1
|
Tian F, Zhou Z, Lu J, Qiao C, Wang C, Pang T, Guo L, Li J, Pang R, Xie H. Residual behaviors and health risk assessment of dinotefuran, flonicamid, and their metabolites during apple growth, storage, and processing. Food Res Int 2025; 205:115970. [PMID: 40032465 DOI: 10.1016/j.foodres.2025.115970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/04/2025] [Accepted: 02/08/2025] [Indexed: 03/05/2025]
Abstract
Understanding the fate of dinotefuran, flonicamid, and their metabolites is crucial for accurate dietary exposure assessment and human health. The dissipation and removal of dinotefuran, flonicamid, and their metabolites from apple cultivation to consumer's plate were studied. The results of field and storage experiments indicated significant differences in half-life at different doses. And the half-life was shorter in the field than that in storage. During washing, the residues of all target compounds were decreased. Among washing solutions, the PF values of each pesticide gradually decreased with the increasing washing time and washing solution concentration. 2 % NaHCO3 produced best removal effect after washing 15 min. Various food processing techniques, including peeling, fermentation, clarification, blanching, drying, enzymolysis, and simmering, were used to confirm the most effective way to remove these target compounds. For majority processes, the PF values were < 1, and the peeling and fermentation could obviously reduce pesticide residues. The risk quotients were < 100 %, implying that the risks were acceptable. This study provided a necessary information for the use of pesticides in apple cultivation and improvement of processing technology to ensure food safety.
Collapse
Affiliation(s)
- Fajun Tian
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009 China.
| | - Zhenzhen Zhou
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009 China
| | - Junfeng Lu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009 China
| | - Chengkui Qiao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009 China
| | - Caixia Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009 China
| | - Tao Pang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009 China
| | - Linlin Guo
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009 China
| | - Jun Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009 China
| | - Rongli Pang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009 China
| | - Hanzhong Xie
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009 China.
| |
Collapse
|
2
|
Floeder A, Jones RM, Arnold SF. Risk assessment methods in occupational health and hygiene: a scoping review. Ann Work Expo Health 2025; 69:120-131. [PMID: 39705502 PMCID: PMC11858558 DOI: 10.1093/annweh/wxae095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 11/18/2024] [Indexed: 12/22/2024] Open
Abstract
BACKGROUND There are a variety of risk assessment methods to evaluate occupational hazards in the field of industrial hygiene. With the development of emerging technologies in the workforce, the previously established risk assessment methods may need to be adapted or new methods developed to address the risk of new hazards. METHODS A scoping review was conducted consistent with Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Data was extracted and analyzed using a matrix method before undergoing a narrative synthesis. Risk assessment methods were classified as traditional and nontraditional. RESULTS Seventy-nine articles were included in this scoping review, with 81% using traditional risk assessment methods and 19% using nontraditional methods. DISCUSSION Among the nontraditional methods was control banding, with the most recent applications focused on nanomaterials. This approach, which was borne out of the need for a systematic approach for identifying potential health risks that required the use of engineering controls to be used safely, may have an important role in the area of emerging technologies, where the pace of technological innovation outstrips the rate at which health risks can be assessed and characterized. Risk assessment methods with the capacity to look at groups of similar chemicals and chemical mixtures are needed to address emerging hazards associated with emerging technologies.
Collapse
Affiliation(s)
- Andrew Floeder
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, MN 55455, United States
| | - Rachael M Jones
- Department of Environmental Health Sciences, Fielding School of Public Health, University of California, Los Angeles, CA 90095, United States
| | - Susan F Arnold
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, MN 55455, United States
| |
Collapse
|
3
|
Ottenbros IB, Ammann P, Imboden M, Fuhrimann S, Zock JP, Lebret E, Vermeulen RCH, Nijssen R, Lommen A, Mol H, Vlaanderen JJ, Probst-Hensch N. Urinary pesticide mixture patterns and exposure determinants in the adult population from the Netherlands and Switzerland: Application of a suspect screening approach. ENVIRONMENTAL RESEARCH 2023; 239:117216. [PMID: 37805179 DOI: 10.1016/j.envres.2023.117216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/15/2023] [Accepted: 09/17/2023] [Indexed: 10/09/2023]
Abstract
INTRODUCTION Non-occupational sources of pesticide exposure may include domestic pesticide usage, diet, occupational exposure of household members, and agricultural activities in the residential area. We conducted a study with the ambition to characterize pesticide mixture patterns in a sample of the adult population of the Netherlands and Switzerland, using a suspect screening approach and to identify related exposure determinants. METHODS A total of 105 and 295 adults participated in the Dutch and Swiss studies, respectively. First morning void urine samples were collected and analyzed in the same laboratory. Harmonized questionnaires about personal characteristics, pesticide-related activities, and diet were administered. Detection rates and co-occurrence patterns were calculated to explore internal pesticide exposure patterns. Censored linear and logistic regression models were constructed to investigate the association between exposure and domestic pesticide usage, consumption of homegrown and organic foods, household members' exposure, and distance to agricultural and forest areas. RESULTS From the 37 detected biomarkers, 3 (acetamiprid (-CH2), chlorpropham (4-HSA), and flonicamid (-C2HN)) were detected in ≥40% of samples. The most frequent combination of biomarkers (acetamiprid-flonicamid) was detected in 22 (5.5%) samples. Regression models revealed an inverse association between high organic vegetable and fruit consumption and exposure to acetamiprid, chlorpropham, propamocarb (+O), and pyrimethanil (+O + SO3). Within-individual correlations in repeated samples (summer/winter) from the Netherlands were low (≤0.3), and no seasonal differences in average exposures were observed in Switzerland. CONCLUSION High consumption of organic fruit and vegetables was associated with lower pesticide exposure. In the two countries, detection rates and co-occurrence were typically low, and within-person variability was high. Our study results provide an indication for target biomarkers to include in future studies aimed at quantifying urinary exposure levels in European adult populations.
