1
|
Jain S, Sharma JG. Unconventional strategies for liver tissue engineering: plant, paper, silk and nanomaterial-based scaffolds. Regen Med 2024; 19:421-437. [PMID: 39101556 PMCID: PMC11370909 DOI: 10.1080/17460751.2024.2378615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/02/2024] [Indexed: 08/06/2024] Open
Abstract
The paper highlights how significant characteristics of liver can be modeled in tissue-engineered constructs using unconventional scaffolds. Hepatic lobular organization and metabolic zonation can be mimicked with decellularized plant structures with vasculature resembling a native-hepatic lobule vascular arrangement or silk blend scaffolds meticulously designed for guided cellular arrangement as hepatic patches or metabolic activities. The functionality of hepatocytes can be enhanced and maintained for long periods in naturally fibrous structures paving way for bioartificial liver development. The phase I enzymatic activity in hepatic models can be raised exploiting the microfibrillar structure of paper to allow cellular stacking creating hypoxic conditions to induce in vivo-like xenobiotic metabolism. Lastly, the paper introduces amalgamation of carbon-based nanomaterials into existing scaffolds in liver tissue engineering.
Collapse
Affiliation(s)
- Sanyam Jain
- Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Delhi, 110042, India
| | - Jai Gopal Sharma
- Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Delhi, 110042, India
| |
Collapse
|
2
|
Zhu L, Yuhan J, Yu H, Zhang B, Huang K, Zhu L. Decellularized Extracellular Matrix for Remodeling Bioengineering Organoid's Microenvironment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2207752. [PMID: 36929582 DOI: 10.1002/smll.202207752] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Over the past decade, stem cell- and tumor-derived organoids are the most promising models in developmental biology and disease modeling, respectively. The matrix is one of three main elements in the construction of an organoid and the most important module of its extracellular microenvironment. However, the source of the currently available commercial matrix, Matrigel, limits the application of organoids in clinical medicine. It is worth investigating whether the original decellularized extracellular matrix (dECM) can be exploited as the matrix of organoids and improving organoid construction are very important. In this review, tissue decellularization protocols and the characteristics of decellularization methods, the mechanical support and biological cues of extraccellular matrix (ECM), methods for construction of multifunctional dECM and responsive dECM hydrogel, and the potential applications of functional dECM are summarized. In addition, some expectations are provided for dECM as the matrix of organoids in clinical applications.
Collapse
Affiliation(s)
- Liye Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, P. R. China
- College of Veterinary Medicine, China Agricultural University, Beijing, 100094, P. R. China
| | - Jieyu Yuhan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| | - Hao Yu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| | - Boyang Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, P. R. China
| | - Kunlun Huang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| | - Longjiao Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, P. R. China
| |
Collapse
|
3
|
Habeeb MA, Vishwakarma SK, Habeeb S, Khan AA. Current progress and emerging technologies for generating extrapancreatic functional insulin-producing cells. World J Transl Med 2022; 10:1-13. [DOI: 10.5528/wjtm.v10.i1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/05/2022] [Accepted: 06/03/2022] [Indexed: 02/06/2023] Open
Abstract
Diabetes has been one of the major concerns in recent years, due to the increasing rate of morbidity and mortality worldwide. The available treatment strategies for uncontrolled diabetes mellitus (DM) are pancreas or islet transplantation. However, these strategies are limited due to unavailability of quality pancreas/ islet donors, life-long need of immunosuppression, and associated complications. Cell therapy has emerged as a promising alternative options to achieve the clinical benefits in the management of uncontrolled DM. Since the last few years, various sources of cells have been used to convert into insulin-producing β-like cells. These extrapancreatic sources of cells may play a significant role in β-cell turnover and insulin secretion in response to environmental stimuli. Stem/progenitor cells from liver have been proposed as an alternative choice that respond well to glucose stimuli under strong transcriptional control. The liver is one of the largest organs in the human body and has a common endodermal origin with pancreatic lineages. Hence, liver has been proposed as a source of a large number of insulin-producing cells. The merging of nanotechnology and 3D tissue bioengineering has opened a new direction for producing islet-like cells suitable for in vivo transplantation in a cordial microenvironment. This review summarizes extrapancreatic sources for insulin-secreting cells with reference to emerging technologies to fulfill the future clinical need.
Collapse
Affiliation(s)
- Md Aejaz Habeeb
- Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Hyderabad 500058, Telangana, India
| | - Sandeep Kumar Vishwakarma
- Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Hyderabad 500058, Telangana, India
| | - Safwaan Habeeb
- Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Hyderabad 500058, Telangana, India
| | - Aleem Ahmed Khan
- Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Hyderabad 500058, Telangana, India
| |
Collapse
|
4
|
Guan G, Huo D, Li Y, Zhao X, Li Y, Qin Z, Sun D, Yang G, Yang M, Tan J, Zeng W, Zhu C. Engineering hiPSC-CM and hiPSC-EC laden 3D nanofibrous splenic hydrogel for improving cardiac function through revascularization and remuscularization in infarcted heart. Bioact Mater 2021; 6:4415-4429. [PMID: 33997517 PMCID: PMC8113784 DOI: 10.1016/j.bioactmat.2021.04.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/13/2022] Open
Abstract
Cell therapy has been a promising strategy for cardiac repair after myocardial infarction (MI), but a poor ischemic environment and low cell delivery efficiency remain significant challenges. The spleen serves as a hematopoietic stem cell niche and secretes cardioprotective factors after MI, but it is unclear whether it could be used for human pluripotent stem cell (hiPSC) cultivation and provide a proper microenvironment for cell grafts against the ischemic environment. Herein, we developed a splenic extracellular matrix derived thermoresponsive hydrogel (SpGel). Proteomics analysis indicated that SpGel is enriched with proteins known to modulate the Wnt signaling pathway, cell-substrate adhesion, cardiac muscle contraction and oxidation-reduction processes. In vitro studies demonstrated that hiPSCs could be efficiently induced into endothelial cells (iECs) and cardiomyocytes (iCMs) with enhanced function on SpGel. The cytoprotective effect of SpGel on iECs/iCMs against oxidative stress damage was also proven. Furthermore, in vivo studies revealed that iEC/iCM-laden SpGel improved cardiac function and inhibited cardiac fibrosis of infarcted hearts by improving cell survival, revascularization and remuscularization. In conclusion, we successfully established a novel platform for the efficient generation and delivery of autologous cell grafts, which could be a promising clinical therapeutic strategy for cardiac repair and regeneration after MI.
