1
|
Hashemabadi M, Sasan HA, Hosseinkhani S, Amandadi M, Samareh Gholami A, Sadeghizadeh M. Intelligent guide RNA: dual toehold switches for modulating luciferase in the presence of trigger RNA. Commun Biol 2024; 7:1344. [PMID: 39420075 PMCID: PMC11487279 DOI: 10.1038/s42003-024-06988-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 09/29/2024] [Indexed: 10/19/2024] Open
Abstract
The CRISPR system finds extensive application in molecular biology, but its continuous activity can yield adverse effects. Leveraging programmable CRISPR/Cas9 function via nano-device mediation effectively mitigates these drawbacks. The integration of RNA-sensing platforms into CRISPR thus empowers it as a potent tool for processing internal cell data and modulating gene activity. Here, an intelligent guide RNA-a cis-repressed gRNA synthetic circuit enabling efficient recognition of specific trigger RNAs-is developed. This platform carries two toehold switches and includes an inhibited CrRNA sequence. In this system, the presence of cognate trigger RNA promotes precise binding to the first toehold site, initiating a cascade that releases CrRNA to target a reporter gene (luciferase) in this study. Decoupling the CrRNA segment from the trigger RNA enhances the potential of this genetic logic circuit to respond to specific cellular circumstances, offering promise as a synthetic biology platform.
Collapse
Affiliation(s)
- Mohammad Hashemabadi
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Ali Sasan
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Mojdeh Amandadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Azadeh Samareh Gholami
- Department of Genetics, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Majid Sadeghizadeh
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
2
|
Yao HT, Marchand B, Berkemer SJ, Ponty Y, Will S. Infrared: a declarative tree decomposition-powered framework for bioinformatics. Algorithms Mol Biol 2024; 19:13. [PMID: 38493130 PMCID: PMC10943887 DOI: 10.1186/s13015-024-00258-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/13/2024] [Indexed: 03/18/2024] Open
Abstract
MOTIVATION Many bioinformatics problems can be approached as optimization or controlled sampling tasks, and solved exactly and efficiently using Dynamic Programming (DP). However, such exact methods are typically tailored towards specific settings, complex to develop, and hard to implement and adapt to problem variations. METHODS We introduce the Infrared framework to overcome such hindrances for a large class of problems. Its underlying paradigm is tailored toward problems that can be declaratively formalized as sparse feature networks, a generalization of constraint networks. Classic Boolean constraints specify a search space, consisting of putative solutions whose evaluation is performed through a combination of features. Problems are then solved using generic cluster tree elimination algorithms over a tree decomposition of the feature network. Their overall complexities are linear on the number of variables, and only exponential in the treewidth of the feature network. For sparse feature networks, associated with low to moderate treewidths, these algorithms allow to find optimal solutions, or generate controlled samples, with practical empirical efficiency. RESULTS Implementing these methods, the Infrared software allows Python programmers to rapidly develop exact optimization and sampling applications based on a tree decomposition-based efficient processing. Instead of directly coding specialized algorithms, problems are declaratively modeled as sets of variables over finite domains, whose dependencies are captured by constraints and functions. Such models are then automatically solved by generic DP algorithms. To illustrate the applicability of Infrared in bioinformatics and guide new users, we model and discuss variants of bioinformatics applications. We provide reimplementations and extensions of methods for RNA design, RNA sequence-structure alignment, parsimony-driven inference of ancestral traits in phylogenetic trees/networks, and design of coding sequences. Moreover, we demonstrate multidimensional Boltzmann sampling. These applications of the framework-together with our novel results-underline the practical relevance of Infrared. Remarkably, the achieved complexities are typically equivalent to the ones of specialized algorithms and implementations. AVAILABILITY Infrared is available at https://amibio.gitlabpages.inria.fr/Infrared with extensive documentation, including various usage examples and API reference; it can be installed using Conda or from source.
Collapse
Affiliation(s)
- Hua-Ting Yao
- LIX, CNRS UMR 7161, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France.
- Department of Theoretical Chemistry, University of Vienna, Vienna, Austria.
- School of Computer Science, McGill University, Montreal, Canada.
| | - Bertrand Marchand
- LIX, CNRS UMR 7161, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Sarah J Berkemer
- LIX, CNRS UMR 7161, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
| | - Yann Ponty
- LIX, CNRS UMR 7161, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Sebastian Will
- LIX, CNRS UMR 7161, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France.
| |
Collapse
|
3
|
Kühnl F, Stadler PF, Findeiß S. Assessing the Quality of Cotranscriptional Folding Simulations. Methods Mol Biol 2024; 2726:347-376. [PMID: 38780738 DOI: 10.1007/978-1-0716-3519-3_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Structural changes in RNAs are an important contributor to controlling gene expression not only at the posttranscriptional stage but also during transcription. A subclass of riboswitches and RNA thermometers located in the 5' region of the primary transcript regulates the downstream functional unit - usually an ORF - through premature termination of transcription. Not only such elements occur naturally, but they are also attractive devices in synthetic biology. The possibility to design such riboswitches or RNA thermometers is thus of considerable practical interest. Since these functional RNA elements act already during transcription, it is important to model and understand the dynamics of folding and, in particular, the formation of intermediate structures concurrently with transcription. Cotranscriptional folding simulations are therefore an important step to verify the functionality of design constructs before conducting expensive and labor-intensive wet lab experiments. For RNAs, full-fledged molecular dynamics simulations are far beyond practical reach because of both the size of the molecules and the timescales of interest. Even at the simplified level of secondary structures, further approximations are necessary. The BarMap approach is based on representing the secondary structure landscape for each individual transcription step by a coarse-grained representation that only retains a small set of low-energy local minima and the energy barriers between them. The folding dynamics between two transcriptional elongation steps is modeled as a Markov process on this representation. Maps between pairs of consecutive coarse-grained landscapes make it possible to follow the folding process as it changes in response to transcription elongation. In its original implementation, the BarMap software provides a general framework to investigate RNA folding dynamics on temporally changing landscapes. It is, however, difficult to use in particular for specific scenarios such as cotranscriptional folding. To overcome this limitation, we developed the user-friendly BarMap-QA pipeline described in detail in this contribution. It is illustrated here by an elaborate example that emphasizes the careful monitoring of several quality measures. Using an iterative workflow, a reliable and complete kinetics simulation of a synthetic, transcription-regulating riboswitch is obtained using minimal computational resources. All programs and scripts used in this contribution are free software and available for download as a source distribution for Linux® or as a platform-independent Docker® image including support for Apple macOS® and Microsoft Windows®.