Collapse
Affiliation(s)
- I B Ottenbros
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands; Center for Sustainability, Environment and Health, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - P Ammann
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Kreuzstrasse 2, CH-4123, Allschwil, Switzerland; University of Basel, P.O. Box, CH-4003, Basel, Switzerland
| | - M Imboden
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Kreuzstrasse 2, CH-4123, Allschwil, Switzerland; University of Basel, P.O. Box, CH-4003, Basel, Switzerland
| | - S Fuhrimann
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Kreuzstrasse 2, CH-4123, Allschwil, Switzerland; University of Basel, P.O. Box, CH-4003, Basel, Switzerland
| | - J-P Zock
- Center for Sustainability, Environment and Health, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - E Lebret
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands; Center for Sustainability, Environment and Health, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - R C H Vermeulen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
| | - R Nijssen
- Wageningen Food Safety Research - Part of Wageningen University & Research, Wageningen, Netherlands
| | - A Lommen
- Wageningen Food Safety Research - Part of Wageningen University & Research, Wageningen, Netherlands
| | - H Mol
- Wageningen Food Safety Research - Part of Wageningen University & Research, Wageningen, Netherlands
| | - J J Vlaanderen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands.
| | - N Probst-Hensch
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Kreuzstrasse 2, CH-4123, Allschwil, Switzerland; University of Basel, P.O. Box, CH-4003, Basel, Switzerland.
| |
Collapse
|
4
|
Bresson M, Bureau M, Le Goff J, Lecluse Y, Robelot E, Delamare J, Baldi I, Lebailly P. Pesticide Exposure in Fruit-Growers: Comparing Levels and Determinants Assessed under Usual Conditions of Work (CANEPA Study) with Those Predicted by Registration Process (Agricultural Operator Exposure Model). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19084611. [PMID: 35457476 PMCID: PMC9028555 DOI: 10.3390/ijerph19084611] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/28/2022] [Accepted: 04/02/2022] [Indexed: 01/27/2023]
Abstract
Knowledge of pesticide exposure levels in farmers is necessary for epidemiological studies and regulatory purposes. In the European pesticide registration process, operators’ exposure is predicted using the Agricultural Operator Exposure Model (AOEM), created in 2014 by the European Food Safety Authority based on studies conducted by the pesticide industry. We compared operators’ exposures during treatment days in the apple-growing industry under non-controlled working conditions and AOEM-predicted values. The dermal exposure of thirty French apple-growers from the CANEPA study when applying two fungicides was measured using body patches and cotton gloves. For each observation, the corresponding exposure was calculated by means of the AOEM, using data recorded about the operator, spraying equipment and personal protective equipment (PPE) used. A significant linear correlation was observed between calculated and measured daily exposures. The model overestimated the daily exposure approximately 4-fold and the exposure during application 10-fold. However, exposure was underestimated during mixing/loading for 70% of the observations when the operator wore PPE. The AOEM did not overestimate exposures in all circumstances, especially during mixing/loading, when operators handle concentrated products. The protection provided by PPE appeared to be overestimated. This could be due to the optimal working conditions under which the “industrial” studies are conducted, which may not be representative of real working conditions of operators in fruit-growing.
Collapse
Affiliation(s)
- Morgane Bresson
- ANTICIPE, INSERM U1086, Centre François Baclesse, University of Caen Normandie, 14000 Caen, France; (J.L.G.); (Y.L.); (J.D.); (P.L.)