Collapse
Affiliation(s)
- Ge Guan
- Department of Anatomy, State Key Laboratory of Trauma, Burn and Combined Injury, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Da Huo
- Department of Anatomy, State Key Laboratory of Trauma, Burn and Combined Injury, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yanzhao Li
- Department of Anatomy, State Key Laboratory of Trauma, Burn and Combined Injury, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xiaolin Zhao
- Department of Anatomy, State Key Laboratory of Trauma, Burn and Combined Injury, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yinghao Li
- Department of Anatomy, State Key Laboratory of Trauma, Burn and Combined Injury, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Zhongliang Qin
- Department of Anatomy, State Key Laboratory of Trauma, Burn and Combined Injury, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Army Medical University (Third Military Medical University), Chongqing, 400038, China.,Chongqing Institute of Zhong Zhi Yi Gu, Shapingba District, Chongqing, 400030, China
| | - Dayu Sun
- Department of Anatomy, State Key Laboratory of Trauma, Burn and Combined Injury, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Guanyuan Yang
- Department of Anatomy, State Key Laboratory of Trauma, Burn and Combined Injury, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Mingcan Yang
- Department of Anatomy, State Key Laboratory of Trauma, Burn and Combined Injury, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Ju Tan
- Department of Anatomy, State Key Laboratory of Trauma, Burn and Combined Injury, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Wen Zeng
- Department of Cell Biology, Third Military Army Medical University, Chongqing, 400038, China
| | - Chuhong Zhu
- Department of Anatomy, State Key Laboratory of Trauma, Burn and Combined Injury, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| |
Collapse
|
5
|
Tao M, Ao T, Mao X, Yan X, Javed R, Hou W, Wang Y, Sun C, Lin S, Yu T, Ao Q. Sterilization and disinfection methods for decellularized matrix materials: Review, consideration and proposal. Bioact Mater 2021; 6:2927-2945. [PMID: 33732964 PMCID: PMC7930362 DOI: 10.1016/j.bioactmat.2021.02.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 02/08/2023] Open
Abstract
Sterilization is the process of killing all microorganisms, while disinfection is the process of killing or removing all kinds of pathogenic microorganisms except bacterial spores. Biomaterials involved in cell experiments, animal experiments, and clinical applications need to be in the aseptic state, but their physical and chemical properties as well as biological activities can be affected by sterilization or disinfection. Decellularized matrix (dECM) is the low immunogenicity material obtained by removing cells from tissues, which retains many inherent components in tissues such as proteins and proteoglycans. But there are few studies concerning the effects of sterilization or disinfection on dECM, and the systematic introduction of sterilization or disinfection for dECM is even less. Therefore, this review systematically introduces and analyzes the mechanism, advantages, disadvantages, and applications of various sterilization and disinfection methods, discusses the factors influencing the selection of sterilization and disinfection methods, summarizes the sterilization and disinfection methods for various common dECM, and finally proposes a graphical route for selecting an appropriate sterilization or disinfection method for dECM and a technical route for validating the selected method, so as to provide the reference and basis for choosing more appropriate sterilization or disinfection methods of various dECM. Asepsis is the prerequisite for the experiment and application of biomaterials. Sterilization or disinfection affects physic-chemical properties of biomaterials. Mechanism, advantages and disadvantages of sterilization or disinfection methods. Factors influencing the selection of sterilization or disinfection methods. Selection of sterilization or disinfection methods for decellularized matrix.