Collapse
Affiliation(s)
- Felix Kühnl
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, Leipzig University, Leipzig, Germany
| | - Peter F Stadler
- Bioinformatics Group, Department of Computer Science, Interdisciplinary Center of Bioinformatics, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Competence Center for Scalable Data Services and Solutions, and Leipzig Research Center for Civilization Diseases, Leipzig University, Leipzig, Germany
- Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany
- Institute for Theoretical Chemistry, University of Vienna, Vienna, Austria
- Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, D.C., Colombia
- Santa Fe Institute, Santa Fe, NM, USA
| | - Sven Findeiß
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, Leipzig University, Leipzig, Germany.
| |
Collapse
|
4
|
Lorenz R. RNA Secondary Structure Thermodynamics. Methods Mol Biol 2024; 2726:45-83. [PMID: 38780727 DOI: 10.1007/978-1-0716-3519-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Several different ways to predict RNA secondary structures have been suggested in the literature. Statistical methods, such as those that utilize stochastic context-free grammars (SCFGs), or approaches based on machine learning aim to predict the best representative structure for the underlying ensemble of possible conformations. Their parameters have therefore been trained on larger subsets of well-curated, known secondary structures. Physics-based methods, on the other hand, usually refrain from using optimized parameters. They model secondary structures from loops as individual building blocks which have been assigned a physical property instead: the free energy of the respective loop. Such free energies are either derived from experiments or from mathematical modeling. This rigorous use of physical properties then allows for the application of statistical mechanics to describe the entire state space of RNA secondary structures in terms of equilibrium probabilities. On that basis, and by using efficient algorithms, many more descriptors of the conformational state space of RNA molecules can be derived to investigate and explain the many functions of RNA molecules. Moreover, compared to other methods, physics-based models allow for a much easier extension with other properties that can be measured experimentally. For instance, small molecules or proteins can bind to an RNA and their binding affinity can be assessed experimentally. Under certain conditions, existing RNA secondary structure prediction tools can be used to model this RNA-ligand binding and to eventually shed light on its impact on structure formation and function.
Collapse
Affiliation(s)
- Ronny Lorenz
- Department of Theoretical Chemistry, University of Vienna, Vienna, Austria.
| |
Collapse
|
5
|
Cui W, Lin Q, Wu Y, Wang X, Zhang Y, Lin X, Zhang L, Liu X, Han L, Zhou Z. Creation of Architecturally Minimal Transcriptionally Activating Riboswitches Responsive to Theophylline Reveals an Unconventional Design Strategy. ACS Synth Biol 2023; 12:3716-3729. [PMID: 38052004 DOI: 10.1021/acssynbio.3c00519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Riboswitches are noncoding RNA switches that are largely utilized in bacteria and play a significant role in synthetic biology. Nonetheless, their natural counterparts possess lengthy sequences and intricate structures, posing challenges for their modular integration into complex gene circuits. Consequently, it is imperative to develop simplified synthetic riboswitches that can be effortlessly incorporated into gene circuits. The conventional approach to generate synthetic riboswitches entails tedious library construction and extensive screening, which frequently yields suboptimal performance. To overcome this obstacle, alternative methods are urgently needed. In this study, we created a novel approach to designing a diverse set of transcription-activating riboswitches that exhibit high performance and broad compatibility. The strategy involved starting with a synthetic theophylline RNA aptamer and designing an expression platform that forms a transcriptional terminator in its inactive state but switches to an antiterminator when it is activated. Several sequences were designed, constructed, and subjected to virtual screening, resulting in the identification of two transcription-activating riboswitches. These riboswitches were then engineered to reduce the basal leakage and increase the activation level through extending the hairpin region using a screened random sequence. These architecturally minimal synthetic riboswitches were highly adapted to different constitutive promoters in a modular manner, generating a differentially responsive output to theophylline. As a proof-of-principle, the synthetic riboswitches were applied to rewire a synthetic quorum-sensing circuit (QSC). The reprogrammed QSC successfully modulated the temporal responsive profile against the activation. This strategy is expected to expand the variety of high-performance riboswitches that are responsive to different ligands, thereby further facilitating the design of complex genetic circuits.
Collapse
Affiliation(s)
- Wenjing Cui
- School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, MOE, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qiao Lin
- School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yi Wu
- School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xinran Wang
- School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yuqing Zhang
- School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xinyu Lin
- School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Linpei Zhang
- School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, MOE, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xu Liu
- School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Laichuang Han
- School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, MOE, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhemin Zhou
- School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, MOE, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
6
|
Xu J, Hou J, Ding M, Wang Z, Chen T. Riboswitches, from cognition to transformation. Synth Syst Biotechnol 2023; 8:357-370. [PMID: 37325181 PMCID: PMC10265488 DOI: 10.1016/j.synbio.2023.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/20/2023] [Accepted: 05/25/2023] [Indexed: 06/17/2023] Open
Abstract
Riboswitches are functional RNA elements that regulate gene expression by directly detecting metabolites. Twenty years have passed since it was first discovered, researches on riboswitches are becoming increasingly standardized and refined, which could significantly promote people's cognition of RNA function as well. Here, we focus on some representative orphan riboswitches, enumerate the structural and functional transformation and artificial design of riboswitches including the coupling with ribozymes, hoping to attain a comprehensive understanding of riboswitch research.
Collapse
Affiliation(s)
- Jingdong Xu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin, 300350, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300350, China
| | - Junyuan Hou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin, 300350, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300350, China
| | - Mengnan Ding
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin, 300350, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300350, China
| | - Zhiwen Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin, 300350, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300350, China
| | - Tao Chen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin, 300350, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300350, China
| |
Collapse
|
7
|
Wu Y, Zhu L, Li S, Chu H, Wang X, Xu W. High content design of riboswitch biosensors: All-around rational module-by-module design. Biosens Bioelectron 2022; 220:114887. [DOI: 10.1016/j.bios.2022.114887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/27/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022]
|
8
|
Ender A, Grafl N, Kolberg T, Findeiß S, Stadler PF, Mörl M. Synthetic riboswitches for the analysis of tRNA processing by eukaryotic RNase P enzymes. RNA (NEW YORK, N.Y.) 2022; 28:551-567. [PMID: 35022261 PMCID: PMC8925977 DOI: 10.1261/rna.078814.121] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Removal of the 5'-leader region is an essential step in the maturation of tRNA molecules in all domains of life. This reaction is catalyzed by various RNase P activities, ranging from ribonucleoproteins with ribozyme activity to protein-only forms. In Escherichia coli, the efficiency of RNase P-mediated cleavage can be controlled by computationally designed riboswitch elements in a ligand-dependent way, where the 5'-leader sequence of a tRNA precursor is either sequestered in a hairpin structure or presented as a single-stranded region accessible for maturation. In the presented work, the regulatory potential of such artificial constructs is tested on different forms of eukaryotic RNase P enzymes-two protein-only RNase P enzymes (PRORP1 and PRORP2) from Arabidopsis thaliana and the ribonucleoprotein of Homo sapiens The PRORP enzymes were analyzed in vitro as well as in vivo in a bacterial RNase P complementation system. We also tested in HEK293T cells whether the riboswitches remain functional with human nuclear RNase P. While the regulatory principle of the synthetic riboswitches applies for all tested RNase P enzymes, the results also show differences in the substrate requirements of the individual enzyme versions. Hence, such designed RNase P riboswitches represent a novel tool to investigate the impact of the structural composition of the 5'-leader on substrate recognition by different types of RNase P enzymes.