- Correspondence:
| | - Mathilde Bureau
- EPICENE, INSERM U1219, Bordeaux Population Health Center, University of Bordeaux, 33076 Bordeaux, France; (M.B.); (E.R.); (I.B.)
| | - Jérémie Le Goff
- ANTICIPE, INSERM U1086, Centre François Baclesse, University of Caen Normandie, 14000 Caen, France; (J.L.G.); (Y.L.); (J.D.); (P.L.)
| | - Yannick Lecluse
- ANTICIPE, INSERM U1086, Centre François Baclesse, University of Caen Normandie, 14000 Caen, France; (J.L.G.); (Y.L.); (J.D.); (P.L.)
| | - Elsa Robelot
- EPICENE, INSERM U1219, Bordeaux Population Health Center, University of Bordeaux, 33076 Bordeaux, France; (M.B.); (E.R.); (I.B.)
| | - Justine Delamare
- ANTICIPE, INSERM U1086, Centre François Baclesse, University of Caen Normandie, 14000 Caen, France; (J.L.G.); (Y.L.); (J.D.); (P.L.)
| | - Isabelle Baldi
- EPICENE, INSERM U1219, Bordeaux Population Health Center, University of Bordeaux, 33076 Bordeaux, France; (M.B.); (E.R.); (I.B.)
| | - Pierre Lebailly
- ANTICIPE, INSERM U1086, Centre François Baclesse, University of Caen Normandie, 14000 Caen, France; (J.L.G.); (Y.L.); (J.D.); (P.L.)
| |
Collapse
|
5
|
Lovison Sasso E, Cattaneo R, Rosso Storck T, Spanamberg Mayer M, Sant'Anna V, Clasen B. Occupational exposure of rural workers to pesticides in a vegetable-producing region in Brazil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:25758-25769. [PMID: 33469792 DOI: 10.1007/s11356-021-12444-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
The health of family farmers is at risk due to occupational exposure to pesticides. The aims of the current study were to investigate the level of farmers' perception of risks associated with pesticide use and to assess their health condition based on biochemical and immunological tests. Family farmers living in a vegetable-producing region in Southern Brazil were selected to participate in the study. More than 70% of the family farmers were often exposed to more than one type of pesticides; 41.2% were intensively using several pesticides for more than one decade and 74.4% were not using personal protective equipment (PPE) at the time of pesticide handling due to low perception of the risks posed by these chemicals. Enzymatic analysis performed in participants' blood samples showed changes in catalase (CAT) and glutathione reductase (GR) activity, in lipid peroxidation (TBARS) and carbonylated protein levels, as well as in chemoattractant (IL-8) and anti-inflammatory (IL-10) interleukin expression. Low perception of health-related risks posed by pesticides can be attributed to factors such as low schooling and lack of information, which put farmers' health at risk, as evidenced by blood biochemical and immunological changes.
Collapse
Affiliation(s)
- Eloisa Lovison Sasso
- Postgraduate Program in Environment and Sustainability (PPGAS), Environmental Toxicology Research Group, State University of Rio Grande do Sul, São Francisco de Paula, RS, Brazil
| | - Roberta Cattaneo
- Laboratory of Oxidative Stress and Medicinal Plants, Postgraduate Program in Integral Health Care (PPGAIS), University of Cruz Alta, Cruz Alta, RS, Brazil
| | - Tamiris Rosso Storck
- Environmental Toxicology Research Group, Postgraduate Program in Environmental Engineering (PPGEAmb), Technology Center, Federal University of Santa Maria (UFSM), Av. Roraima, n. 1000, Santa Maria, RS, 97105-900, Brazil
| | - Mariana Spanamberg Mayer
- Laboratory of Oxidative Stress and Medicinal Plants, Postgraduate Program in Integral Health Care (PPGAIS), University of Cruz Alta, Cruz Alta, RS, Brazil
| | - Voltaire Sant'Anna
- Postgraduate Program in Environment and Sustainability (PPGAS), Environmental Toxicology Research Group, State University of Rio Grande do Sul, São Francisco de Paula, RS, Brazil
| | - Barbara Clasen
- Postgraduate Program in Environment and Sustainability (PPGAS), Environmental Toxicology Research Group, State University of Rio Grande do Sul, São Francisco de Paula, RS, Brazil.
- Environmental Toxicology Research Group, Postgraduate Program in Environmental Engineering (PPGEAmb), Technology Center, Federal University of Santa Maria (UFSM), Av. Roraima, n. 1000, Santa Maria, RS, 97105-900, Brazil.
| |
Collapse
|
6
|
Li H, Zhong Q, Wang X, Luo F, Zhou L, Sun H, Yang M, Lou Z, Chen Z, Zhang X. The degradation and metabolism of chlorfluazuron and flonicamid in tea: A risk assessment from tea garden to cup. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142070. [PMID: 32920390 DOI: 10.1016/j.scitotenv.2020.142070] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/27/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
Degradation and metabolism of chlorfluazuron and flonicamid from tea garden to cup were simultaneously investigated by a modified QuEChERS method coupled with UPLC-MS/MS quantification. The dissipation half-lives of chlorfluazuron, flonicamid, and total flonicamid (the sum of flonicamid and its metabolites TFNG, TFNA, and TFNA-AM) in fresh tea leaves during tea growth were 6.0 d, 4.8 d, and 8.1 d, respectively. TFNG and TFNA were generated during tea growth. After tea processing, the residues of chlorfluazuron, flonicamid, and its metabolites in black tea were higher than those in green tea. The average processing factors of chlorfluazuron, flonicamid, and total flonicamid in black tea were 2.54, 3.02, and 2.87, respectively, while in green tea they were 2.40, 2.93, and 2.79, respectively. TFNG, TFNA, and TFNA-AM were formed rapidly during the drying step. Considering the influence of water content at various processing steps, the average loss rates of chlorfluazuron, flonicamid, and total flonicamid residue from fresh tea leaves to black tea were 16.7%, 33.8%, and 20.7%, respectively, and 29.6%, 14.0% and 18.2%, respectively, in the case of green tea. The highest leaching rates of chlorfluazuron, flonicamid, and total flonicamid during tea brewing were 6.8%, 97.0%, and 97.4%, respectively, in black tea infusion, and 6.0%, 98.9%, and 98.6%, respectively, in green tea infusion. The metabolites, especially TFNG, had a higher leaching rate during tea brewing. The migration of chlorfluazuron from fresh leaves to tea infusion was low, and the migration of flonicamid was high. The RQc and RQa of chlorfluazuron and total flonicamid were less than 1. This result indicates that the potential dietary intake risk of chlorfluazuron from tea is negligible. However, the risk of total flonicamid intake is three times higher than that of chlorfluazuron. There is a potential risk of intake of flonicamid and its metabolites in tea for human consumption.