Collapse
Affiliation(s)
- Meihan Tao
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Tianrang Ao
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaoyan Mao
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Xinzhu Yan
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Rabia Javed
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Weijian Hou
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Yang Wang
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Cong Sun
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Shuang Lin
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Tianhao Yu
- The VIP Department, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Qiang Ao
- Department of Tissue Engineering, China Medical University, Shenyang, China.,Department of Developmental Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China.,Institute of Regulatory Science for Medical Device, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Zanardo TÉC, Amorim FG, Taufner GH, Pereira RHA, Baiense IM, Destefani AC, Iwai LK, Maranhão RC, Nogueira BV. Decellularized Splenic Matrix as a Scaffold for Spleen Bioengineering. Front Bioeng Biotechnol 2020; 8:573461. [PMID: 33123515 PMCID: PMC7567156 DOI: 10.3389/fbioe.2020.573461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/08/2020] [Indexed: 01/15/2023] Open
Abstract
The spleen is considered a non-essential organ. However, its importance is increasingly clear, given the serious disorders caused by its absence or dysfunction, e.g., greater susceptibility to infections, thromboembolism and cancer. Surgical techniques to preserve the spleen and maintain splenic function have become increasingly common. However, the morbidity and mortality associated with its absence and dysfunction are still high. We used the decellularization technique to obtain a viable splenic scaffold for recellularization in vitro and propose the idea of bioengineered spleen transplantation to the host. We observed the maintenance of important structural components such as white pulp, marginal zone and red pulp, in addition to the network of vascular ducts. The decellularized scaffold presents minimal residual DNA and SDS, which are essential to prevent immunogenic responses and transplantation failure. Also, the main components of the splenic matrix were preserved after decellularization, with retention of approximately 72% in the matrisomal protein content. The scaffold we developed was partially recellularized with stromal cells from the spleen of neonatal rats, demonstrating adhesion, proliferation and viability of cells. Therefore, the splenic scaffold is very promising for use in studies on spleen reconstruction and transplantation, with the aim of complete recovery of splenic function.
Collapse
Affiliation(s)
- Tadeu Ériton Caliman Zanardo
- Biotechnology Graduate Program, Rede Nordeste de Biotecnologia (RENORBIO), Vitória, Brazil.,Tissue Engineering Core, Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil
| | - Fernanda Gobbi Amorim
- Biotechnology Graduate Program, Rede Nordeste de Biotecnologia (RENORBIO), Vitória, Brazil.,Pharmaceutical Sciences Graduate Program, University of Vila Velha, Vila Velha, Brazil
| | - Gabriel Henrique Taufner
- Biotechnology Graduate Program, Rede Nordeste de Biotecnologia (RENORBIO), Vitória, Brazil.,Tissue Engineering Core, Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil
| | - Rayssa Helena Arruda Pereira
- Biotechnology Graduate Program, Rede Nordeste de Biotecnologia (RENORBIO), Vitória, Brazil.,Tissue Engineering Core, Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil
| | - Ian Manhoni Baiense
- Tissue Engineering Core, Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil
| | - Afrânio Côgo Destefani
- Biotechnology Graduate Program, Rede Nordeste de Biotecnologia (RENORBIO), Vitória, Brazil.,Tissue Engineering Core, Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil
| | - Leo Kei Iwai
- Laboratory of Proteomics and Mass Spectrometry-Special Laboratory of Applied Toxinology LETA/CETICS, Instituto Butantan, São Paulo, Brazil
| | | | - Breno Valentim Nogueira
- Biotechnology Graduate Program, Rede Nordeste de Biotecnologia (RENORBIO), Vitória, Brazil.,Tissue Engineering Core, Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil
| |
Collapse
|
7
|
Debnath T, Mallarpu CS, Chelluri LK. Development of Bioengineered Organ Using Biological Acellular Rat Liver Scaffold and Hepatocytes. Organogenesis 2020; 16:61-72. [PMID: 32362216 DOI: 10.1080/15476278.2020.1742534] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The increasing demand for organs for transplantation necessitates the development of substitutes to meet the structural and physiological functions. Tissue decellularization and recellularization aids in retaining the three-dimensional integrity, biochemical composition, tissue ultra-structure, and mechanical behavior, which makes them functionally suitable for organ transplantation. Herein, we attempted to rebuild functional liver grafts in small animal model (Wistar rat) with a potential of translation. A soft approach was adopted using 0.1% SDS (Sodium Dodecyl Sulfate) for decellularization and primary hepatocytes were used as a potential cell source for recellularization. The decellularization process was evaluated and confirmed using histology, DNA content, ultra-structure analysis. The resultant scaffold was re-seeded with the rat hepatocytes and their biocompatibility was assessed by its metabolic functions and gene expression. The structural components of the Extracellular matrix (ECM) (Laminins, Collagen type I, Reticulins) were conserved and the liver cell-specific proteins like CK-18, alpha-fetoprotein, albumin were expressed in the recellularized scaffold. The functionality and metabolic activity of the repopulated scaffold were evident from the albumin and urea production. Expression of Cytokeratin-19 (CK-19), Glucose 6-Phosphatase (G6P), Albumin, Gamma Glutamyl Transferase (GGT) genes has distinctly confirmed the translational signals after the repopulation process. Our study clearly elucidates that the native extracellular matrix of rat liver can be utilized as a scaffold for effective recellularization for whole organ regeneration.