Collapse
Affiliation(s)
- Anna Ender
- Institute for Biochemistry, Leipzig University, 04103 Leipzig, Germany
| | - Nadine Grafl
- Institute for Biochemistry, Leipzig University, 04103 Leipzig, Germany
| | - Tim Kolberg
- Institute for Biochemistry, Leipzig University, 04103 Leipzig, Germany
| | - Sven Findeiß
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, Leipzig University, 04107 Leipzig, Germany
| | - Peter F Stadler
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, Leipzig University, 04107 Leipzig, Germany
- Max Planck Institute for Mathematics in the Science, 04103 Leipzig, Germany
- Institute for Theoretical Chemistry, University of Vienna, A-1090 Vienna, Austria
- Santa Fe Institute, Santa Fe, New Mexico 87501, USA
| | - Mario Mörl
- Institute for Biochemistry, Leipzig University, 04103 Leipzig, Germany
| |
Collapse
|
9
|
Tarnowski MJ, Gorochowski TE. Massively parallel characterization of engineered transcript isoforms using direct RNA sequencing. Nat Commun 2022; 13:434. [PMID: 35064117 PMCID: PMC8783025 DOI: 10.1038/s41467-022-28074-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 01/07/2022] [Indexed: 12/23/2022] Open
Abstract
Transcriptional terminators signal where transcribing RNA polymerases (RNAPs) should halt and disassociate from DNA. However, because termination is stochastic, two different forms of transcript could be produced: one ending at the terminator and the other reading through. An ability to control the abundance of these transcript isoforms would offer bioengineers a mechanism to regulate multi-gene constructs at the level of transcription. Here, we explore this possibility by repurposing terminators as 'transcriptional valves' that can tune the proportion of RNAP read-through. Using one-pot combinatorial DNA assembly, we iteratively construct 1780 transcriptional valves for T7 RNAP and show how nanopore-based direct RNA sequencing (dRNA-seq) can be used to characterize entire libraries of valves simultaneously at a nucleotide resolution in vitro and unravel genetic design principles to tune and insulate termination. Finally, we engineer valves for multiplexed regulation of CRISPR guide RNAs. This work provides new avenues for controlling transcription and demonstrates the benefits of long-read sequencing for exploring complex sequence-function landscapes.
Collapse
Affiliation(s)
- Matthew J Tarnowski
- School of Biological Sciences, University of Bristol, Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Thomas E Gorochowski
- School of Biological Sciences, University of Bristol, Tyndall Avenue, Bristol, BS8 1TQ, UK.
- BrisSynBio, University of Bristol, Tyndall Avenue, Bristol, BS8 1TQ, UK.
| |
Collapse
|
10
|
Tabuchi T, Yokobayashi Y. Cell-free riboswitches. RSC Chem Biol 2021; 2:1430-1440. [PMID: 34704047 PMCID: PMC8496063 DOI: 10.1039/d1cb00138h] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/26/2021] [Indexed: 12/16/2022] Open
Abstract
The emerging community of cell-free synthetic biology aspires to build complex biochemical and genetic systems with functions that mimic or even exceed those in living cells. To achieve such functions, cell-free systems must be able to sense and respond to the complex chemical signals within and outside the system. Cell-free riboswitches can detect chemical signals via RNA-ligand interaction and respond by regulating protein synthesis in cell-free protein synthesis systems. In this article, we review synthetic cell-free riboswitches that function in both prokaryotic and eukaryotic cell-free systems reported to date to provide a current perspective on the state of cell-free riboswitch technologies and their limitations.
Collapse
Affiliation(s)
- Takeshi Tabuchi
- Nucleic Acid Chemistry and Engineering Unit, Okinawa Institute of Science and Technology Graduate University Onna Okinawa 904-0495 Japan
| | - Yohei Yokobayashi
- Nucleic Acid Chemistry and Engineering Unit, Okinawa Institute of Science and Technology Graduate University Onna Okinawa 904-0495 Japan
| |
Collapse
|
11
|
Kaiser C, Schneider J, Groher F, Suess B, Wachtveitl J. What defines a synthetic riboswitch? - Conformational dynamics of ciprofloxacin aptamers with similar binding affinities but varying regulatory potentials. Nucleic Acids Res 2021; 49:3661-3671. [PMID: 33772594 PMCID: PMC8053125 DOI: 10.1093/nar/gkab166] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 02/25/2021] [Accepted: 03/23/2021] [Indexed: 11/16/2022] Open
Abstract
Among the many in vitro-selected aptamers derived from SELEX protocols, only a small fraction has the potential to be applied for synthetic riboswitch engineering. Here, we present a comparative study of the binding properties of three different aptamers that bind to ciprofloxacin with similar KD values, yet only two of them can be applied as riboswitches. We used the inherent ligand fluorescence that is quenched upon binding as the reporter signal in fluorescence titration and in time-resolved stopped-flow experiments. Thus, we were able to demonstrate differences in the binding kinetics of regulating and non-regulating aptamers. All aptamers studied underwent a two-step binding mechanism that suggests an initial association step followed by a reorganization of the aptamer to accommodate the ligand. We show that increasing regulatory potential is correlated with a decreasing back-reaction rate of the second binding step, thus resulting in a virtually irreversible last binding step of regulating aptamers. We suggest that a highly favoured structural adaption of the RNA to the ligand during the final binding step is essential for turning an aptamer into a riboswitch. In addition, our results provide an explanation for the fact that so few aptamers with regulating capacity have been found to date. Based on our data, we propose an adjustment of the selection protocol for efficient riboswitch detection.
Collapse
Affiliation(s)
- Christoph Kaiser
- Institute for Physical and Theoretical Chemistry, Goethe-Universität Frankfurt, Max-von-Laue-Straße 8, D-60438 Frankfurt am Main, Germany
| | - Jeannine Schneider
- Department of Biology, Technische Universität Darmstadt, Schnittspahnstraße 10, D-64287 Darmstadt, Germany
| | - Florian Groher
- Department of Biology, Technische Universität Darmstadt, Schnittspahnstraße 10, D-64287 Darmstadt, Germany
| | - Beatrix Suess
- Department of Biology, Technische Universität Darmstadt, Schnittspahnstraße 10, D-64287 Darmstadt, Germany.,Centre for Synthetic Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Josef Wachtveitl
- Institute for Physical and Theoretical Chemistry, Goethe-Universität Frankfurt, Max-von-Laue-Straße 8, D-60438 Frankfurt am Main, Germany
| |
Collapse
|
12
|
Günzel C, Kühnl F, Arnold K, Findeiß S, Weinberg CE, Stadler PF, Mörl M. Beyond Plug and Pray: Context Sensitivity and in silico Design of Artificial Neomycin Riboswitches. RNA Biol 2021; 18:457-467. [PMID: 32882151 PMCID: PMC7971258 DOI: 10.1080/15476286.2020.1816336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/18/2020] [Accepted: 06/22/2020] [Indexed: 01/05/2023] Open
Abstract
Gene regulation in prokaryotes often depends on RNA elements such as riboswitches or RNA thermometers located in the 5' untranslated region of mRNA. Rearrangements of the RNA structure in response, e.g., to the binding of small molecules or ions control translational initiation or premature termination of transcription and thus mRNA expression. Such structural responses are amenable to computational modelling, making it possible to rationally design synthetic riboswitches for a given aptamer. Starting from an artificial aptamer, we construct the first synthetic transcriptional riboswitches that respond to the antibiotic neomycin. We show that the switching behaviour in vivo critically depends not only on the sequence of the riboswitch itself, but also on its sequence context. We therefore developed in silico methods to predict the impact of the context, making it possible to adapt the design and to rescue non-functional riboswitches. We furthermore analyse the influence of 5' hairpins with varying stability on neomycin riboswitch activity. Our data highlight the limitations of a simple plug-and-play approach in the design of complex genetic circuits and demonstrate that detailed computational models significantly simplify, improve, and automate the design of transcriptional circuits. Our design software is available under a free licence on GitHub (https://github.com/xileF1337/riboswitch_design).