Collapse
Affiliation(s)
- Hongxia Li
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qing Zhong
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xinru Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Fengjian Luo
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Li Zhou
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Hezhi Sun
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Mei Yang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Zhengyun Lou
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Zongmao Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Xinzhong Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China.
| |
Collapse
|
7
|
Yang W, Fan Z, Jiang H, Zhao Y, Guo L, Dai Y. Biotransformation of flonicamid and sulfoxaflor by multifunctional bacterium Ensifer meliloti CGMCC 7333. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2020; 56:122-131. [PMID: 33283619 DOI: 10.1080/03601234.2020.1852854] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Flonicamid is a novel, selective, systemic pyridinecarboxamide insecticide that effectively controls hemipterous pests. Sulfoxaflor, a sulfoximine insecticide, effectively controls many sap-feeding insect pests. Ensifer meliloti CGMCC 7333 transforms flonicamid into N-(4-trifluoromethylnicotinoyl) glycinamide (TFNG-AM). Resting cells of E. meliloti CGMCC 7333 (optical density at 600 nm [OD600] = 5) transformed 67.20% of the flonicamid in a 200-mg/L solution within 96 h. E. meliloti CGMCC 7333 transforms sulfoxaflor into N-(methyl(oxido){1-[6-(trifluoromethyl) pyridin-3-yl] ethyl}-k4-sulfanylidene) urea (X11719474). E. meliloti CGMCC 7333 resting cells (OD600 = 5) transformed 89.36% of the sulfoxaflor in a 200 mg/L solution within 96 h. On inoculating 2 mL of E. meliloti CGMCC 7333 (OD600 = 10) into soil containing 80 mg/kg flonicamid, 91.1% of the flonicamid was transformed within 9 d (half-life 2.6 d). On inoculating 2 mL of E. meliloti CGMCC 7333 (OD600 = 10) into soil containing 80 mg/kg sulfoxaflor, 83.9% of the sulfoxaflor was transformed within 9 d (half-life 3.4 d). Recombinant Escherichia coli harboring the E. meliloti CGMCC 7333 nitrile hydratase (NHase)-encoding gene and NHase both showed the ability to transform flonicamid or sulfoxaflor into their corresponding amides, TFNG-AM and X11719474, respectively. These findings may help develop a bioremediation agent for the elimination of flonicamid and sulfoxaflor contamination.
Collapse
Affiliation(s)
- Wenlong Yang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, People's Republic of China
| | - Zhixia Fan
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, People's Republic of China
| | - Huoyong Jiang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, People's Republic of China
| | - Yunxiu Zhao
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, People's Republic of China
| | - Ling Guo
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, People's Republic of China
| | - Yijun Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, People's Republic of China
| |
Collapse
|
8
|
Assessment of Handler Exposure to Pesticides from Stretcher-Type Power Sprayers in Orchards. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10238684] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The production and export volume of fruits from China are among the top three in the world. Pesticides are applied to orchards more than 10 times a year to control pests, and stretcher-type power sprayers are widely used to apply chemical pesticides. However, an assessment of pesticide-handler exposure to pesticides in this scenario has not been reported in China. The test pesticide, 30% SYP-9625 concentrate diluted 3000 times, was sprayed on apple orchards in Beijing China. Experiments were conducted to assess dermal and inhalation exposure using standard whole-body dosimetry and air-sampling methodologies. The dermal deposition was the main route of exposure in this study. The dermal unit exposure (UE) of handlers was 350 mg·kg−1 a.i. of SYP-9625. The hands accounted for 59% of the total exposure and were the most exposed body part. Inhalation UE was 0.720 mg·kg−1 a.i. of SYP-9625 and was negligible compared with dermal exposure. We found that use of protective garments while using stretcher-type powers sprayers reduced dermal pesticide exposure. These results can be used as a reference for the handler’s safety in pesticide management and orchard mechanical management.