Collapse
Affiliation(s)
- Tanya Debnath
- Stem Cell Unit, Global Medical Education & Research Foundation , Hyderabad, India
| | | | | |
Collapse
|
8
|
Gillespie JW, Yang L, De Plano LM, Stackhouse MA, Petrenko VA. Evolution of a Landscape Phage Library in a Mouse Xenograft Model of Human Breast Cancer. Viruses 2019; 11:E988. [PMID: 31717800 PMCID: PMC6893515 DOI: 10.3390/v11110988] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 10/24/2019] [Accepted: 10/24/2019] [Indexed: 12/11/2022] Open
Abstract
Peptide-displayed phage libraries are billion-clone collections of diverse chimeric bacteriophage particles, decorated by genetically fused peptides built from a random combination of natural amino acids. Studying the molecular evolution of peptide-displayed libraries in mammalian model systems, using in vivo phage display techniques, can provide invaluable knowledge about the underlying physiology of the vasculature system, allow recognition of organ- and tissue-specific networks of protein-protein interactions, and provide ligands for targeted diagnostics and therapeutics. Recently, we discovered that landscape phage libraries, a specific type of multivalent peptide phage display library, expose on their surface comprehensive collections of elementary binding units (EBUs), which can form short linear motifs (SLiMs) that interact with functional domains of physiologically relevant proteins. Because of their unique structural and functional features, landscape phages can use an alternative mechanism of directed molecular evolution, i.e., combinatorial avidity selection. These discoveries fueled our interest in revisiting the in vivo evolution of phage displayed libraries using another format of display, i.e., landscape phages. In this study, we monitored the evolution of a landscape phage library in a mouse model with and without an implanted human breast cancer tumor xenograft. As expected, the multivalent architecture of landscape phage displayed proteins provided strong tissue selectivity and resulted in a huge diversity of tissue penetrating, chimeric phage particles. We identified several types of EBU interactions that evolved during the course of tissue distribution, which included interactions of EBUs with all tissue types, those EBUs that interacted selectively with specific organs or tissues with shared gene expression profiles or functionalities, and other EBUs that interacted in a tissue-selective manner. We demonstrated that landscape phage libraries are a rich collection of unique nanobioparticles that can be used to identify functional organ and tissue-binding elements after the evolution of a phage display library in vivo.
Collapse
Affiliation(s)
- James W. Gillespie
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (J.W.G.); (L.M.D.P.)
| | - Liping Yang
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (J.W.G.); (L.M.D.P.)
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Laura Maria De Plano
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (J.W.G.); (L.M.D.P.)
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98122 Messina, Italy
| | | | - Valery A. Petrenko
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (J.W.G.); (L.M.D.P.)
| |
Collapse
|
9
|
Abazari MF, Soleimanifar F, Enderami SE, Nasiri N, Nejati F, Mousavi SA, Soleimani M, Kiani J, Ghoraeian P, Kehtari M. Decellularized amniotic membrane Scaffolds improve differentiation of iPSCs to functional hepatocyte‐like cells. J Cell Biochem 2019; 121:1169-1181. [DOI: 10.1002/jcb.29351] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 07/24/2019] [Accepted: 08/13/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Mohammad Foad Abazari
- Department of Genetics, Tehran Medical Sciences Branch Islamic Azad University Tehran Iran
| | - Fatemeh Soleimanifar
- Department of Medical Biotechnology, Dietary Supplements and Probiotic Research Center Alborz University of Medical Sciences Karaj Iran
| | - Seyed Ehsan Enderami
- Immunogenetics Research Center, Department of Medical Biotechnolmicroogy, Faculty of Medicine Mazandaran University of Medical Sciences Sari Iran
- Department of Stem Cell Biology Stem Cell Technology Research Center Tehran Iran
| | - Navid Nasiri
- Department of Biology, Central Tehran Branch Islamic Azad University Tehran Iran
| | - Fatemeh Nejati
- Department of Biology, Central Tehran Branch Islamic Azad University Tehran Iran
| | - Seyed Ahmad Mousavi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center Royan Institute for Stem Cell Biology and Technology, ACECR Tehran Iran
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Sciences Tarbiat Modares University Tehran Iran
| | - Jafar Kiani
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine Iran University of Medical Sciences Tehran Iran
| | - Pegah Ghoraeian
- Department of Genetics, Tehran Medical Sciences Branch Islamic Azad University Tehran Iran
| | - Mousa Kehtari
- Department of Stem Cell Biology Stem Cell Technology Research Center Tehran Iran
- Department of Developmental Biology, School of Biology, College of Science University of Tehran Tehran Iran
| |
Collapse
|
10
|
Vishwakarma SK, Lakkireddy C, Bardia A, Nagarapu R, Paspala SAB, Habeeb MA, Khan AA. Biofabricated Humanized Insulin Producing Neo-Organs Generates Secondary Neo-Organoids Through Ectopic Transplantation. Cell Mol Bioeng 2019. [DOI: 10.1007/s12195-019-00586-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
11
|
Kehtari M, Beiki B, Zeynali B, Hosseini FS, Soleimanifar F, Kaabi M, Soleimani M, Enderami SE, Kabiri M, Mahboudi H. Decellularized Wharton's jelly extracellular matrix as a promising scaffold for promoting hepatic differentiation of human induced pluripotent stem cells. J Cell Biochem 2019; 120:6683-6697. [DOI: 10.1002/jcb.27965] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 10/02/2018] [Indexed: 08/30/2023]
Abstract
AbstractLiver tissue engineering as a therapeutic option for restoring of damaged liver function has a special focus on using native decellularized liver matrix, but there are limitations such as the shortage of liver donor. Therefore, an appropriate alternative scaffold is needed to circumvent the donor shortage. This study was designed to evaluate hepatic differentiation of human induced pluripotent stem cells (hiPSCs) in decellularized Wharton's jelly (WJ) matrix as an alternative for native liver matrix. WJ matrices were treated with a series of detergents for decellularization. Then hiPSCs were seeded into decellularized WJ scaffold (DWJS) for hepatic differentiation by a defined induction protocol. The DNA quantitative assay and histological evaluation showed that cellular and nuclear materials were efficiently removed and the composition of extracellular matrix was maintained. In DWJS, hiPSCs‐derived hepatocyte‐like cells (hiPSCs‐Heps) efficiently entered into the differentiation phase (G1) and gradually took a polygonal shape, a typical shape of hepatocytes. The expression of hepatic‐associated genes (albumin, TAT, Cytokeratin19, and Cyp7A1), albumin and urea secretion in hiPSCs‐Heps cultured into DWJS was significantly higher than those cultured in the culture plates (2D). Altogether, our results suggest that DWJS could provide a proper microenvironment that efficiently promotes hepatic differentiation of hiPSCs.
