1
|
de Oliveira BCD, Shiburah ME, Assis LHC, Fontes VS, Bisetegn H, Passos ADO, de Oliveira LS, Alves CDS, Ernst E, Martienssen R, Gallo-Francisco PH, Giorgio S, Batista MM, Soeiro MDNC, Menna-Barreto RFS, Aoki JI, Coelho AC, Cano MIN. Leishmania major telomerase RNA knockout: From altered cell proliferation to decreased parasite infectivity. Int J Biol Macromol 2024; 279:135150. [PMID: 39218181 DOI: 10.1016/j.ijbiomac.2024.135150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/14/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
This study focuses on the biological impacts of deleting the telomerase RNA from Leishmania major (LeishTER), a parasite responsible for causing leishmaniases, for which no effective treatment or prevention is available. TER is a critical player in the telomerase ribonucleoprotein complex, containing the template sequence copied by the reverse transcriptase component during telomere elongation. The success of knocking out both LeishTER alleles was confirmed, and no off-targets were detected. LmTER-/- cells share similar characteristics with other TER-depleted eukaryotes, such as altered growth patterns and partial G0/G1 cell cycle arrest in early passages, telomere shortening, and elevated TERRA expression. They also exhibit increased γH2A phosphorylation, suggesting that the loss of LeishTER induces DNA damage signaling. Moreover, pro-survival autophagic signals and mitochondrion alterations were shown without any detectable plasma membrane modifications. LmTER-/- retained the ability to transform into metacyclics, but their infectivity capacity was compromised. Furthermore, the overexpression of LeishTER was also deleterious, inducing a dominant negative effect that led to telomere shortening and growth impairments. These findings highlight TER's vital role in parasite homeostasis, opening discussions about its potential as a drug target candidate against Leishmania.
Collapse
Affiliation(s)
- Beatriz Cristina Dias de Oliveira
- Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu, Sao Paulo, Brazil
| | - Mark Ewusi Shiburah
- Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu, Sao Paulo, Brazil; Animal Research Institute, Council for Scientific and Industrial Research (CSIR-ARI), Accra, Ghana
| | - Luiz Henrique Castro Assis
- Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu, Sao Paulo, Brazil
| | - Veronica Silva Fontes
- Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu, Sao Paulo, Brazil
| | - Habtye Bisetegn
- Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu, Sao Paulo, Brazil; Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| | - Arthur de Oliveira Passos
- Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu, Sao Paulo, Brazil
| | - Leilane S de Oliveira
- Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu, Sao Paulo, Brazil
| | | | - Evan Ernst
- Howard Hughes Medical Institute/Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Rob Martienssen
- Howard Hughes Medical Institute/Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | | | - Selma Giorgio
- Department of Animal Biology, Biology Institute, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Marcos Meuser Batista
- Cellular Biology Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Juliana Ide Aoki
- Department of Animal Biology, Biology Institute, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Adriano Cappellazzo Coelho
- Department of Animal Biology, Biology Institute, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Maria Isabel Nogueira Cano
- Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu, Sao Paulo, Brazil.
| |
Collapse
|
2
|
Bozděchová L, Havlová K, Fajkus P, Fajkus J. Analysis of Telomerase RNA Structure in Physcomitrium patens Indicates Functionally Relevant Transitions Between OPEN and CLOSED Conformations. J Mol Biol 2024; 436:168417. [PMID: 38143018 DOI: 10.1016/j.jmb.2023.168417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Telomerase RNA (TR) conformation determines its function as a template for telomere synthesis and as a scaffold for the assembly of the telomerase nucleoprotein complex. Experimental analyses of TR secondary structure using DMS-Map Seq and SHAPE-Map Seq techniques show its CLOSED conformation as the consensus structure where the template region cannot perform its function. Our data show that the apparent discrepancy between experimental results and predicted TR functional conformation, mostly ignored in published studies, can be explained using data analysis based on single-molecule structure prediction from individual sequencing reads by the recently established DaVinci method. This method results in several clusters of secondary structures reflecting the structural dynamics of TR, possibly related to its multiple functional states. Interestingly, the presumed active (OPEN) conformation of TR corresponds to a minor fraction of TR under in vivo conditions. Therefore, structural polymorphism and dynamic TR transitions between CLOSED and OPEN conformations may be involved in telomerase activity regulation as a switch that functions independently of total TR transcript levels.