Collapse
|
9
|
Yang Y, Liu X, Zhang Q, Chen Y, Zhang S, Lu P, Hu D. Dissipation, Processing, Leaching, and Safety Evaluation of Flonicamid and Its Metabolites in Tea. J AOAC Int 2020; 103:1441-1450. [PMID: 33247740 DOI: 10.1093/jaoacint/qsaa052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 11/14/2022]
Abstract
BACKGROUND Tea is a popular traditional non-alcoholic beverage worldwide. Flonicamid is a selective systemic pyridine carboxamide insecticide that is widely used for controlling tea leafhopper in tea. OBJECTIVE The leaching rates, dissipation dynamics, and residue levels of flonicamid and its metabolites in tea leaves during processing and transferring were investigated to validate the safe risk in tea and transfer behavior using high performance liquid chromatography-tandem mass spectrometry with a convenient pretreatment method. METHOD The extracting method and immersion rate experiments were optimized by single factor analysis and orthogonal tests. The acetonitrile extracting solvent with 0.5% formic acid was used and optimal leaching conditions were obtained with a regime of 15 min immersion time, 100°C temperature, three immersions and a tea-to-water ratio of 1:50. RESULTS Average recoveries in processed green tea and infusions were 80.85-98.75% with relative standard deviations <5.87%. LODs and LOQs of flonicamid, 4-trifluoromethylnicotinic acid (TFNA), N-(4-trifluoromethylnicotinoyl) glycine (TFNG), and 4-trifluoromethylnicotinamide (TFNA-AM) were 0.0013-0.350 and 0.004-1 μg/g, respectively. The processing factor of flonicamid was 0.36-5.52 during green tea manufacture. The leaching rates were 22.9-97.4% from processed tea to infusion. CONCLUSIONS The risk of long-term and short-term dietary intake of flonicamid was safe in tea infusions with the risk quotient (RQ) values <1 for the Chinese consumer. This work may provide guidance for safe and reasonable consumption of flonicamid in tea in China. HIGHLIGHTS The suitable leaching factors of flonicamid and its metabolites in tea infusions were optimized by orthogonal experimentation for the first time.
Collapse
Affiliation(s)
- Ya Yang
- Ministry of Education, Key Laboratory of Green Pesticide and Agricultural Bioengineering.,Guizhou University, Center for Research and Development of Fine Chemicals, Guiyang 550025, China
| | - Xiangwu Liu
- Ministry of Education, Key Laboratory of Green Pesticide and Agricultural Bioengineering.,Guizhou University, Center for Research and Development of Fine Chemicals, Guiyang 550025, China
| | - Qingtao Zhang
- Ministry of Education, Key Laboratory of Green Pesticide and Agricultural Bioengineering.,Guizhou University, Center for Research and Development of Fine Chemicals, Guiyang 550025, China
| | - Ya Chen
- Ministry of Education, Key Laboratory of Green Pesticide and Agricultural Bioengineering.,Guizhou University, Center for Research and Development of Fine Chemicals, Guiyang 550025, China
| | - Sumei Zhang
- Linyi Academy of Agricultural Sciences, Linyi, Shandong 276012, China
| | - Ping Lu
- Ministry of Education, Key Laboratory of Green Pesticide and Agricultural Bioengineering.,Guizhou University, Center for Research and Development of Fine Chemicals, Guiyang 550025, China
| | - Deyu Hu
- Ministry of Education, Key Laboratory of Green Pesticide and Agricultural Bioengineering.,Guizhou University, Center for Research and Development of Fine Chemicals, Guiyang 550025, China
| |
Collapse
|
10
|
Yang WL, Dai ZL, Cheng X, Fan ZX, Jiang HY, Dai YJ. Biotransformation of insecticide flonicamid by Aminobacter sp. CGMCC 1.17253 via nitrile hydratase catalysed hydration pathway. J Appl Microbiol 2020; 130:1571-1581. [PMID: 33030814 DOI: 10.1111/jam.14880] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/10/2020] [Accepted: 09/28/2020] [Indexed: 12/11/2022]
Abstract
AIMS This study evaluates flonicamid biotransformation ability of Aminobacter sp. CGMCC 1.17253 and the enzyme catalytic mechanism involved. METHODS AND RESULTS Flonicamid transformed by resting cells of Aminobacter sp. CGMCC 1.17253 was carried out. Aminobacter sp. CGMCC 1.17253 converts flonicamid into N-(4-trifluoromethylnicotinoyl) glycinamide (TFNG-AM). Aminobacter sp. CGMCC 1.17253 transforms 31·1% of the flonicamid in a 200 mg l-1 conversion solution in 96 h. Aminobacter sp. CGMCC 1.17253 was inoculated in soil, and 72·1% of flonicamid with a concentration of 0·21 μmol g-1 was transformed in 9 days. The recombinant Escherichia coli expressing Aminobacter sp. CGMCC 1.17253 nitrile hydratase (NHase) and purified NHase were tested for the flonicamid transformation ability, both of them acquired the ability to transform flonicamid into TFNG-AM. CONCLUSIONS Aminobacter sp. CGMCC 1.17253 transforms flonicamid into TFNG-AM via hydration pathway mediated by cobalt-containing NHase. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first report that bacteria of genus Aminobacter has flonicamid-transforming ability. This study enhances our understanding of flonicamid-degrading mechanism. Aminobacter sp. CGMCC 1.17253 has the potential for bioremediation of flonicamid pollution.
