostic survival by pathway enrichment analysis. Results The data of 494 COAD clinical samples from TCGA were analyzed; 204 lncRNAs were differentially expressed, 156 were up-regulated, and 48 were down-regulated. The 10 genes with the most significant expression differences were Linc02418, Blacat1, ELFN1-AS1, CRNDE, AC002384.1, AL353801.1, LINC01645, AC073283.2, AC087379.1, and LINC00484. Cox regression analysis of 204 lncRNA genes showed that 23 lncRNA genes with significant effects on the prognosis and survival rate of COAD patients were obtained when P<0.05 was used as the threshold. With P≤0.001 as the threshold, the KM curves of 4 genes (Linc02257, Linc02474, Ac010789.1, Ac083967.1) were statistically significant (P<0.05). The gene Linc02257 was selected for Gene Ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, and it was revealed that the inheritance of Linc02257-regulated gene expression was closely related to tumor development, such as collagen-containing extracellular matrix, organogenesis, activity of membrane protein receptors, and ion channel activity. The signaling pathways regulated by Linc02257 were also closely related to tumors, such as neuroactive ligand-receptor interaction, the PI3K-AKT signaling pathway, calcium signaling pathway, and protein digestion and absorption. Conclusions In COAD, lncRNA is differentially expressed and plays an important role in the disease regulation. It has potential application value in the diagnosis, targeted therapy, and prognosis of COAD patients.
Collapse
Affiliation(s)
- Ruofan Li
- Department of General Surgery, Beijing Luhe Hospital Capital Medical University, Beijing, China
| | - Xu Gao
- Department of General Surgery, Beijing Luhe Hospital Capital Medical University, Beijing, China
| | - Haitao Sun
- Department of General Surgery, Beijing Luhe Hospital Capital Medical University, Beijing, China
| | - Lixin Sun
- Department of General Surgery, Beijing Luhe Hospital Capital Medical University, Beijing, China
| | - Xiaojian Hu
- Department of Urology, Second Affiliated Hospital of Xi'an Medical College, Xi'an, China
| |
Collapse
|
13
|
Maimaiti A, Aili Y, Turhon M, Kadeer K, Aikelamu P, Wang Z, Niu W, Aisha M, Kasimu M, Wang Y, Wang Z. Modification Patterns of DNA Methylation-Related lncRNAs Regulating Genomic Instability for Improving the Clinical Outcomes and Tumour Microenvironment Characterisation of Lower-Grade Gliomas. Front Mol Biosci 2022; 9:844973. [PMID: 35359593 PMCID: PMC8960387 DOI: 10.3389/fmolb.2022.844973] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/24/2022] [Indexed: 12/16/2022] Open
Abstract
Background: DNA methylation is an important epigenetic modification that affects genomic instability and regulates gene expression. Long non-coding RNAs (lncRNAs) modulate gene expression by interacting with chromosomal modifications or remodelling factors. It is urgently needed to evaluate the effects of DNA methylation-related lncRNAs (DMlncRNAs) on genome instability and further investigate the mechanism of action of DMlncRNAs in mediating the progression of lower-grade gliomas (LGGs) and their impact on the immune microenvironment.Methods: LGG transcriptome data, somatic mutation profiles and clinical features analysed in the present study were obtained from the CGGA, GEO and TCGA databases. Univariate, multivariate Cox and Lasso regression analyses were performed to establish a DMlncRNA signature. The KEGG and GO analyses were performed to screen for pathways and biological functions associated with key genes. The ESTIMATE and CIBERSORT algorithms were used to determine the level of immune cells in LGGs and the immune microenvironment fraction. In addition, DMlncRNAs were assessed using survival analysis, ROC curves, correlation analysis, external validation, independent prognostic analysis, clinical stratification analysis and qRT-PCR.Results: We identified five DMlncRNAs with prognostic value for LGGs and established a prognostic signature using them. The Kaplan–Meier analysis revealed 10-years survival rate of 10.10% [95% confidence interval (CI): 3.27–31.40%] in high-risk patients and 57.28% (95% CI: 43.17–76.00%) in low-risk patients. The hazard ratio (HR) and 95% CI of risk scores were 1.013 and 1.009–1.017 (p < 0.001), respectively, based on the univariate Cox regression analysis and 1.009 and 1.004–1.013 (p < 0.001), respectively, based on the multivariate Cox regression analysis. Therefore, the five-lncRNAs were identified as independent prognostic markers for patients with LGGs. Furthermore, GO and KEGG analyses revealed that these lncRNAs are involved in the prognosis and tumorigenesis of LGGs by regulating cancer pathways and DNA methylation.Conclusion: The findings of the study provide key information regarding the functions of lncRNAs in DNA methylation and reveal that DNA methylation can regulate tumour progression through modulation of the immune microenvironment and genomic instability. The identified prognostic lncRNAs have high potential for clinical grouping of patients with LGGs to ensure effective treatment and management.
Collapse
Affiliation(s)
- Aierpati Maimaiti
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yirizhati Aili
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Mirzat Turhon
- Department of Neurointerventional Surgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurointerventional Surgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Kaheerman Kadeer
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Paziliya Aikelamu
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Zhitao Wang
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Weiwei Niu
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Maimaitili Aisha
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Maimaitijiang Kasimu
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yongxin Wang
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- *Correspondence: Yongxin Wang, ; Zengliang Wang,
| | - Zengliang Wang
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- *Correspondence: Yongxin Wang, ; Zengliang Wang,
| |
Collapse
|