Collapse
Affiliation(s)
- Lucie Bozděchová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Kateřina Havlová
- National Center for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Petr Fajkus
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic; Institute of Biophysics, Czech Acad Sci, Královopolská 135, 61200 Brno, Czech Republic
| | - Jiří Fajkus
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic; National Center for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic; Institute of Biophysics, Czech Acad Sci, Královopolská 135, 61200 Brno, Czech Republic.
| |
Collapse
|
3
|
Schellnegger M, Hofmann E, Carnieletto M, Kamolz LP. Unlocking longevity: the role of telomeres and its targeting interventions. FRONTIERS IN AGING 2024; 5:1339317. [PMID: 38333665 PMCID: PMC10850353 DOI: 10.3389/fragi.2024.1339317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/11/2024] [Indexed: 02/10/2024]
Abstract
Average life expectancy has been steadily increasing in developed countries worldwide. These demographic changes are associated with an ever-growing social and economic strain to healthcare systems as well as society. The aging process typically manifests as a decline in physiological and cognitive functions, accompanied by a rise in chronic diseases. Consequently, strategies that both mitigate age-related diseases and promote healthy aging are urgently needed. Telomere attrition, characterized by the shortening of telomeres with each cell division, paradoxically serves as both a protective mechanism and a contributor to tissue degeneration and age-related ailments. Based on the essential role of telomere biology in aging, research efforts aim to develop approaches designed to counteract telomere attrition, aiming to delay or reduce age-related diseases. In this review, telomere biology and its role in aging and age-related diseases is summarized along with recent approaches to interfere with telomere shortening aiming at well- and healthy-aging as well as longevity. As aging research enters a new era, this review emphasizes telomere-targeting therapeutics, including telomerase activators and tankyrase inhibitors, while also exploring the effects of antioxidative and anti-inflammatory agents, along with indirectly related approaches like statins.
Collapse
Affiliation(s)
- Marlies Schellnegger
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
- COREMED–Centre for Regenerative and Precision Medicine, JOANNEUM RESEARCH Forschungsgesellschaft mbH, Graz, Austria
| | - Elisabeth Hofmann
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
- COREMED–Centre for Regenerative and Precision Medicine, JOANNEUM RESEARCH Forschungsgesellschaft mbH, Graz, Austria
- Research Unit for Tissue Regeneration, Repair and Reconstruction, Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
| | - Martina Carnieletto
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
- COREMED–Centre for Regenerative and Precision Medicine, JOANNEUM RESEARCH Forschungsgesellschaft mbH, Graz, Austria
| | - Lars-Peter Kamolz
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
- COREMED–Centre for Regenerative and Precision Medicine, JOANNEUM RESEARCH Forschungsgesellschaft mbH, Graz, Austria
| |
Collapse
|
4
|
Xiong Y, Zhang H, Zhou S, Ma L, Xiao W, Wu Y, Yuan YJ. Structural Variations and Adaptations of Synthetic Chromosome Ends Driven by SCRaMbLE in Haploid and Diploid Yeasts. ACS Synth Biol 2023; 12:689-699. [PMID: 36821394 DOI: 10.1021/acssynbio.2c00424] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Variations and adaptations of chromosome ends play an important role in eukaryotic karyotype evolution. Traditional experimental studies of the adaptations of chromosome ends mainly rely on the strategy of introducing defects; thus, the adaptation methods of survivors may vary depending on the initial defects. Here, using the SCRaMbLE strategy, we obtained a library of haploid and diploid synthetic strains with variations in chromosome ends. Analysis of the SCRaMbLEd survivors revealed four routes of adaptation: homologous recombination between nonhomologous chromosome arms (haploids) or homologous chromosome arms (diploids), site-specific recombination between intra- or interchromosomal ends, circularization of chromosomes, and loss of whole chromosomes (diploids). We also found that circularization of synthetic chromosomes can be generated by SCRaMbLE. Our study of various adaptation routes of chromosome ends provides insight into eukaryotic karyotype evolution from the viewpoint of synthetic genomics.
Collapse
Affiliation(s)
- Yao Xiong
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Hui Zhang
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Sijie Zhou
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Lu Ma
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Wenhai Xiao
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yi Wu
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Ying-Jin Yuan
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
5
|
Nagpal N, Agarwal S. Telomerase RNA processing: Implications for human health and disease. Stem Cells 2020; 38:10.1002/stem.3270. [PMID: 32875693 PMCID: PMC7917152 DOI: 10.1002/stem.3270] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/11/2020] [Indexed: 11/11/2022]
Abstract
Telomeres are composed of repetitive DNA sequences that are replenished by the enzyme telomerase to maintain the self-renewal capacity of stem cells. The RNA component of human telomerase (TERC) is the essential template for repeat addition by the telomerase reverse transcriptase (TERT), and also serves as a scaffold for several factors comprising the telomerase ribonucleoprotein (RNP). Unique features of TERC regulation and function have been informed not only through biochemical studies but also through human genetics. Disease-causing mutations impact TERC biogenesis at several levels including RNA transcription, post-transcriptional processing, folding, RNP assembly, and trafficking. Defects in TERC reduce telomerase activity and impair telomere maintenance, thereby causing a spectrum of degenerative diseases called telomere biology disorders (TBDs). Deciphering mechanisms of TERC dysregulation have led to a broader understanding of noncoding RNA biology, and more recently points to new therapeutic strategies for TBDs. In this review, we summarize over two decades of work revealing mechanisms of human telomerase RNA biogenesis, and how its disruption causes human diseases.