Collapse
Affiliation(s)
- Christian Günzel
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, D-04103 Leipzig, Germany
| | - Felix Kühnl
- Bioinformatics Group, Institute of Computer Science, and Interdisciplinary Center for Bioinformatics, Leipzig University, Härtelstraße 16–18, D-04107 Leipzig, Germany
| | - Katharina Arnold
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, D-04103 Leipzig, Germany
| | - Sven Findeiß
- Bioinformatics Group, Institute of Computer Science, and Interdisciplinary Center for Bioinformatics, Leipzig University, Härtelstraße 16–18, D-04107 Leipzig, Germany
| | - Christina E. Weinberg
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, D-04103 Leipzig, Germany
| | - Peter F. Stadler
- Bioinformatics Group, Institute of Computer Science, and Interdisciplinary Center for Bioinformatics, Leipzig University, Härtelstraße 16–18, D-04107 Leipzig, Germany
- Max Planck Institute for Mathematics in the Sciences, Inselstraße Leipzig, D-04103 Leipzig, Germany
- Institute for Theoretical Chemistry, University of Vienna, Währingerstraße 17, A-1090 Wien, Austria
- Facultad De Ciencias, Universidad National De Colombia, Sede Bogotá, Colombia
- Santa Fe Institute, 1399 Hyde Park Rd., Santa Fe, NM87501, USA
| | - Mario Mörl
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, D-04103 Leipzig, Germany
| |
Collapse
|
13
|
Abbadi M, Spurgeon S, Warren M, Khan N, Kräutler B. Using sliding mode observers to estimate BtuB concentration from measured vitamin B 12 concentration. IET Syst Biol 2020; 14:334-342. [PMID: 33399097 PMCID: PMC8687388 DOI: 10.1049/iet-syb.2020.0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 06/11/2020] [Accepted: 08/03/2020] [Indexed: 11/20/2022] Open
Abstract
A simple model for the B12-riboswitch regulatory network in Escherichia coli is first described and the same analysis is applied when changing the strain to Salmonella enterica. Model validation is undertaken by linking the dynamics of the riboswitch model to bacterial growth and comparing the results obtained with in vivo experimental measurements. Measurements of bacterial growth are relatively straightforward to obtain experimentally, but experimental measurements relating to the operation of the riboswitch are more difficult. Using the validated model, sliding mode observer design methods are used to estimate BtuB given measurements of the concentration of vitamin B12. The sliding mode approach is selected because of its inherent robustness properties as well as for the ease of implementation. Validation of the estimates of BtuB produced by the observer is undertaken by comparing the BtuB and vitamin B12 concentrations estimated from the observer with green fluorescent protein production and the concentration of vitamin B12 obtained experimentally. These experimental results also provide further validation of the underpinning mathematical model. The results establish that using a sliding mode observer as a soft sensor is a useful approach to explore the operation of a vitamin B12 riboswitch given measurements of the concentration of vitamin B12.
Collapse
Affiliation(s)
- Mohammad Abbadi
- Department of Electronic & Electrical Engineering, University College London, Gower St, Bloomsbury, London WC1E 6BT, UK
| | - Sarah Spurgeon
- Department of Electronic & Electrical Engineering, University College London, Gower St, Bloomsbury, London WC1E 6BT, UK.
| | | | - Naziyat Khan
- School of Biosciences, University of Kent, Canterbury CT2 7NZ, UK
| | - Bernhard Kräutler
- Institute of Organic Chemistry & Center of Molecular Biosciences (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| |
Collapse
|
14
|
Hoang Trung Chau T, Hoang Anh Mai D, Ngoc Pham D, Thi Quynh Le H, Yeol Lee E. Developments of Riboswitches and Toehold Switches for Molecular Detection-Biosensing and Molecular Diagnostics. Int J Mol Sci 2020; 21:E3192. [PMID: 32366036 PMCID: PMC7247568 DOI: 10.3390/ijms21093192] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 12/20/2022] Open
Abstract
Riboswitches and toehold switches are considered to have potential for implementation in various fields, i.e., biosensing, metabolic engineering, and molecular diagnostics. The specific binding, programmability, and manipulability of these RNA-based molecules enable their intensive deployments in molecular detection as biosensors for regulating gene expressions, tracking metabolites, or detecting RNA sequences of pathogenic microorganisms. In this review, we will focus on the development of riboswitches and toehold switches in biosensing and molecular diagnostics. This review introduces the operating principles and the notable design features of riboswitches as well as toehold switches. Moreover, we will describe the advances and future directions of riboswitches and toehold switches in biosensing and molecular diagnostics.
Collapse
Affiliation(s)
| | | | | | | | - Eun Yeol Lee
- Department of Chemical Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Korea; (T.H.T.C.); (D.H.A.M.); (D.N.P.); (H.T.Q.L.)
| |
Collapse
|
15
|
Wrist A, Sun W, Summers RM. The Theophylline Aptamer: 25 Years as an Important Tool in Cellular Engineering Research. ACS Synth Biol 2020; 9:682-697. [PMID: 32142605 DOI: 10.1021/acssynbio.9b00475] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The theophylline aptamer was isolated from an oligonucleotide library in 1994. Since that time, the aptamer has found wide utility, particularly in synthetic biology, cellular engineering, and diagnostic applications. The primary application of the theophylline aptamer is in the construction and characterization of synthetic riboswitches for regulation of gene expression. These riboswitches have been used to control cellular motility, regulate carbon metabolism, construct logic gates, screen for mutant enzymes, and control apoptosis. Other applications of the theophylline aptamer in cellular engineering include regulation of RNA interference and genome editing through CRISPR systems. Here we describe the uses of the theophylline aptamer for cellular engineering over the past 25 years. In so doing, we also highlight important synthetic biology applications to control gene expression in a ligand-dependent manner.
Collapse
Affiliation(s)
- Alexandra Wrist
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Wanqi Sun
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Ryan M. Summers
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| |
Collapse
|
16
|
Hudson AJ, Wieden HJ. Rapid generation of sequence-diverse terminator libraries and their parameterization using quantitative Term-Seq. Synth Biol (Oxf) 2019; 4:ysz026. [PMID: 32995547 PMCID: PMC7445774 DOI: 10.1093/synbio/ysz026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/03/2019] [Indexed: 01/09/2023] Open
Abstract
Synthetic biology and the rational design and construction of biological devices require vast numbers of characterized biological parts, as well as reliable design tools to build increasingly complex, multigene architectures. Design principles for intrinsic terminators have been established; however, additional sequence-structure studies are needed to refine parameters for termination-based genetic devices. We report a rapid single-pot method to generate libraries of thousands of randomized bidirectional intrinsic terminators and a modified quantitative Term-Seq (qTerm-Seq) method to simultaneously identify terminator sequences and measure their termination efficiencies (TEs). Using qTerm-Seq, we characterize hundreds of additional strong terminators (TE > 90%) with some terminators reducing transcription read-through by up to 1000-fold in Escherichia coli. Our terminator library and qTerm-Seq pipeline constitute a flexible platform enabling identification of terminator parts that can achieve transcription termination not only over a desired range but also to investigate their sequence-structure features, including for specific genetic and application contexts beyond the common in vivo systems such as E. coli.