Collapse
Affiliation(s)
- Mousa Kehtari
- Department of Developmental Biology, School of Biology, College of Science, University of Tehran Tehran Iran
- Department of Stem Cell Biology Stem Cell Technology Research Center Tehran Iran
| | - Bahareh Beiki
- Department of Developmental Biology, School of Biology, College of Science, University of Tehran Tehran Iran
| | - Bahman Zeynali
- Department of Developmental Biology, School of Biology, College of Science, University of Tehran Tehran Iran
| | | | - Fatemeh Soleimanifar
- Department of Medical Biotechnology, Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences Karaj Iran
| | - Mohammad Kaabi
- Department of Stem Cell Biology Stem Cell Technology Research Center Tehran Iran
| | - Masoud Soleimani
- Department of Hematology Faculty of Medical Sciences, Tarbiat Modares University Tehran Iran
| | - Seyed Ehsan Enderami
- Department of Stem Cell Biology Stem Cell Technology Research Center Tehran Iran
| | - Mahboubeh Kabiri
- Department of Biotechnology College of Science, University of Tehran Tehran Iran
| | - Hossein Mahboudi
- Department of Biotechnology School of Pharmacy, Alborz University of Medical Sciences Karaj Iran
- Dietary Supplements and Probiotic Center Alborz University of Medical Sciences Karaj Iran
| |
Collapse
|
12
|
Liu P, Tian B, Yang L, Zheng X, Zhang X, Li J, Liu X, Lv Y, Xiang J. Hemocompatibility improvement of decellularized spleen matrix for constructing transplantable bioartificial liver. ACTA ACUST UNITED AC 2019; 14:025003. [PMID: 30523825 DOI: 10.1088/1748-605x/aaf375] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Thrombogenicity is the predominant obstacle to successful implantation of decellularized spleen matrix (DSM). The aim of this study was to construct a transplantable functional bioartificial liver (BAL) with the use of DSM. This was achieved by layer-by-layer electrostatic immobilization technique by using poly dimethyl diallyl ammonium chloride and heparin. After heparin immobilization, DSM gradually turned from translucent into completely opaque milky white. Toluidine blue staining showed strong positive staining of the entire coated DSM. In vitro diluted blood perfusion test showed that the splenic arterial pressure of the heparin-coated DSM was much lower than that of the non-coated DSM (p < 0.01). Then, we heterotopically transplanted the modified DSM into rat hepatic injury model for 6 h to evaluate the hemocompatibility in vivo. Overall, HE staining and vWF immunohistochemistry all confirmed that heparin-coated DSM has a satisfactory anticoagulant effect. Based on the heparin-coated DSM, BALs were built with the use of rat primary hepatocytes. Our results demonstrate that these heparin-coated BALs satisfied anticoagulant effects even after 6 h. Immunofluorescence of ALB and G6PC also showed that hepatocytes in heparin-coated BAL have significantly higher cell viability and function than the non-coated group. However, serum analysis did not indicate a significant difference between the two groups but a slight trend of improvement with respect to serum albumin (p = 0.156) and aspartate transaminase (p = 0.140). In conclusion, we demonstrated that the BAL constructed by heparin-coated DSM can exert satisfactory short-term anticoagulant effects and can compensate for a certain degree of liver function.
Collapse
Affiliation(s)
- Peng Liu
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, People's Republic of China. Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Grant R, Hay D, Callanan A. From scaffold to structure: the synthetic production of cell derived extracellular matrix for liver tissue engineering. Biomed Phys Eng Express 2018. [DOI: 10.1088/2057-1976/aacbe1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
Guruswamy Damodaran R, Vermette P. Tissue and organ decellularization in regenerative medicine. Biotechnol Prog 2018; 34:1494-1505. [PMID: 30294883 DOI: 10.1002/btpr.2699] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 04/30/2018] [Indexed: 12/22/2022]
Abstract
The advancement and improvement in decellularization methods can be attributed to the increasing demand for tissues and organs for transplantation. Decellularized tissues and organs, which are free of cells and genetic materials while retaining the complex ultrastructure of the extracellular matrix (ECM), can serve as scaffolds to subsequently embed cells for transplantation. They have the potential to mimic the native physiology of the targeted anatomic site. ECM from different tissues and organs harvested from various sources have been applied. Many techniques are currently involved in the decellularization process, which come along with their own advantages and disadvantages. This review focuses on recent developments in decellularization methods, the importance and nature of detergents used for decellularization, as well as on the role of the ECM either as merely a physical support or as a scaffold in retaining and providing cues for cell survival, differentiation and homeostasis. In addition, application, status, and perspectives on commercialization of bioproducts derived from decellularized tissues and organs are addressed. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:1494-1505, 2018.