Collapse
Affiliation(s)
- W L Yang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, People's Republic of China
| | - Z L Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, People's Republic of China
| | - X Cheng
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, People's Republic of China
| | - Z X Fan
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, People's Republic of China
| | - H Y Jiang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, People's Republic of China
| | - Y J Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, People's Republic of China
| |
Collapse
|
11
|
Zhou Y, Guo J, Wang Z, Zhang B, Sun Z, Yun X, Zhang J. Levels and inhalation health risk of neonicotinoid insecticides in fine particulate matter (PM 2.5) in urban and rural areas of China. ENVIRONMENT INTERNATIONAL 2020; 142:105822. [PMID: 32497933 DOI: 10.1016/j.envint.2020.105822] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/16/2020] [Accepted: 05/18/2020] [Indexed: 05/27/2023]
Abstract
Neonicotinoid insecticide (NEO) concentrations in ambient fine particulate matter (PM2.5) and daily exposure via inhalation were investigated during spring and fall in an urban area in Beijing and in urban and rural areas of Zhengzhou, Henan Province, China. Four NEOs, including imidacloprid, acetamiprid, thiamethoxam and clothianidin, were assessed using a QuEChERS (quick, easy, cheap, effective, rugged, safe) extraction procedure coupled to liquid chromatography-tandem mass spectrometry. Of 64 PM2.5 samples, 100% contained at least two NEOs (imidacloprid and acetamiprid). Imidacloprid was detected at the highest levels, ranging from 4.33 to 1.13 × 102 pg m-3. A relative potency factor method that considered different toxicities was used to integrate the four NEO concentrations. The total NEO concentrations in air in the Zhengzhou rural area (mean: 80.86 pg m-3) were higher than those in urban areas. Differences between seasons were not significant (p > 0.05). The highest value for the total average daily dose via inhalation of four NEOs (ADDinh,total), 91.0 pg kg-1 day-1, was found in rural children <6 years old. The ADDinh,total of rural residents was significantly higher than that of urban residents when there was no intensive pesticide application. Although the ADDinh,total values were below the current chronic reference dose, when possible joint toxicity and the increasing use of NEOs are considered, a potential health risk via inhalation is evident. We believe this study is the first to characterize NEO levels in fine particulate matter and to evaluate inhalation exposure in urban and rural residents under nonoccupational scenarios in China. It will enhance our understanding of exposure to NEOs and provide a basis for risk management decisions.
Collapse
Affiliation(s)
- Ying Zhou
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Junyu Guo
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| | - Zikuan Wang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Boya Zhang
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Zhe Sun
- Centre for Atmospheric Science, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Xiao Yun
- College of Urban and Environmental Sciences, Laboratory for Earth Surface Processes, Sino-French Institute for Earth System Science, Peking University, Beijing 100871, China
| | - Jianbo Zhang
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
12
|
Pedon de Araujo Cardoso T, Viturino da Silva JW, Kishishita J, Galindo Bedor CN, Galindo Bedor DC, Pereira de Santana D, Bastos Leal L. Pesticide dermal absorption: Case study x in vitro study. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 75:103313. [PMID: 31865005 DOI: 10.1016/j.etap.2019.103313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/26/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
In order to evaluate dermal absorption during typical working conditions in family farming, the amount of dimethoate on clothing and in the stratum corneum (SC) was measured in three rural workers. This was achieved by using cotton patches on the worker's clothes and SC quantification by the tape stripping approach. To mimic the above study, an in vitro approach was performed using Franz cells by applying dimethoate (0.4 and 1.8 μg) direct to pig skin or, on a section of cotton before contact with pig skin. The in vivo case results demonstrated the high levels and variability of agrochemicals to which these farmers are subjected, with the total potential dermal absorption between 0.87-2.85 mg/person/h and the estimated SC penetration factor (PF) between 0-54.0 and 0-28.9 % for the back of the neck and the arms respectively. This probably demonstrates the impact of correct protective clothing. For the in vitro study, the amount of pesticide retained in the SC was 52.63 ± 10.73and 135.15 ± 31.8 ng/cm2 after applying 0.4 and 1.8 μg of pesticide directly on SC, and demonstrated close agreement with the in vivo approach. Further studies performed with this and other pesticides with different characteristics will contribute to the understanding of their transport through the skin.