Collapse
Affiliation(s)
- Andrew J Hudson
- Alberta RNA Research and Training Institute (ARRTI), University of Lethbridge, Lethbridge, Alberta, Canada.,Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Hans-Joachim Wieden
- Alberta RNA Research and Training Institute (ARRTI), University of Lethbridge, Lethbridge, Alberta, Canada.,Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada
| |
Collapse
|
17
|
Dwidar M, Yokobayashi Y. Riboswitch Signal Amplification by Controlling Plasmid Copy Number. ACS Synth Biol 2019; 8:245-250. [PMID: 30682247 DOI: 10.1021/acssynbio.8b00454] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Riboswitches are cis-acting RNA devices in mRNAs that control gene expression in response to chemical inputs. As RNA aptamers that recognize diverse classes of molecules can be isolated by in vitro selection, synthetic riboswitches hold promise for various applications in synthetic biology. One of the major drawbacks of riboswitches, however, is their limited dynamic range. A high level of gene expression in the OFF state (leakage) is also a common problem. To address these challenges, we designed and constructed a dual-riboswitch plasmid in which two genes are controlled by theophylline-activated riboswitches. One riboswitch controls the gene of interest, and another riboswitch controls RepL, a phage-derived replication protein that regulates the plasmid copy number. This single-plasmid system afforded an ON/OFF ratio as high as 3900. Furthermore, we used the system to control CRISPR interference (CRISPRi) targeting endogenous genes, and successfully observed expected phenotypic changes in Escherichia coli.
Collapse
Affiliation(s)
- Mohammed Dwidar
- Nucleic Acid Chemistry and Engineering Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904 0495, Japan
| | - Yohei Yokobayashi
- Nucleic Acid Chemistry and Engineering Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904 0495, Japan
| |
Collapse
|
18
|
Abstract
In bacteria and archaea, small RNAs (sRNAs) regulate complex networks through antisense interactions with target mRNAs in trans, and riboswitches regulate gene expression in cis based on the ability to bind small-molecule ligands. Although our understanding and characterization of these two important regulatory RNA classes is far from complete, these RNA-based mechanisms have proven useful for a wide variety of synthetic biology applications. Besides classic and contemporary applications in the realm of metabolic engineering and orthogonal gene control, this review also covers newer applications of regulatory RNAs as biosensors, logic gates, and tools to determine RNA-RNA interactions. A separate section focuses on critical insights gained and challenges posed by fundamental studies of sRNAs and riboswitches that should aid future development of synthetic regulatory RNAs.
Collapse
|
19
|
Churkin A, Retwitzer MD, Reinharz V, Ponty Y, Waldispühl J, Barash D. Design of RNAs: comparing programs for inverse RNA folding. Brief Bioinform 2018; 19:350-358. [PMID: 28049135 PMCID: PMC6018860 DOI: 10.1093/bib/bbw120] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Computational programs for predicting RNA sequences with desired folding properties have been extensively developed and expanded in the past several years. Given a secondary structure, these programs aim to predict sequences that fold into a target minimum free energy secondary structure, while considering various constraints. This procedure is called inverse RNA folding. Inverse RNA folding has been traditionally used to design optimized RNAs with favorable properties, an application that is expected to grow considerably in the future in light of advances in the expanding new fields of synthetic biology and RNA nanostructures. Moreover, it was recently demonstrated that inverse RNA folding can successfully be used as a valuable preprocessing step in computational detection of novel noncoding RNAs. This review describes the most popular freeware programs that have been developed for such purposes, starting from RNAinverse that was devised when formulating the inverse RNA folding problem. The most recently published ones that consider RNA secondary structure as input are antaRNA, RNAiFold and incaRNAfbinv, each having different features that could be beneficial to specific biological problems in practice. The various programs also use distinct approaches, ranging from ant colony optimization to constraint programming, in addition to adaptive walk, simulated annealing and Boltzmann sampling. This review compares between the various programs and provides a simple description of the various possibilities that would benefit practitioners in selecting the most suitable program. It is geared for specific tasks requiring RNA design based on input secondary structure, with an outlook toward the future of RNA design programs.
Collapse
Affiliation(s)
- Alexander Churkin
- Shamoon College of Engineering and Physics Department at Ben-Gurion University, Beer-Sheva, Israel
| | | | - Vladimir Reinharz
- Department of Computer Science, Ben-Gurion University, Beer-Sheva, Israel
- School of Computer Science, McGill University, Montréal QC, Canada
| | - Yann Ponty
- Laboratoire d’informatique, École Polytechnique, Palaiseau, France
| | | | - Danny Barash
- Department of Computer Science, Ben-Gurion University, Beer-Sheva, Israel
| |
Collapse
|
20
|
Lee YJ, Moon TS. Design rules of synthetic non-coding RNAs in bacteria. Methods 2018; 143:58-69. [PMID: 29309838 DOI: 10.1016/j.ymeth.2018.01.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/31/2017] [Accepted: 01/03/2018] [Indexed: 12/21/2022] Open
Abstract
One of the long-term goals of synthetic biology is to develop designable genetic parts with predictable behaviors that can be utilized to implement diverse cellular functions. The discovery of non-coding RNAs and their importance in cellular processing have rapidly attracted researchers' attention towards designing functional non-coding RNA molecules. These synthetic non-coding RNAs have simple design principles governed by Watson-Crick base pairing, but exhibit increasingly complex functions. Importantly, due to their specific and modular behaviors, synthetic non-coding RNAs have been widely adopted to modulate transcription and translation of target genes. In this review, we summarize various design rules and strategies employed to engineer synthetic non-coding RNAs. Specifically, we discuss how RNA molecules can be transformed into powerful regulators and utilized to control target gene expression. With the establishment of generalizable non-coding RNA design rules, the research community will shift its focus to RNA regulators from protein regulators.
Collapse
Affiliation(s)
- Young Je Lee
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Tae Seok Moon
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
21
|
Dwidar M, Yokobayashi Y. Controlling Bdellovibrio bacteriovorus Gene Expression and Predation Using Synthetic Riboswitches. ACS Synth Biol 2017; 6:2035-2041. [PMID: 28812884 DOI: 10.1021/acssynbio.7b00171] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Bdellovibrio bacteriovorus is a predatory bacterium that feeds on Gram-negative bacteria including a wide range of pathogens and thus has potential applications as a biocontrol agent. Owing to its unique life cycle, however, there are limited tools that enable genetic manipulation of B. bacteriovorus. This work describes our first steps toward engineering the predatory bacterium for practical applications by developing basic genetic parts to control gene expression. Specifically, we evaluated four robust promoters that are active during the attack phase of B. bacteriovorus. Subsequently, we tested several synthetic riboswitches that have been reported to function in Escherichia coli, and identified theophylline-activated riboswitches that function in B. bacteriovorus. Finally, we inserted the riboswitch into the bacterial chromosome to regulate expression of the flagellar sigma factor fliA, which was previously predicted to be essential for predation, and observed that the engineered strain shows a faster predation kinetics in the presence of theophylline.
