1
|
LeMaster WB, Quibrera PM, Couper D, Tashkin DP, Bleecker ER, Doerschuk CM, Ortega VE, Cooper C, Han MK, Woodruff PG, O'Neal WK, Anderson WH, Alexis NE, Bowler RP, Barr RG, Kaner RJ, Dransfield MT, Paine R, Kim V, Curtis JL, Martinez FJ, Hastie AT, Barjaktarevic I. Clinical Implications of Low Absolute Blood Eosinophil Count in the SPIROMICS COPD Cohort. Chest 2023; 163:515-528. [PMID: 36343688 PMCID: PMC10083128 DOI: 10.1016/j.chest.2022.10.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/17/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND The Global Initiative for Chronic Obstructive Lung Disease (GOLD) considers blood eosinophil counts < 100 cells/μL (BEC≤100) in people with COPD to predict poor inhaled corticosteroid (ICS) responsiveness. However, the BEC≤100 phenotype is inadequately characterized, especially in advanced COPD. RESEARCH QUESTION Are there differences between GOLD group D patients with high BEC and those with low BEC regarding baseline characteristics and longitudinal outcomes? STUDY DESIGN AND METHODS We used multivariable mixed models and logistic regression to contrast clinical characteristics and outcomes of BEC≤100 vs BEC > 100 (BEC100+) in all subjects with COPD (n = 1,414) and GOLD group D subjects (n = 185) not receiving ICS. RESULTS We identified n = 485 with BEC≤100 (n = 61 GOLD group D) and n = 929 people with BEC100+ (n = 124 GOLD group D). BEC≤100 status was stable at 6 weeks and approximately 52 weeks (intraclass correlations of 0.78 and 0.71, respectively). Compared with BEC100+, BEC≤100 comprised more women, with greater current smoking, and less frequent childhood asthma. Among all analyzed participants, the two BEC-defined subsets showed similar rates of lung function decline (mean slope, BEC≤100 vs BEC100+, -50 vs -39 mL/y; P = .140), exacerbations (0.40 vs 0.36/y; P = .098), subsequent ICS initiation (2.5% vs 4.4%; P = .071), and mortality (7.8% vs 8.4%; P = .715). However, in GOLD group D, people with BEC≤100 showed higher exacerbation rates within 365 days of enrollment (0.62 vs 0.33/y; P = .002) and total follow-up (1.16 vs 0.83/y; P = .014). They also had greater lung function decline (mean slope of -68 mL/y vs -23 mL/y; P = .036) and had greater emphysema at baseline (voxels < 950 Hounsfield units at total lung capacity of 7.46% vs 4.61%; P = .029). INTERPRETATION In non-ICS-treated GOLD group D COPD, people with BEC≤100 had more baseline emphysema, prospective exacerbations, and lung function decline. Our analysis has identified a particularly vulnerable subpopulation of people with COPD, suggesting the need for studies focused specifically on their therapeutic treatment. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov; No.: NCT01969344; URL: www. CLINICALTRIALS gov.
Collapse
Affiliation(s)
- W Blake LeMaster
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University, Nashville, TN
| | | | | | - Donald P Tashkin
- Division of Pulmonary and Critical Care Medicine, UCLA, Los Angeles, CA
| | | | | | - Victor E Ortega
- Division of Respiratory Medicine, Department of Internal Medicine, Mayo Clinic, Scottsdale, AZ
| | | | - MeiLan K Han
- University of Michigan School of Medicine, Ann Arbor, MI
| | - Prescott G Woodruff
- Department of Medicine, University of California, San Francisco, San Francisco, CA
| | | | | | | | | | - R Graham Barr
- Presbyterian Hospital, Columbia University Medical Center, New York, NY
| | | | - Mark T Dransfield
- University of Alabama Birmingham and Birmingham VA Medical Center, Birmingham, AL
| | | | - Victor Kim
- Department of Thoracic Medicine and Surgery, Temple Lung Center, Philadelphia, PA
| | - Jeffrey L Curtis
- University of Michigan School of Medicine, Ann Arbor, MI; Medical Service, VA Ann Arbor Healthcare System, Ann Arbor, MI
| | | | - Annette T Hastie
- Atrium Health Wake Forest Baptist, School of Medicine, Winston Salem, NC
| | - Igor Barjaktarevic
- Division of Pulmonary and Critical Care Medicine, UCLA, Los Angeles, CA.