Collapse
Affiliation(s)
| | | | - Juliana Kishishita
- Universidade Federal de Pernambuco, Departamento Ciências farmacêuticas, CEP: 50740-520, Recife, PE, Brazil
| | | | - Danilo Cesar Galindo Bedor
- Universidade Federal de Pernambuco, Departamento Ciências farmacêuticas, CEP: 50740-520, Recife, PE, Brazil
| | - Davi Pereira de Santana
- Universidade Federal de Pernambuco, Departamento Ciências farmacêuticas, CEP: 50740-520, Recife, PE, Brazil
| | - Leila Bastos Leal
- Universidade Federal de Pernambuco, Departamento Ciências farmacêuticas, CEP: 50740-520, Recife, PE, Brazil
| |
Collapse
|
13
|
Yang WL, Guo LL, Dai ZL, Qin RC, Zhao YX, Dai YJ. Biodegradation of the Insecticide Flonicamid by Alcaligenes faecalis CGMCC 17553 via Hydrolysis and Hydration Pathways Mediated by Nitrilase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:10032-10041. [PMID: 31419121 DOI: 10.1021/acs.jafc.9b04245] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Flonicamid (N-cyanomethyl-4-trifluoromethylnicotinamide, FLO), a novel selective systemic pyridinecarboxamide insecticide, effectively controls hemipterous pests. However, microbial degradation of flonicamid, along with the enzymatic mechanism, has not been studied. Here, bacterial isolate PG13, which converts flonicamid into 4-(trifluoromethyl)nicotinol glycine (TFNG) and N-(4-trifluoromethylnicotinoyl)glycinamide (TFNG-AM), was isolated and identified as Alcaligenes faecalis CGMCC 17553. The genome of CGMCC 17553 contained five nitrilases but no nitrile hydratase, and recombinant Escherichia coli strains harboring CGMCC 17553 nitrilase gene nitA or nitD acquired the ability to degrade flonicamid. Purified NitA catalyzed flonicamid into both TFNG and TFNG-AM, indicating dual functionality, while NitD could only produce TFNG-AM. Three-dimensional homology modeling revealed that aromatic amino acid residues in the catalytic pocket affected nitrilase activity. These findings further our understanding of the enzymatic mechanism of flonicamid metabolism in the environment and may help develop a potential bioremediation agent for the elimination of flonicamid contamination.
Collapse
Affiliation(s)
- Wen-Long Yang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science , Nanjing Normal University , Nanjing 210023 , People's Republic of China
| | - Lei-Lei Guo
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science , Nanjing Normal University , Nanjing 210023 , People's Republic of China
| | - Zhi-Ling Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science , Nanjing Normal University , Nanjing 210023 , People's Republic of China
| | - Ruo-Chen Qin
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science , Nanjing Normal University , Nanjing 210023 , People's Republic of China
| | - Yun-Xiu Zhao
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science , Nanjing Normal University , Nanjing 210023 , People's Republic of China
| | - Yi-Jun Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science , Nanjing Normal University , Nanjing 210023 , People's Republic of China
| |
Collapse
|
14
|
Zhang Q, Yang Y, Liu X, Chen Y, Hu D, Lu P. Simultaneous Determination of Flonicamid and its Metabolites in Tea by Liquid Chromatography–Tandem Mass Spectrometry. ANAL LETT 2019. [DOI: 10.1080/00032719.2018.1508294] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Qingtao Zhang
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | - Ya Yang
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | - Xiangwu Liu
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | - Ya Chen
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | - Deyu Hu
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | - Ping Lu
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| |
Collapse
|
15
|
Wang S, Jin F, Cao X, Shao Y, Wang J, She Y, Qi Y, Zhang C, Li H, Jin M, Wang J, Shao H, Zheng L. Residue behaviors and risk assessment of flonicamid and its metabolites in the cabbage field ecosystem. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 161:420-429. [PMID: 29908453 DOI: 10.1016/j.ecoenv.2018.05.074] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 04/05/2018] [Accepted: 05/25/2018] [Indexed: 06/08/2023]
Abstract
Flonicamid, a novel selective systemic pesticide, can effectively control a broad range of insect pests. However, the dissipation behaviors and the terminal residues of flonicamid and its metabolites in some crops and soils remain unclear. Herein, an easy, sensitive and reliable method using a modified QuEChERS extraction coupled with LC-MS/MS for the simultaneous analysis of flonicamid and its metabolites in cabbage and soil was developed. Based on this method, the dissipation behaviors of flonicamid and its metabolites as well as their persistence in cabbage and soil during harvest were investigated. Flonicamid degraded rapidly, and the half-lives of flonicamid only and total residues (the sum of flonicamid and its metabolites) were 1.49-4.59 and 1.97-4.99 days in cabbage, and 2.12-7.97 and 2.04-7.62 days in soil, respectively. When 50% flonicamid WG was sprayed once or twice at the recommended dose and 1.5-fold the recommended dose, the highest residues of total flonicamid in cabbage and soil from different pre-harvest intervals (3, 7 and 14 days) were 0.070 and 0.054 mg kg-1, respectively. The risk quotient (RQ) of flonicamid based on the consumption data from China was below 16.84%, indicating that the use of flonicamid is non-hazardous to humans. These results could not only guide the safe and responsible use of flonicamid in agriculture but also help the Chinese government establish the maximum residue level (MRL) for flonicamid in cabbage.