Collapse
Affiliation(s)
- Mohammed Dwidar
- Nucleic Acid Chemistry and
Engineering Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904 0495, Japan
| | - Yohei Yokobayashi
- Nucleic Acid Chemistry and
Engineering Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904 0495, Japan
| |
Collapse
|
22
|
Chappell J, Westbrook A, Verosloff M, Lucks JB. Computational design of small transcription activating RNAs for versatile and dynamic gene regulation. Nat Commun 2017; 8:1051. [PMID: 29051490 PMCID: PMC5648800 DOI: 10.1038/s41467-017-01082-6] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 08/17/2017] [Indexed: 01/04/2023] Open
Abstract
A longstanding goal of synthetic biology has been the programmable control of cellular functions. Central to this is the creation of versatile regulatory toolsets that allow for programmable control of gene expression. Of the many regulatory molecules available, RNA regulators offer the intriguing possibility of de novo design-allowing for the bottom-up molecular-level design of genetic control systems. Here we present a computational design approach for the creation of a bacterial regulator called Small Transcription Activating RNAs (STARs) and create a library of high-performing and orthogonal STARs that achieve up to ~ 9000-fold gene activation. We demonstrate the versatility of these STARs-from acting synergistically with existing constitutive and inducible regulators, to reprogramming cellular phenotypes and controlling multigene metabolic pathway expression. Finally, we combine these new STARs with themselves and CRISPRi transcriptional repressors to deliver new types of RNA-based genetic circuitry that allow for sophisticated and temporal control of gene expression.
Collapse
Affiliation(s)
- James Chappell
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd, Evanston, IL, 60208, USA
| | - Alexandra Westbrook
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, 113 Ho Plaza, Ithaca, NY, 14583, USA
| | - Matthew Verosloff
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, 2204 Tech Drive, Evanston, IL, 60208, USA
| | - Julius B Lucks
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd, Evanston, IL, 60208, USA. .,Interdisciplinary Biological Sciences Graduate Program, Northwestern University, 2204 Tech Drive, Evanston, IL, 60208, USA.
| |
Collapse
|
23
|
Findeiß S, Etzel M, Will S, Mörl M, Stadler PF. Design of Artificial Riboswitches as Biosensors. SENSORS 2017; 17:s17091990. [PMID: 28867802 PMCID: PMC5621056 DOI: 10.3390/s17091990] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 08/23/2017] [Accepted: 08/25/2017] [Indexed: 12/11/2022]
Abstract
RNA aptamers readily recognize small organic molecules, polypeptides, as well as other nucleic acids in a highly specific manner. Many such aptamers have evolved as parts of regulatory systems in nature. Experimental selection techniques such as SELEX have been very successful in finding artificial aptamers for a wide variety of natural and synthetic ligands. Changes in structure and/or stability of aptamers upon ligand binding can propagate through larger RNA constructs and cause specific structural changes at distal positions. In turn, these may affect transcription, translation, splicing, or binding events. The RNA secondary structure model realistically describes both thermodynamic and kinetic aspects of RNA structure formation and refolding at a single, consistent level of modelling. Thus, this framework allows studying the function of natural riboswitches in silico. Moreover, it enables rationally designing artificial switches, combining essentially arbitrary sensors with a broad choice of read-out systems. Eventually, this approach sets the stage for constructing versatile biosensors.
Collapse
Affiliation(s)
- Sven Findeiß
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University Leipzig, Härtelstraße 16-18, 04107 Leipzig, Germany.
- Faculty of Computer Science, Research Group Bioinformatics and Computational Biology, University of Vienna, Währingerstraße 29, A-1090 Vienna, Austria.
- Faculty of Chemistry, Department of Theoretical Chemistry, University of Vienna, Währingerstraße 17, A-1090 Vienna, Austria.
| | - Maja Etzel
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany.
| | - Sebastian Will
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University Leipzig, Härtelstraße 16-18, 04107 Leipzig, Germany.
- Faculty of Chemistry, Department of Theoretical Chemistry, University of Vienna, Währingerstraße 17, A-1090 Vienna, Austria.
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany.
| | - Mario Mörl
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany.
| | - Peter F Stadler
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University Leipzig, Härtelstraße 16-18, 04107 Leipzig, Germany.
- Faculty of Chemistry, Department of Theoretical Chemistry, University of Vienna, Währingerstraße 17, A-1090 Vienna, Austria.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany.
- Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, 04103 Leipzig, Germany.
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstrasse 1, 04103 Leipzig, Germany.
- Center for RNA in Technology and Health, University of Copenhagen, Grønnegårdsvej 3, 1870 Frederiksberg , Denmark.
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA.
| |
Collapse
|
24
|
Domin G, Findeiß S, Wachsmuth M, Will S, Stadler PF, Mörl M. Applicability of a computational design approach for synthetic riboswitches. Nucleic Acids Res 2017; 45:4108-4119. [PMID: 27994029 PMCID: PMC5397205 DOI: 10.1093/nar/gkw1267] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 12/06/2016] [Indexed: 02/07/2023] Open
Abstract
Riboswitches have gained attention as tools for synthetic biology, since they enable researchers to reprogram cells to sense and respond to exogenous molecules. In vitro evolutionary approaches produced numerous RNA aptamers that bind such small ligands, but their conversion into functional riboswitches remains difficult. We previously developed a computational approach for the design of synthetic theophylline riboswitches based on secondary structure prediction. These riboswitches have been constructed to regulate ligand-dependent transcription termination in Escherichia coli. Here, we test the usability of this design strategy by applying the approach to tetracycline and streptomycin aptamers. The resulting tetracycline riboswitches exhibit robust regulatory properties in vivo. Tandem fusions of these riboswitches with theophylline riboswitches represent logic gates responding to two different input signals. In contrast, the conversion of the streptomycin aptamer into functional riboswitches appears to be difficult. Investigations of the underlying aptamer secondary structure revealed differences between in silico prediction and structure probing. We conclude that only aptamers adopting the minimal free energy (MFE) structure are suitable targets for construction of synthetic riboswitches with design approaches based on equilibrium thermodynamics of RNA structures. Further improvements in the design strategy are required to implement aptamer structures not corresponding to the calculated MFE state.