| |
Collapse
|
2
|
Angelakis L, Papaioannou AI, Papathanasiou E, Mazioti A, Kallieri M, Papatheodorou G, Patentalakis G, Hillas G, Papiris S, Koulouris N, Loukides S, Bakakos P. Sestrin 2 levels are associated with emphysematous phenotype of COPD. PLoS One 2022; 17:e0273652. [PMID: 36040980 PMCID: PMC9426901 DOI: 10.1371/journal.pone.0273652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 08/11/2022] [Indexed: 11/18/2022] Open
Abstract
Sestrins (Sesns) are a family of highly conserved stress-inducible proteins and various stresses have been shown to strongly up-regulate them. Sestrin 2 (Sesn2) deficiency has been shown to partially suppress pulmonary emphysema. The aim of this study was to evaluate Sesn2 levels in COPD patients and its possible associations with the presence of emphysema and blood eosinophils. All patients underwent lung function testing and high-resolution computed tomography (HRCT) of the chest. The presence of emphysematous lesions in >15% of the pulmonary parenchyma was considered as significant emphysema. Sixty-seven patients were included in the study. 40/67 patients were characterized as having significant emphysema. Patients with significant emphysema had higher levels of Sesn2 (ng/ml) [median (IQR) 6.7 (2.7,10.3 vs 1.09 (0.9,1.9), p<0.001)] and significantly lower % and absolute blood eosinophil counts (cells/μL) compared to patients without emphysema [1 (0, 2) vs 4 (2, 4) p<0.001 and 62 (0, 110) vs 248 (180, 300), p<0.001 respectively]. Sesn2 presented a significant positive correlation to the score of emphysema in HRCT (rs = 0.87, p<0.001) and similar positive but weaker correlation to FRC (rs = 0.27, p = 0.024). Negative correlations were observed between Sesn2 and either the % of blood eosinophils and/or the absolute blood eosinophil count (rs = -0.79, p<0.001, and rs = -0.78, p<0.001 respectively). Sesn2 levels above 1.87 ng/ml showed a high diagnostic performance for the presence of significant emphysema in HRCT with an AUC 0.93, 95% CI (0.85,0.98), p<0.001. Sesn2 could serve as a potential biomarker of emphysema.
Collapse
Affiliation(s)
- Leonidas Angelakis
- 1 University Department of Respiratory Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Andriana I. Papaioannou
- 2 University Department of Respiratory Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Evgenia Papathanasiou
- 2 University Department of Respiratory Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Argiro Mazioti
- Radiology Department, “Mediterraneo” Hospital, Athens, Greece
| | - Maria Kallieri
- 2 University Department of Respiratory Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | | | - George Patentalakis
- 1 University Department of Respiratory Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios Hillas
- 5 Respiratory Medicine Department, “Sotiria” Hospital, Athens, Greece
| | - Spyridon Papiris
- 2 University Department of Respiratory Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Koulouris
- 1 University Department of Respiratory Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Stelios Loukides
- 2 University Department of Respiratory Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Petros Bakakos
- 1 University Department of Respiratory Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
3
|
Stival RSM, Rabelo LM, Leão GL, Drevenowski D, Serafini J, Vieira VLG, Escuissato DL. Quantitative assessment of emphysema and bronchial wall thickness in patients with stable chronic obstructive pulmonary disease: comparison between the eosinophilic and non-eosinophilic phenotypes. Radiol Bras 2022; 55:209-215. [PMID: 35983341 PMCID: PMC9380608 DOI: 10.1590/0100-3984.2021.0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/17/2021] [Indexed: 11/22/2022] Open
Abstract
Objective To perform a quantitative assessment of bronchial wall thickening and the emphysema score in patients with stable chronic obstructive pulmonary disease (COPD), comparing the eosinophilic and non-eosinophilic COPD phenotypes. Materials and Methods This was a retrospective observational study of patients with COPD followed between August 2018 and July 2019. The patients were divided into two groups by the eosinophil count in peripheral blood: eosinophilic (≥ 300 cells/µL); and non-eosinophilic (< 300 cells/µL). Quantitative, automated assessments of emphysema and bronchial wall thickness were performed by evaluating computed tomography scans of the chest. Results We evaluated the records of 110 patients diagnosed with COPD: 28 (25.5%) in the eosinophilic group; and 82 (74.5%) in the non-eosinophilic group. The demographic, clinical, functional, and therapeutic variables were comparable between the two groups. There were no significant differences between the two groups in terms of the emphysema score or bronchial wall thickness (p > 0.05 for both). Conclusion Patients with eosinophilic COPD do not appear to have lower emphysema scores or greater bronchial wall thickening than do those with non-eosinophilic phenotypes of the disease.