Collapse
Affiliation(s)
- Rajesh Guruswamy Damodaran
- Laboratoire de bio-ingénierie et de biophysique de l'Université de Sherbrooke, Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, 2500 Boul. de l'Université, Sherbrooke, QC, J1K 2R1, Canada.,Pharmacology Institute of Sherbrooke, Faculté de médecine et des sciences de la santé, 3001 12ième Avenue Nord, Sherbrooke, Québec, J1H 5N4, Canada.,Research Centre on Aging, Institut universitaire de gériatrie de Sherbrooke, 1036 rue Belvédère Sud, Sherbrooke, Québec, J1H 4C4, Canada
| | - Patrick Vermette
- Laboratoire de bio-ingénierie et de biophysique de l'Université de Sherbrooke, Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, 2500 Boul. de l'Université, Sherbrooke, QC, J1K 2R1, Canada.,Pharmacology Institute of Sherbrooke, Faculté de médecine et des sciences de la santé, 3001 12ième Avenue Nord, Sherbrooke, Québec, J1H 5N4, Canada.,Research Centre on Aging, Institut universitaire de gériatrie de Sherbrooke, 1036 rue Belvédère Sud, Sherbrooke, Québec, J1H 4C4, Canada
| |
Collapse
|
15
|
[Implantation strategy of tissue-engineered liver based on decellularized spleen matrix in rats]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38. [PMID: 29997092 PMCID: PMC6765707 DOI: 10.3969/j.issn.1673-4254.2018.06.09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
OBJECTIVE To explore the optimal implantation strategy of tissue-engineered liver (TEL) constructed based on decellularized spleen matrix (DSM) in rats. METHODS DSM was prepared by freeze-thawing and perfusion with sodium dodecyl sulfate (SDS) of the spleen of healthy SD rats. Primary rat hepatocytes isolated using modified Seglen 2-step perfusion method were implanted into the DSM to construct the TEL. The advantages and disadvantages were evaluated of 4 transplant strategies of the TEL, namely ectopic vascular anastomosis, liver cross-section suture transplantation, intrahepatic insertion and mesenteric transplantation. RESULTS The planting rate of hepatocytes in the DSM was (74.5∓7.7)%. HE staining and scanning electron microscopy showed satisfactory cell status, and immunofluorescence staining confirmed the normal expression of ALB and G6Pc in the cells. For TEL implantation, ectopic vascular anastomosis was difficult and resulted in a mortality rate of 33.3% perioperatively and massive thrombus formation in the matrix within 6 h. Hepatic cross-section suture failed to rapidly establish sufficient blood supply, and no viable graft was observed 3 days after the operation. With intrahepatic insertion method, the hepatocytes in the DSM could survive as long as 14 days. Mesenteric transplantation resulted in a hepatocyte survival rate of (38.3+7.1)% at 14 days after implantation. CONCLUSION TEL constructed based on DSM can perform liver-specific functions with a good cytological bioactivity. Mesenteric transplantation of the TEL, which is simple, safe and effective, is currently the optimal transplantation strategy.
Collapse
|
16
|
Hussey GS, Cramer MC, Badylak SF. Extracellular Matrix Bioscaffolds for Building Gastrointestinal Tissue. Cell Mol Gastroenterol Hepatol 2017; 5:1-13. [PMID: 29276748 PMCID: PMC5736871 DOI: 10.1016/j.jcmgh.2017.09.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 09/08/2017] [Indexed: 12/14/2022]
Abstract
Regenerative medicine is a rapidly advancing field that uses principles of tissue engineering, developmental biology, stem cell biology, immunology, and bioengineering to reconstruct diseased or damaged tissues. Biologic scaffolds composed of extracellular matrix have shown great promise as an inductive substrate to facilitate the constructive remodeling of gastrointestinal (GI) tissue damaged by neoplasia, inflammatory bowel disease, and congenital or acquired defects. The present review summarizes the preparation and use of extracellular matrix scaffolds for bioengineering of the GI tract, identifies significant advances made in regenerative medicine for the reconstruction of functional GI tissue, and describes an emerging therapeutic approach.