Collapse
Affiliation(s)
- Gesine Domin
- Leipzig University, Institute for Biochemistry, 04103 Leipzig, Germany
| | - Sven Findeiß
- University of Vienna, Research Group Bioinformatics and Computational Biology, Faculty of Computer Science, A-1090 Vienna, Austria.,University of Vienna, Institute for Theoretical Chemistry, A-1090 Vienna, Austria
| | - Manja Wachsmuth
- Leipzig University, Institute for Biochemistry, 04103 Leipzig, Germany
| | - Sebastian Will
- Leipzig University, Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, 04107 Leipzig, Germany
| | - Peter F Stadler
- University of Vienna, Institute for Theoretical Chemistry, A-1090 Vienna, Austria.,Leipzig University, Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, 04107 Leipzig, Germany.,Max Planck Institute for Mathematics in the Science, 04103 Leipzig, Germany.,Fraunhofer Institute for Cell Therapy and Immunology, 04103 Leipzig, Germany.,Santa Fe Institute, Santa Fe NM 87501, USA
| | - Mario Mörl
- Leipzig University, Institute for Biochemistry, 04103 Leipzig, Germany
| |
Collapse
|
25
|
Hallberg ZF, Su Y, Kitto RZ, Hammond MC. Engineering and In Vivo Applications of Riboswitches. Annu Rev Biochem 2017; 86:515-539. [PMID: 28375743 DOI: 10.1146/annurev-biochem-060815-014628] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Riboswitches are common gene regulatory units mostly found in bacteria that are capable of altering gene expression in response to a small molecule. These structured RNA elements consist of two modular subunits: an aptamer domain that binds with high specificity and affinity to a target ligand and an expression platform that transduces ligand binding to a gene expression output. Significant progress has been made in engineering novel aptamer domains for new small molecule inducers of gene expression. Modified expression platforms have also been optimized to function when fused with both natural and synthetic aptamer domains. As this field expands, the use of these privileged scaffolds has permitted the development of tools such as RNA-based fluorescent biosensors. In this review, we summarize the methods that have been developed to engineer new riboswitches and highlight applications of natural and synthetic riboswitches in enzyme and strain engineering, in controlling gene expression and cellular physiology, and in real-time imaging of cellular metabolites and signals.
Collapse
Affiliation(s)
- Zachary F Hallberg
- Department of Chemistry, University of California, Berkeley, California 94720;
| | - Yichi Su
- Department of Chemistry, University of California, Berkeley, California 94720;
| | - Rebekah Z Kitto
- Department of Chemistry, University of California, Berkeley, California 94720;
| | - Ming C Hammond
- Department of Chemistry, University of California, Berkeley, California 94720; .,Department of Molecular and Cell Biology, University of California, Berkeley, California 94720
| |
Collapse
|
26
|
Etzel M, Mörl M. Synthetic Riboswitches: From Plug and Pray toward Plug and Play. Biochemistry 2017; 56:1181-1198. [PMID: 28206750 DOI: 10.1021/acs.biochem.6b01218] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In synthetic biology, metabolic engineering, and gene therapy, there is a strong demand for orthogonal or externally controlled regulation of gene expression. Here, RNA-based regulatory devices represent a promising emerging alternative to proteins, allowing a fast and direct control of gene expression, as no synthesis of regulatory proteins is required. Besides programmable ribozyme elements controlling mRNA stability, regulatory RNA structures in untranslated regions are highly interesting for engineering approaches. Riboswitches are especially well suited, as they show a modular composition of sensor and response elements, allowing a free combination of different modules in a plug-and-play-like mode. The sensor or aptamer domain specifically interacts with a trigger molecule as a ligand, modulating the activity of the adjacent response domain that controls the expression of the genes located downstream, in most cases at the level of transcription or translation. In this review, we discuss the recent advances and strategies for designing such synthetic riboswitches based on natural or artificial components and readout systems, from trial-and-error approaches to rational design strategies. As the past several years have shown dramatic development in this fascinating field of research, we can give only a limited overview of the basic riboswitch design principles that is far from complete, and we apologize for not being able to consider every successful and interesting approach described in the literature.
Collapse
Affiliation(s)
- Maja Etzel
- Institute for Biochemistry, Leipzig University , Brüderstrasse 34, 04103 Leipzig, Germany
| | - Mario Mörl
- Institute for Biochemistry, Leipzig University , Brüderstrasse 34, 04103 Leipzig, Germany
| |
Collapse
|
27
|
Abstract
Due to their simple architecture and control mechanism, regulatory RNA modules are attractive building blocks in synthetic biology. This is especially true for riboswitches, which are natural ligand-binding regulators of gene expression. The discovery of various tandem riboswitches inspired the design of combined RNA modules with activities not yet found in nature. Riboswitches were placed in tandem or in combination with a ribozyme or temperature-responsive RNA thermometer resulting in new functionalities. Here, we compare natural examples of tandem riboswitches with recently designed artificial RNA regulators suggesting substantial modularity of regulatory RNA elements. Challenges associated with modular RNA design are discussed.
Collapse
|
28
|
Cui W, Cheng J, Miao S, Zhou L, Liu Z, Guo J, Zhou Z. Comprehensive characterization of a theophylline riboswitch reveals two pivotal features of Shine-Dalgarno influencing activated translation property. Appl Microbiol Biotechnol 2016; 101:2107-2120. [DOI: 10.1007/s00253-016-7988-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 09/29/2016] [Accepted: 11/05/2016] [Indexed: 01/08/2023]
|
29
|
Mehdizadeh Aghdam E, Hejazi MS, Barzegar A. Riboswitches: From living biosensors to novel targets of antibiotics. Gene 2016; 592:244-59. [PMID: 27432066 DOI: 10.1016/j.gene.2016.07.035] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 07/11/2016] [Accepted: 07/14/2016] [Indexed: 12/24/2022]
Abstract
Riboswitches are generally located in 5'-UTR region of mRNAs and specifically bind small ligands. Following ligand binding, gene expression is controlled mostly by transcription termination, translation inhibition or mRNA degradation processes. More than 30 classes of known riboswitches have been identified by now. Most riboswitches consist of an aptamer domain and an expression platform. The aptamer domain of each class of riboswitch is a conserved structure and stabilizes specific structures of the expression platforms through binding to specific compounds. In this review, we are highlighting most aspects of riboswitch research including the novel riboswitch discoveries, routine methods for discovering and investigating riboswitches along with newly discovered classes and mechanistic principles of riboswitch-mediated gene expression control. Moreover, we will give an overview about the potential of riboswitches as therapeutic targets for antibiotic design and also their utilization as biosensors for molecular detection.
Collapse
Affiliation(s)
- Elnaz Mehdizadeh Aghdam
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Saeid Hejazi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolfazl Barzegar
- Research Institute for Fundamental Sciences (RIFS), University of Tabriz, Tabriz, Iran; The School of Advanced Biomedical Sciences (SABS), Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
30
|
Drory Retwitzer M, Reinharz V, Ponty Y, Waldispühl J, Barash D. incaRNAfbinv: a web server for the fragment-based design of RNA sequences. Nucleic Acids Res 2016; 44:W308-14. [PMID: 27185893 PMCID: PMC5741205 DOI: 10.1093/nar/gkw440] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 05/06/2016] [Indexed: 01/02/2023] Open
Abstract
In recent years, new methods for computational RNA design have been developed and applied to various problems in synthetic biology and nanotechnology. Lately, there is considerable interest in incorporating essential biological information when solving the inverse RNA folding problem. Correspondingly, RNAfbinv aims at including biologically meaningful constraints and is the only program to-date that performs a fragment-based design of RNA sequences. In doing so it allows the design of sequences that do not necessarily exactly fold into the target, as long as the overall coarse-grained tree graph shape is preserved. Augmented by the weighted sampling algorithm of incaRNAtion, our web server called incaRNAfbinv implements the method devised in RNAfbinv and offers an interactive environment for the inverse folding of RNA using a fragment-based design approach. It takes as input: a target RNA secondary structure; optional sequence and motif constraints; optional target minimum free energy, neutrality and GC content. In addition to the design of synthetic regulatory sequences, it can be used as a pre-processing step for the detection of novel natural occurring RNAs. The two complementary methodologies RNAfbinv and incaRNAtion are merged together and fully implemented in our web server incaRNAfbinv, available at http://www.cs.bgu.ac.il/incaRNAfbinv.