Collapse
|
4
|
Miravitlles M, Soler-Cataluña JJ, Soriano JB, García-Río F, de Lucas P, Alfageme I, Casanova C, Rodríguez González-Moro JM, Sánchez-Herrero MG, Ancochea J, Cosío BG. Determinants of blood eosinophil levels in the general population and patients with COPD: a population-based, epidemiological study. Respir Res 2022; 23:49. [PMID: 35248041 PMCID: PMC8897916 DOI: 10.1186/s12931-022-01965-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/20/2022] [Indexed: 11/15/2022] Open
Abstract
Background Blood eosinophils are considered a biomarker for the treatment of chronic obstructive pulmonary disease (COPD). Population-based studies are needed to better understand the determinants of the blood eosinophil count (BEC) in individuals with and without COPD.
Methods EPISCAN II is a multicentre, cross-sectional, population-based epidemiological study aimed at investigating the prevalence and determinants of COPD in Spain. Study subjects were randomly selected from the general population, and COPD was defined by a post-bronchodilator FEV1/FVC < 0.7. For the pre-specified outcomes related to BEC, the first 35 COPD and 35 non-COPD subjects were consecutively recruited in 12 of the participating centres with the objective of analysing 400 individuals in each group. Baseline BEC and its association with demographic, clinical and functional variables were analysed. Results A total of 326 COPD and 399 non-COPD subjects were included in the analysis. The mean age (standard deviation [SD]) was 63.2 years (11.0), 46.3% were male, and 27.6% were active smokers. BEC was significantly higher in individuals with COPD [192 cells/μL (SD: 125) vs. 160 cells/μL (SD: 114); p = 0.0003]. In a stepwise multivariate model, being male, active smoker and having a previous diagnosis of asthma were independently associated with having a higher BEC. Conclusions This population-based study estimated the distribution of eosinophils in the healthy adult population and concluded that COPD patients have a significantly higher BEC. Male sex, active smoking and concomitant asthma were significantly associated with a higher BEC.
Collapse
|
5
|
Bai S, Ye R, Wang C, Sun P, Wang D, Yue Y, Wang H, Wu S, Yu M, Xi S, Zhao L. Identification of Proteomic Signatures in Chronic Obstructive Pulmonary Disease Emphysematous Phenotype. Front Mol Biosci 2021; 8:650604. [PMID: 34277700 PMCID: PMC8280333 DOI: 10.3389/fmolb.2021.650604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/20/2021] [Indexed: 11/24/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a highly heterogeneous disease. Emphysematous phenotype is the most common and critical phenotype, which is characterized by progressive lung destruction and poor prognosis. However, the underlying mechanism of this structural damage has not been completely elucidated. A total of 12 patients with COPD emphysematous phenotype (COPD-E) and nine patients with COPD non-emphysematous phenotype (COPD-NE) were enrolled to determine differences in differential abundant protein (DAP) expression between both groups. Quantitative tandem mass tag–based proteomics was performed on lung tissue samples of all patients. A total of 29 and 15 lung tissue samples from patients in COPD-E and COPD-NE groups, respectively, were used as the validation cohort to verify the proteomic analysis results using western blotting. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were conducted for DAPs. A total of 4,343 proteins were identified, of which 25 were upregulated and 11 were downregulated in the COPD-E group. GO and KEGG analyses showed that wound repair and retinol metabolism–related pathways play an essential role in the molecular mechanism of COPD emphysematous phenotype. Three proteins, namely, KRT17, DHRS9, and FMO3, were selected for validation. While KRT17 and DHRS9 were highly expressed in the lung tissue samples of the COPD-E group, FMO3 expression was not significantly different between both groups. In conclusion, KRT17 and DHRS9 are highly expressed in the lung tissue of patients with COPD emphysematous phenotype. Therefore, these proteins might involve in wound healing and retinol metabolism in patients with emphysematous phenotype and can be used as phenotype-specific markers.