Collapse
Affiliation(s)
- George S. Hussey
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Surgery, School of Medicine, University of Pittsburgh Medical Center Presbyterian Hospital, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Madeline C. Cramer
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Stephen F. Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Surgery, School of Medicine, University of Pittsburgh Medical Center Presbyterian Hospital, University of Pittsburgh, Pittsburgh, Pennsylvania
- Correspondence Address correspondence to: Stephen F. Badylak, DVM, PhD, MD, McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Suite 300, Pittsburgh, Pennsylvania 15219-3110. fax: (412) 624-5256.McGowan Institute for Regenerative MedicineUniversity of Pittsburgh450 Technology Drive, Suite 300PittsburghPennsylvania15219-3110
| |
Collapse
|
17
|
Grant R, Hay DC, Callanan A. A Drug-Induced Hybrid Electrospun Poly-Capro-Lactone: Cell-Derived Extracellular Matrix Scaffold for Liver Tissue Engineering. Tissue Eng Part A 2017; 23:650-662. [PMID: 28437180 DOI: 10.1089/ten.tea.2016.0419] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Liver transplant is the only treatment option for patients with end-stage liver failure, however, there are too few donor livers available for transplant. Whole organ tissue engineering presents a potential solution to the problem of rapidly escalating donor liver shortages worldwide. A major challenge for liver tissue engineers is the creation of a hepatocyte microenvironment; a niche in which liver cells can survive and function optimally. While polymers and decellularized tissues pose an attractive option for scaffold manufacturing, neither alone has thus far proved sufficient. This study exploited cell's native extracellular matrix (ECM) producing capabilities using two different histone deacetylase inhibitors, and combined these with the customizability and reproducibility of electrospun polymer scaffolds to produce a "best of both worlds" niche microenvironment for hepatocytes. The resulting hybrid poly-capro-lactone (PCL)-ECM scaffolds were validated using HepG2 hepatocytes. The hybrid PCL-ECM scaffolds maintained hepatocyte growth and function, as evidenced by metabolic activity and DNA quantitation. Mechanical testing revealed little significant difference between scaffolds, indicating that cells were responding to a biochemical and topographical profile rather than mechanical changes. Immunohistochemistry showed that the biochemical profile of the drug-derived and nondrug-derived ECMs differed in ratio of Collagen I, Laminin, and Fibronectin. Furthermore, the hybrid PCL-ECM scaffolds influence the gene expression profile of the HepG2s drastically; with expression of Albumin, Cytochrome P450 Family 1 Subfamily A Polypeptide 1, Cytochrome P450 Family 1 Subfamily A Polypeptide 2, Cytochrome P450 Family 3 Subfamily A Polypeptide 4, Fibronectin, Collagen I, and Collagen IV undergoing significant changes. Our results demonstrate that drug-induced hybrid PCL-ECM scaffolds provide a viable, translatable platform for creating a niche microenvironment for hepatocytes, supporting in vivo phenotype and function. These scaffolds offer great potential for tissue engineering and regenerative medicine strategies for whole organ tissue engineering.
Collapse
Affiliation(s)
- Rhiannon Grant
- 1 Institute for Bioengineering, School of Engineering, University of Edinburgh , Edinburgh, United Kingdom
| | - David C Hay
- 2 MRC Scottish Centre for Regenerative Medicine, University of Edinburgh , Edinburgh, United Kingdom
| | - Anthony Callanan
- 1 Institute for Bioengineering, School of Engineering, University of Edinburgh , Edinburgh, United Kingdom
| |
Collapse
|
18
|
Destefani AC, Sirtoli GM, Nogueira BV. Advances in the Knowledge about Kidney Decellularization and Repopulation. Front Bioeng Biotechnol 2017; 5:34. [PMID: 28620603 PMCID: PMC5451511 DOI: 10.3389/fbioe.2017.00034] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 05/03/2017] [Indexed: 12/15/2022] Open
Abstract
End-stage renal disease (ESRD) is characterized by the progressive deterioration of renal function that may compromise different tissues and organs. The major treatment indicated for patients with ESRD is kidney transplantation. However, the shortage of available organs, as well as the high rate of organ rejection, supports the need for new therapies. Thus, the implementation of tissue bioengineering to organ regeneration has emerged as an alternative to traditional organ transplantation. Decellularization of organs with chemical, physical, and/or biological agents generates natural scaffolds, which can serve as basis for tissue reconstruction. The recellularization of these scaffolds with different cell sources, such as stem cells or adult differentiated cells, can provide an organ with functionality and no immune response after in vivo transplantation on the host. Several studies have focused on improving these techniques, but until now, there is no optimal decellularization method for the kidney available yet. Herein, an overview of the current literature for kidney decellularization and whole-organ recellularization is presented, addressing the pros and cons of the actual techniques already developed, the methods adopted to evaluate the efficacy of the procedures, and the challenges to be overcome in order to achieve an optimal protocol.
Collapse
Affiliation(s)
- Afrânio Côgo Destefani
- Tissue Engineering Core—LUCCAR, Morphology, Federal University of Espírito Santo (UFES), Vitória, Brazil
- Health Sciences Center, Federal University of Espírito Santo (UFES), Vitória, Brazil
- Health Sciences Center, Postgraduate Program in Biotechnology/RENORBIO, Vitória, Brazil
| | - Gabriela Modenesi Sirtoli
- Tissue Engineering Core—LUCCAR, Morphology, Federal University of Espírito Santo (UFES), Vitória, Brazil
- Health Sciences Center, Federal University of Espírito Santo (UFES), Vitória, Brazil
| | - Breno Valentim Nogueira
- Tissue Engineering Core—LUCCAR, Morphology, Federal University of Espírito Santo (UFES), Vitória, Brazil
- Health Sciences Center, Federal University of Espírito Santo (UFES), Vitória, Brazil
- Health Sciences Center, Postgraduate Program in Biotechnology/RENORBIO, Vitória, Brazil
| |
Collapse
|
19
|
Zeilinger K, Freyer N, Damm G, Seehofer D, Knöspel F. Cell sources for in vitro human liver cell culture models. Exp Biol Med (Maywood) 2016; 241:1684-98. [PMID: 27385595 PMCID: PMC4999620 DOI: 10.1177/1535370216657448] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In vitro liver cell culture models are gaining increasing importance in pharmacological and toxicological research. The source of cells used is critical for the relevance and the predictive value of such models. Primary human hepatocytes (PHH) are currently considered to be the gold standard for hepatic in vitro culture models, since they directly reflect the specific metabolism and functionality of the human liver; however, the scarcity and difficult logistics of PHH have driven researchers to explore alternative cell sources, including liver cell lines and pluripotent stem cells. Liver cell lines generated from hepatomas or by genetic manipulation are widely used due to their good availability, but they are generally altered in certain metabolic functions. For the past few years, adult and pluripotent stem cells have been attracting increasing attention, due their ability to proliferate and to differentiate into hepatocyte-like cells in vitro However, controlling the differentiation of these cells is still a challenge. This review gives an overview of the major human cell sources under investigation for in vitro liver cell culture models, including primary human liver cells, liver cell lines, and stem cells. The promises and challenges of different cell types are discussed with a focus on the complex 2D and 3D culture approaches under investigation for improving liver cell functionality in vitro Finally, the specific application options of individual cell sources in pharmacological research or disease modeling are described.