Collapse
Affiliation(s)
| | - Vladimir Reinharz
- School of Computer Science & McGill Centre for Bioinformatics, McGill University, Montréal, QC H3A 0E9, Canada
| | - Yann Ponty
- Laboratoire d'Informatique (LIX)-CNRS UMR 7161, École Polytechnique, 91128 Palaiseau, France AMIB team/project, INRIA Saclay, Bâtiment Alan Turing, 91128 Palaiseau, France
| | - Jérôme Waldispühl
- School of Computer Science & McGill Centre for Bioinformatics, McGill University, Montréal, QC H3A 0E9, Canada
| | - Danny Barash
- Department of Computer Science, Ben-Gurion University, Beer-Sheva 84105, Israel
| |
Collapse
|
31
|
Lorenz R, Hofacker IL, Stadler PF. RNA folding with hard and soft constraints. Algorithms Mol Biol 2016; 11:8. [PMID: 27110276 PMCID: PMC4842303 DOI: 10.1186/s13015-016-0070-z] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 04/01/2016] [Indexed: 12/21/2022] Open
Abstract
Background A large class of RNA secondary structure prediction programs uses an elaborate energy model grounded in extensive thermodynamic measurements and exact dynamic programming algorithms. External experimental evidence can be in principle be incorporated by means of hard constraints that restrict the search space or by means of soft constraints that distort the energy model. In particular recent advances in coupling chemical and enzymatic probing with sequencing techniques but also comparative approaches provide an increasing amount of experimental data to be combined with secondary structure prediction. Results Responding to the increasing needs for a versatile and user-friendly inclusion of external evidence into diverse flavors of RNA secondary structure prediction tools we implemented a generic layer of constraint handling into the ViennaRNA Package. It makes explicit use of the conceptual separation of the “folding grammar” defining the search space and the actual energy evaluation, which allows constraints to be interleaved in a natural way between recursion steps and evaluation of the standard energy function. Conclusions The extension of the ViennaRNA Package provides a generic way to include diverse types of constraints into RNA folding algorithms. The computational overhead incurred is negligible in practice. A wide variety of application scenarios can be accommodated by the new framework, including the incorporation of structure probing data, non-standard base pairs and chemical modifications, as well as structure-dependent ligand binding. Electronic supplementary material The online version of this article (doi:10.1186/s13015-016-0070-z) contains supplementary material, which is available to authorized users.
Collapse
|
32
|
Zhou H, Zheng C, Su J, Chen B, Fu Y, Xie Y, Tang Q, Chou SH, He J. Characterization of a natural triple-tandem c-di-GMP riboswitch and application of the riboswitch-based dual-fluorescence reporter. Sci Rep 2016; 6:20871. [PMID: 26892868 PMCID: PMC4759541 DOI: 10.1038/srep20871] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 01/11/2016] [Indexed: 12/22/2022] Open
Abstract
c-di-GMP riboswitches are structured RNAs located in the 5'-untranslated regions (5'-UTRs) of mRNAs that regulate expression of downstream genes in response to changing concentrations of the second messenger c-di-GMP. We discovered three complete c-di-GMP riboswitches (Bc3, Bc4 and Bc5 RNA) with similar structures, which are arranged in tandem to constitute a triple-tandem (Bc3-5 RNA) riboswitch in the 5'-UTR of the cspABCDE mRNA in Bacillus thuringiensis subsp. chinensis CT-43. Our results showed that this natural triple-tandem riboswitch controlled the expression of the reporter gene more stringently and digitally than the double-tandem or single riboswitch. A sandwich-like dual-fluorescence reporter was further constructed by fusing the Bc3-5 RNA gene between the two fluorescence protein genes amcyan and turborfp. This reporter strain was found to exhibit detectable fluorescence color changes under bright field in response to intracellular c-di-GMP level altered by induced expression of diguanylate cyclase (DGC) PleD. Using this system, two putative membrane-bound DGCs from B. thuringiensis and Xanthomonas oryzae were verified to be functional by replacing pleD with the corresponding DGC genes. This report represented the first native triple-tandem riboswitch that was applied to serve as a riboswitch-based dual-fluorescence reporter for the efficient and convenient verification of putative DGC activity in vivo.
Collapse
Affiliation(s)
- Hang Zhou
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Cao Zheng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Jianmei Su
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Bo Chen
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Yang Fu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Yuqun Xie
- Key Laboratory of Fermentation Engineering (Ministry of Education), College of Bioengineering, Hubei University of Technology, Wuhan, Hubei 430068, People's Republic of China
| | - Qing Tang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Shan-Ho Chou
- Institute of Biochemistry, and NCHU Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Jin He
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| |
Collapse
|
33
|
Espah Borujeni A, Mishler DM, Wang J, Huso W, Salis HM. Automated physics-based design of synthetic riboswitches from diverse RNA aptamers. Nucleic Acids Res 2016; 44:1-13. [PMID: 26621913 PMCID: PMC4705656 DOI: 10.1093/nar/gkv1289] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 10/30/2015] [Accepted: 11/05/2015] [Indexed: 01/31/2023] Open
Abstract
Riboswitches are shape-changing regulatory RNAs that bind chemicals and regulate gene expression, directly coupling sensing to cellular actuation. However, it remains unclear how their sequence controls the physics of riboswitch switching and activation, particularly when changing the ligand-binding aptamer domain. We report the development of a statistical thermodynamic model that predicts the sequence-structure-function relationship for translation-regulating riboswitches that activate gene expression, characterized inside cells and within cell-free transcription-translation assays. Using the model, we carried out automated computational design of 62 synthetic riboswitches that used six different RNA aptamers to sense diverse chemicals (theophylline, tetramethylrosamine, fluoride, dopamine, thyroxine, 2,4-dinitrotoluene) and activated gene expression by up to 383-fold. The model explains how aptamer structure, ligand affinity, switching free energy and macromolecular crowding collectively control riboswitch activation. Our model-based approach for engineering riboswitches quantitatively confirms several physical mechanisms governing ligand-induced RNA shape-change and enables the development of cell-free and bacterial sensors for diverse applications.
Collapse
Affiliation(s)
- Amin Espah Borujeni
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Dennis M Mishler
- Department of Biological Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jingzhi Wang
- Department of Biological Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Walker Huso
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Howard M Salis
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
34
|
Ma CW, Zhou LB, Zeng AP. Engineering Biomolecular Switches for Dynamic Metabolic Control. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2016; 162:45-76. [DOI: 10.1007/10_2016_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|