Collapse
Affiliation(s)
- Shuang Bai
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Rui Ye
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Cuihong Wang
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Pengbo Sun
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Di Wang
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yong Yue
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Huiying Wang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Si Wu
- Department of Biobank, Shengjing Hospital of China Medical University, Shenyang, China
| | - Miao Yu
- Department of Biobank, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shuhua Xi
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang, China
| | - Li Zhao
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
6
|
Bai S, Zhao L. Imbalance Between Injury and Defense in the COPD Emphysematous Phenotype. Front Med (Lausanne) 2021; 8:653332. [PMID: 34026786 PMCID: PMC8131650 DOI: 10.3389/fmed.2021.653332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/10/2021] [Indexed: 11/15/2022] Open
Abstract
The chronic obstructive pulmonary disease (COPD) emphysematous phenotype is characterized by destruction of lung tissue structure. Patients with this phenotype usually present with typical emphysema-like changes on chest computed Tomography CT, experience higher mortality and poorer prognosis, and are insensitive to routine pharmacological COPD therapy. However, the pathogenesis for the COPD emphysematous phenotype remains unclear, resulting in diagnostic and therapeutic challenges. The imbalance between injury and defense mechanisms is essential in the progression of many pulmonary diseases. Thus, in this review, we focus on the pathogenesis of the COPD emphysematous phenotype and discuss the pathophysiological processes involved in disease progression, from the perspective of injury and defense imbalance.
Collapse
Affiliation(s)
- Shuang Bai
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Li Zhao
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
7
|
Blood Eosinophil Counts and Their Variability and Risk of Exacerbations in COPD: A Population-Based Study. ACTA ACUST UNITED AC 2021. [DOI: 10.1016/j.arbr.2019.12.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
8
|
Zatloukal J, Brat K, Neumannova K, Volakova E, Hejduk K, Kocova E, Kudela O, Kopecky M, Plutinsky M, Koblizek V. Chronic obstructive pulmonary disease - diagnosis and management of stable disease; a personalized approach to care, using the treatable traits concept based on clinical phenotypes. Position paper of the Czech Pneumological and Phthisiological Society. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2020; 164:325-356. [PMID: 33325455 DOI: 10.5507/bp.2020.056] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/20/2020] [Indexed: 12/27/2022] Open
Abstract
This position paper has been drafted by experts from the Czech national board of diseases with bronchial obstruction, of the Czech Pneumological and Phthisiological Society. The statements and recommendations are based on both the results of randomized controlled trials and data from cross-sectional and prospective real-life studies to ensure they are as close as possible to the context of daily clinical practice and the current health care system of the Czech Republic. Chronic Obstructive Pulmonary Disease (COPD) is a preventable and treatable heterogeneous syndrome with a number of pulmonary and extrapulmonary clinical features and concomitant chronic diseases. The disease is associated with significant mortality, morbidity and reduced quality of life. The main characteristics include persistent respiratory symptoms and only partially reversible airflow obstruction developing due to an abnormal inflammatory response of the lungs to noxious particles and gases. Oxidative stress, protease-antiprotease