Collapse
Affiliation(s)
- Katrin Zeilinger
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Nora Freyer
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Georg Damm
- Department of General-, Visceral- and Transplantation Surgery, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Daniel Seehofer
- Department of General-, Visceral- and Transplantation Surgery, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Fanny Knöspel
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| |
Collapse
|
20
|
Xiang J, Zheng X, Liu P, Yang L, Dong D, Wu W, Liu X, Li J, Lv Y. Decellularized spleen matrix for reengineering functional hepatic-like tissue based on bone marrow mesenchymal stem cells. Organogenesis 2016; 12:128-142. [PMID: 27158925 DOI: 10.1080/15476278.2016.1185584] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND AND AIMS Decellularized liver matrix (DLM) hold great potential for reconstructing functional hepatic-like tissue (HLT) based on reseeding of hepatocytes or stem cells, but the shortage of liver donors is still an obstacle for potential application. Therefore, an appropriate alternative scaffold is needed to expand the donor pool. In this study, we explored the effectiveness of decellularized spleen matrix (DSM) for culturing of bone marrow mesenchymal stem cells (BMSCs), and promoting differentiation into hepatic-like cells. METHODS Rats' spleen were harvested for DSM preparation by freezing/thawing and perfusion procedure. Then the mesenchymal stem cells derived from rat bone marrow were reseeded into DSM for dynamic culture and hepatic differentiation by a defined induction protocol. RESULTS The research found that DSM preserved a 3-dimensional porous architecture, with native extracellular matrix and vascular network which was similar to DLM. The reseeded BMSCs in DSM differentiated into functional hepatocyte-like cells, evidenced by cytomorphology change, expression of hepatic-associated genes and protein markers, glycogen storage, and indocyanine green uptake. The albumin production (2.74±0.42 vs. 2.07±0.28 pg/cell/day) and urea concentration (75.92±15.64 vs. 52.07±11.46 pg/cell/day) in DSM group were remarkably higher than tissue culture flasks (TCF) group over the same differentiation period, P< 0.05. CONCLUSION This present study demonstrated that DSM might have considerable potential in fabricating hepatic-like tissue, particularly because it can facilitate hepatic differentiation of BMSCs which exhibited higher level and more stable functions.
Collapse
Affiliation(s)
- Junxi Xiang
- a Department of Hepatobiliary Surgery , First Affiliated Hospital of Xi'an Jiaotong University , Xi'an , China.,b Regenerative Medicine and Surgery Engineering Research Center of Shaanxi Province , Xi'an , China
| | - Xinglong Zheng
- a Department of Hepatobiliary Surgery , First Affiliated Hospital of Xi'an Jiaotong University , Xi'an , China.,b Regenerative Medicine and Surgery Engineering Research Center of Shaanxi Province , Xi'an , China
| | - Peng Liu
- a Department of Hepatobiliary Surgery , First Affiliated Hospital of Xi'an Jiaotong University , Xi'an , China.,b Regenerative Medicine and Surgery Engineering Research Center of Shaanxi Province , Xi'an , China
| | - Lifei Yang
- b Regenerative Medicine and Surgery Engineering Research Center of Shaanxi Province , Xi'an , China
| | - Dinghui Dong
- a Department of Hepatobiliary Surgery , First Affiliated Hospital of Xi'an Jiaotong University , Xi'an , China.,b Regenerative Medicine and Surgery Engineering Research Center of Shaanxi Province , Xi'an , China
| | - Wanquan Wu
- a Department of Hepatobiliary Surgery , First Affiliated Hospital of Xi'an Jiaotong University , Xi'an , China.,b Regenerative Medicine and Surgery Engineering Research Center of Shaanxi Province , Xi'an , China
| | - Xuemin Liu
- a Department of Hepatobiliary Surgery , First Affiliated Hospital of Xi'an Jiaotong University , Xi'an , China.,b Regenerative Medicine and Surgery Engineering Research Center of Shaanxi Province , Xi'an , China
| | - Jianhui Li
- b Regenerative Medicine and Surgery Engineering Research Center of Shaanxi Province , Xi'an , China.,c Department of Surgical Oncology , Shaanxi Provincial People's Hospital , Xi'an , China
| | - Yi Lv
- a Department of Hepatobiliary Surgery , First Affiliated Hospital of Xi'an Jiaotong University , Xi'an , China.,b Regenerative Medicine and Surgery Engineering Research Center of Shaanxi Province , Xi'an , China
| |
Collapse
|
21
|
Poornejad N, Momtahan N, Salehi ASM, Scott DR, Fronk CA, Roeder BL, Reynolds PR, Bundy BC, Cook AD. Efficient decellularization of whole porcine kidneys improves reseeded cell behavior. Biomed Mater 2016; 11:025003. [DOI: 10.1088/1748-6041/11/2/025003] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|