Collapse
Affiliation(s)
- Shanshan Wang
- Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| | - Fen Jin
- Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Xiaolin Cao
- Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Yong Shao
- Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Jian Wang
- College of Agriculture and Forestry, Hebei North University, Zhangjiakou 075000, PR China
| | - Yongxin She
- Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Yan Qi
- Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Chao Zhang
- Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Hui Li
- Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Maojun Jin
- Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Jing Wang
- Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| | - Hua Shao
- Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Lufei Zheng
- Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| |
Collapse
|
16
|
Cao L, Zhang H, Li F, Zhou Z, Wang W, Ma D, Yang L, Zhou P, Huang Q. Potential dermal and inhalation exposure to imidacloprid and risk assessment among applicators during treatment in cotton field in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 624:1195-1201. [PMID: 29929232 DOI: 10.1016/j.scitotenv.2017.12.238] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/20/2017] [Accepted: 12/20/2017] [Indexed: 06/08/2023]
Abstract
Quantifying operator exposure to pesticides is a key component of the decision-making procedure for risk assessment. China is the largest cotton-planting country in the world. Dense cotton planting patterns and pesticide overuse potentially place Chinese cotton farmers at high levels of exposure risk. Using whole-body dosimetry during backpack spraying application in cotton filed, the present study monitored potential dermal and inhalation exposure to the insecticide imidacloprid. For forward spraying (when the operators walked forward), the total potential dermal and inhalation exposure was 2059mg/kg of active ingredient (ai), corresponding to 0.21% of the applied quantity of the insecticide. However, the total exposure of backward walking (188mg/kg of ai) was approximately 11 times lower than that of forward walking. The upper body parts (head, chest, back and arms) were the most exposed. The potential inhalation exposure contributed to <0.1% of the total exposure. The exposure risk to imidacloprid inherent in these agricultural procedures was evaluated by margin of exposure values and was found to be safe under the present cotton treatment scenarios. In general, similar body exposure and distribution between Allura Red and imidacloprid verify Allura Red's feasibility as an environmentally friendly pesticide surrogate for exposure assessment.
Collapse
Affiliation(s)
- Lidong Cao
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Hongjun Zhang
- Institute for the Control of Agrochemicals, Ministry of Agriculture, No. 22 Maizidian Street, Beijing 110000, China
| | - Fengmin Li
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Zhaolu Zhou
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Wenliang Wang
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Dukang Ma
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Li Yang
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Puguo Zhou
- Institute for the Control of Agrochemicals, Ministry of Agriculture, No. 22 Maizidian Street, Beijing 110000, China.
| | - Qiliang Huang
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing 100193, China.
| |
Collapse
|
17
|
Wong HL, Garthwaite DG, Ramwell CT, Brown CD. Assessment of exposure of professional agricultural operators to pesticides. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 619-620:874-882. [PMID: 29734633 DOI: 10.1016/j.scitotenv.2017.11.127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 11/10/2017] [Accepted: 11/11/2017] [Indexed: 06/08/2023]
Abstract
This study investigates how field practices in handling and applying pesticides influence the long-term patterns of professional agricultural operators' exposure to pesticides. It presents the first use of a comprehensive pesticide application dataset collected on behalf of the European Food Safety Authority with 50 operators selected to cover arable and orchard cropping systems in Greece, Lithuania and the UK. Exposure was predicted based on the harmonised Agricultural Operator Exposure Model (AOEM) and compared with Acceptable Operator Exposure Levels (AOELs). The amount of pesticides handled by individual operators across a cropping season was largest in the UK arable and orchard systems (median 580 and 437kg active substance, respectively), intermediate for the arable systems in Greece and Lithuania (151 and 77kg, respectively), and smallest in the Greek orchard system (22kg). Overall, 30 of the 50 operators made at least one application within a day with predicted exposure greater than the AOEL. The rate of AOEL exceedance was greatest in the Greek cropping systems (8 orchard operators, 2.8-16% of total applications; 7 arable operators, 1.1-14% of total applications), and least for the Lithuanian arable system (2 operators, 2.9-4.5% of total applications). Instances in Greece when predicted exposure exceed the AOEL were strongly influenced by the widespread use of wettable powder formulations (>40% of the total pesticide active substance handled for 11 of the 20 Greek operators). In contrast, the total area of land treated with an active substance on a single day was more important in the UK and Lithuania (95th percentile observed value was 132 and 19haday-1 for UK arable and orchard systems, respectively). Study findings can be used to evaluate current assumptions in regulatory exposure calculations and to identify situations with potential risk that require further analysis including measurements of exposure to validate model estimations.
Collapse
Affiliation(s)
- Hie Ling Wong
- Environment Department, University of York, York YO10 5NG, United Kingdom; Faculty of Earth Science, University Malaysia Kelantan, Locked Bag 100, Jeli 17600, Kelantan, Malaysia.
| | | | - Carmel T Ramwell
- Fera Science Ltd (Fera), Sand Hutton, York YO41 1LZ, United Kingdom
| | - Colin D Brown
- Environment Department, University of York, York YO10 5NG, United Kingdom
| |
Collapse
|