imbalance and increased numbers of pro-inflammatory cells (mainly neutrophils) are the main drivers of primarily non-infectious inflammation in COPD. Besides smoking, household air pollution, occupational exposure, low birth weight, frequent respiratory infections during childhood and also genetic factors are important risk factors of COPD development. Progressive airflow limitation and airway remodelling leads to air trapping, static and dynamic hyperinflation, gas exchange abnormalities and decreased exercise capacity. Various features of the disease are expressed unequally in individual patients, resulting in various types of disease presentation, emerging as the "clinical phenotypes" (for specific clinical characteristics) and "treatable traits" (for treatable characteristics) concept. The estimated prevalence of COPD in Czechia is around 6.7% with 3,200-3,500 deaths reported annually. The elementary requirements for diagnosis of COPD are spirometric confirmation of post-bronchodilator airflow obstruction (post-BD FEV1/VCmax <70%) and respiratory symptoms assessement (dyspnoea, exercise limitation, cough and/or sputum production. In order to establish definite COPD diagnosis, a five-step evaluation should be performed, including: 1/ inhalation risk assessment, 2/ symptoms evaluation, 3/ lung function tests, 4/ laboratory tests and 5/ imaging. At the same time, all alternative diagnoses should be excluded. For disease classification, this position paper uses both GOLD stages (1 to 4), GOLD groups (A to D) and evaluation of clinical phenotype(s). Prognosis assessment should be done in each patient. For this purpose, we recommend the use of the BODE or the CADOT index. Six elementary clinical phenotypes are recognized, including chronic bronchitis, frequent exacerbator, emphysematous, asthma/COPD overlap (ACO), bronchiectases with COPD overlap (BCO) and pulmonary cachexia. In our concept, all of these clinical phenotypes are also considered independent treatable traits. For each treatable trait, specific pharmacological and non-pharmacological therapies are defined in this document. The coincidence of two or more clinical phenotypes (i.e., treatable traits) may occur in a single individual, giving the opportunity of fully individualized, phenotype-specific treatment. Treatment of COPD should reflect the complexity and heterogeneity of the disease and be tailored to individual patients. Major goals of COPD treatment are symptom reduction and decreased exacerbation risk. Treatment strategy is divided into five strata: risk elimination, basic treatment, phenotype-specific treatment, treatment of respiratory failure and palliative care, and treatment of comorbidities. Risk elimination includes interventions against tobacco smoking and environmental/occupational exposures. Basic treatment is based on bronchodilator therapy, pulmonary rehabilitation, vaccination, care for appropriate nutrition, inhalation training, education and psychosocial support. Adequate phenotype-specific treatment varies phenotype by phenotype, including more than ten different pharmacological and non-pharmacological strategies. If more than one clinical phenotype is present, treatment strategy should follow the expression of each phenotypic label separately. In such patients, multicomponental therapeutic regimens are needed, resulting in fully individualized care. In the future, stronger measures against smoking, improvements in occupational and environmental health, early diagnosis strategies, as well as biomarker identification for patients responsive to specific treatments are warranted. New classes of treatment (inhaled PDE3/4 inhibitors, single molecule dual bronchodilators, anti-inflammatory drugs, gene editing molecules or new bronchoscopic procedures) are expected to enter the clinical practice in a very few years.
Collapse
Affiliation(s)
- Jaromir Zatloukal
- Department of Respiratory Diseases and Tuberculosis, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacky University Olomouc, Czech Republic
| | - Kristian Brat
- Department of Respiratory Diseases, University Hospital Brno, Czech Republic.,Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Katerina Neumannova
- Department of Physiotherapy, Faculty of Physical Culture, Palacky University Olomouc, Czech Republic
| | - Eva Volakova
- Department of Respiratory Diseases and Tuberculosis, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacky University Olomouc, Czech Republic
| | - Karel Hejduk
- Institute of Biostatistics and Analyses, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,National Screening Centre, Institute of Health Information and Statistics of the Czech Republic, Prague, Czech Republic
| | - Eva Kocova
- Department of Radiology, University Hospital Hradec Kralove and Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Ondrej Kudela
- Pulmonary Department, University Hospital Hradec Kralove and Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Michal Kopecky
- Pulmonary Department, University Hospital Hradec Kralove and Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Marek Plutinsky
- Department of Respiratory Diseases, University Hospital Brno, Czech Republic.,Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Vladimir Koblizek
- Pulmonary Department, University Hospital Hradec Kralove and Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| |
Collapse
|
9
|
Miravitlles M, Monteagudo M, Solntseva I, Alcázar B. Blood Eosinophil Counts and Their Variability and Risk of Exacerbations in COPD: A Population-Based Study. Arch Bronconeumol 2020; 57:13-20. [PMID: 32061402 DOI: 10.1016/j.arbres.2019.12.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/30/2019] [Accepted: 12/16/2019] [Indexed: 01/21/2023]
Abstract
BACKGROUND There is controversy regarding the role of blood eosinophil levels as a biomarker of exacerbation risk in chronic obstructive pulmonary disease (COPD). Our aim was to quantify blood eosinophil levels and determine the risk of exacerbations associated with these levels and their variability. METHODS Observational, retrospective, population-based study with longitudinal follow-up in patients with COPD identified in a primary care electronic medical record database in Catalonia, Spain, covering 80% of the general population. Patients were classified into 4 groups using the following cut-offs: (a) <150cells/μl; (b) ≥150 and <300cells/μl; (c) ≥300 and <500cells/μl; (d) ≥500cells/μl. RESULTS A total of 57,209 patients were identified with a mean age of 70.2 years, a mean FEV1(% predicted) of 64.1% and 51.6% had at least one exacerbation the previous year. The number of exacerbations in the previous year was higher in patients with the lowest and the highest eosinophil levels compared with the intermediate groups. During follow-up the number of exacerbations was slightly higher in the group with the lowest blood eosinophil levels and in those with higher variability in eosinophil counts, but ROC curves did not identify a reliable threshold of blood eosinophilia to discriminate an increased risk of exacerbations. CONCLUSIONS Our results do not support the use of blood eosinophil count as a reliable biomarker of the risk of exacerbation in COPD in a predominantly non-exacerbating population. Of note was that the small group of patients with the highest variability in blood eosinophils more frequently presented exacerbations.
Collapse
Affiliation(s)
- Marc Miravitlles
- Pneumology Department. Hospital Universitari Vall d'Hebron/Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain; Ciber de Enfermedades Respiratorias (CIBERES), Spain.
| | - Mònica Monteagudo
- Primary Care University Research Institute Jordi Gol (IDIAP Jordi Gol), Barcelona, Spain; Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
| | - Iryna Solntseva
- Primary Care University Research Institute Jordi Gol (IDIAP Jordi Gol), Barcelona, Spain; Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
| | - Bernardino Alcázar
- Ciber de Enfermedades Respiratorias (CIBERES), Spain; Respiratory Department, Hospital de Alta Resolución de Loja, Granada, Spain
| |
Collapse
|
10
|
Oh YM, Lee KS, Hong Y, Hwang SC, Kim JY, Kim DK, Yoo KH, Lee JH, Kim TH, Lim SY, Rhee CK, Yoon HK, Lee SY, Park YB, Jung JH, Kim WJ, Lee SD, Park JH. Blood eosinophil count as a prognostic biomarker in COPD. Int J Chron Obstruct Pulmon Dis 2018; 13:3589-3596. [PMID: 30464441 PMCID: PMC6219410 DOI: 10.2147/copd.s179734] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background High blood eosinophil count is a predictive biomarker for response to inhaled corticosteroids in prevention of acute exacerbation of COPD, and low blood eosinophil count is associated with pneumonia risk in COPD patients taking inhaled corticosteroids. However, the prognostic role of blood eosinophil count remains underexplored. Therefore, we investigated the associated factors and mortality based on blood eosinophil count in COPD. Methods Patients with COPD were recruited from 16 hospitals of the Korean Obstructive Lung Disease cohort (n=395) and COPD in Dusty Area cohort (n=234) of Kangwon University Hospital. The two merged cohorts were divided based on blood eosinophil count into three groups: high (≥5%), middle (2%-5%), and low (<2%). Results The high group had longer six-minute walk distance (high =445.8±81.4, middle =428.5±88.0, and low =414.7±86.3 m), higher body mass index (23.3±3.1, 23.1±3.1, and 22.5±3.2 kg/m2), lower emphysema index (18.5±14.1, 22.2±15.3, and 23.7±16.3), and higher inspiratory capacity/total lung capacity ratio (32.6±7.4, 32.4±9.2, and 29.9% ± 8.9%) (P<0.05). The survival period increased with increasing blood eosinophil count (high =9.52±0.23, middle =8.47±1.94, and low =7.42±0.27 years, P<0.05). Multivariate linear regression analysis revealed that the emphysema index was independently and negatively correlated with blood eosinophil count (P<0.05). Conclusion In COPD, the severity of emphysema was independently linked with low blood eosinophil count and the longer survival period was associated with increased blood eosinophil count, though it was not proven in the multivariate analysis.
Collapse
Affiliation(s)
- Yeon-Mok Oh
- Department of Pulmonary and Critical Care Medicine and Clinical Research Center for Chronic Obstructive Airway Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Keu Sung Lee
- Department of Pulmonary and Critical Care Medicine, Ajou University School of Medicine, Suwon, Korea,
| | - Yoonki Hong
- Department of Internal Medicine and Environmental Health Center, Kangwon National University, Kangwon National University Hospital, Chuncheon, Korea
| | - Sung Chul Hwang
- Department of Pulmonary and Critical Care Medicine, Ajou University School of Medicine, Suwon, Korea,
| | - Jae Yeol Kim
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
| | - Deog Keom Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Kwang Ha Yoo
- Department of Internal Medicine, Konkuk University School of Medicine, Seoul, Korea
| | - Ji-Hyun Lee
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Tae-Hyung Kim
- Division of Pulmonology, Department of Internal Medicine, Hanyang University College of Medicine, Guri, Korea
| | - Seong Yong Lim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Chin Kook Rhee
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Seoul St Mary's Hospital, Catholic University of Korea, Seoul, Korea
| | - Hyoung Kyu Yoon
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Korea University Anam Hospital, Seoul, Korea
| | - Sang Yeub Lee
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Korea University Anam Hospital, Seoul, Korea
| | - Yong Bum Park
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Hallym University Kangdong Sacred Heart Hospital, Seoul, Korea
| | - Jin Hee Jung
- Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, Korea
| | - Woo Jin Kim
- Department of Internal Medicine and Environmental Health Center, Kangwon National University, Kangwon National University Hospital, Chuncheon, Korea
| | - Sang-Do Lee
- Department of Pulmonary and Critical Care Medicine and Clinical Research Center for Chronic Obstructive Airway Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Joo Hun Park
- Department of Pulmonary and Critical Care Medicine, Ajou University School of Medicine, Suwon, Korea,
| |
Collapse
|
11
|
Segal LN, Martinez FJ. Chronic obstructive pulmonary disease subpopulations and phenotyping. J Allergy Clin Immunol 2018; 141:1961-1971. [PMID: 29884286 PMCID: PMC5996762 DOI: 10.1016/j.jaci.2018.02.035] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/21/2018] [Accepted: 02/09/2018] [Indexed: 01/12/2023]
Abstract
The diagnosis and treatment of chronic obstructive pulmonary disease (COPD) has been based largely on a one-size-fits-all approach. Diagnosis of COPD is based on meeting the physiologic criteria of fixed obstruction in forced expiratory flows and treatment focus on symptomatic relief, with limited effect on overall prognosis. However, patients with COPD have distinct features that determine very different evolutions of the disease. In this review we highlight distinct subgroups of COPD characterized by unique pathophysiologic derangements, response to treatment, and disease progression. It is likely that identification of subgroups of COPD will lead to discovery of much needed disease-modifying therapeutic approaches. We argue that a precision approach that integrates multiple dimensions (clinical, physiologic, imaging, and endotyping) is needed to move the field forward in the treatment of this disease.
Collapse
Affiliation(s)
- Leopoldo N Segal
- Division of Pulmonary and Critical Care Medicine, New York University School of Medicine, New York, NY.
| | - Fernando J Martinez
- Division of Pulmonary and Critical Care Medicine, Cornell University, Joan and Sanford I Weill Medical College, Ithaca, NY
| |
Collapse
|