Collapse
Affiliation(s)
- Neha Nagpal
- Division of Hematology/Oncology and Stem Cell Program, Boston Children’s Hospital, Boston, Massachusetts
- Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Initiative for RNA Medicine and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
- Harvard Stem Cell Institute, Boston, Massachusetts
| | - Suneet Agarwal
- Division of Hematology/Oncology and Stem Cell Program, Boston Children’s Hospital, Boston, Massachusetts
- Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Initiative for RNA Medicine and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
- Harvard Stem Cell Institute, Boston, Massachusetts
| |
Collapse
|
6
|
Amelioration of age-related alterations in rat liver: Effects of curcumin C3 complex, Astragalus membranaceus and blueberry. Exp Gerontol 2020; 137:110982. [DOI: 10.1016/j.exger.2020.110982] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/04/2020] [Accepted: 05/19/2020] [Indexed: 12/21/2022]
|
7
|
Barbero Barcenilla B, Shippen DE. Back to the future: The intimate and evolving connection between telomere-related factors and genotoxic stress. J Biol Chem 2019; 294:14803-14813. [PMID: 31434740 DOI: 10.1074/jbc.aw119.008145] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The conversion of circular genomes to linear chromosomes during molecular evolution required the invention of telomeres. This entailed the acquisition of factors necessary to fulfill two new requirements: the need to fully replicate terminal DNA sequences and the ability to distinguish chromosome ends from damaged DNA. Here we consider the multifaceted functions of factors recruited to perpetuate and stabilize telomeres. We discuss recent theories for how telomere factors evolved from existing cellular machineries and examine their engagement in nontelomeric functions such as DNA repair, replication, and transcriptional regulation. We highlight the remarkable versatility of protection of telomeres 1 (POT1) proteins that was fueled by gene duplication and divergence events that occurred independently across several eukaryotic lineages. Finally, we consider the relationship between oxidative stress and telomeres and the enigmatic role of telomere-associated proteins in mitochondria. These findings point to an evolving and intimate connection between telomeres and cellular physiology and the strong drive to maintain chromosome integrity.
Collapse
Affiliation(s)
- Borja Barbero Barcenilla
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128
| | - Dorothy E Shippen
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128
| |
Collapse
|
8
|
Červenák F, Juríková K, Devillers H, Kaffe B, Khatib A, Bonnell E, Sopkovičová M, Wellinger RJ, Nosek J, Tzfati Y, Neuvéglise C, Tomáška Ľ. Identification of telomerase RNAs in species of the Yarrowia clade provides insights into the co-evolution of telomerase, telomeric repeats and telomere-binding proteins. Sci Rep 2019; 9:13365. [PMID: 31527614 PMCID: PMC6746865 DOI: 10.1038/s41598-019-49628-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 07/29/2019] [Indexed: 12/17/2022] Open
Abstract
Telomeric repeats in fungi of the subphylum Saccharomycotina exhibit great inter- and intra-species variability in length and sequence. Such variations challenged telomeric DNA-binding proteins that co-evolved to maintain their functions at telomeres. Here, we compare the extent of co-variations in telomeric repeats, encoded in the telomerase RNAs (TERs), and the repeat-binding proteins from 13 species belonging to the Yarrowia clade. We identified putative TER loci, analyzed their sequence and secondary structure conservation, and predicted functional elements. Moreover, in vivo complementation assays with mutant TERs showed the functional importance of four novel TER substructures. The TER-derived telomeric repeat unit of all species, except for one, is 10 bp long and can be represented as 5′-TTNNNNAGGG-3′, with repeat sequence variations occuring primarily outside the vertebrate telomeric motif 5′-TTAGGG-3′. All species possess a homologue of the Yarrowia lipolytica Tay1 protein, YlTay1p. In vitro, YlTay1p displays comparable DNA-binding affinity to all repeat variants, suggesting a conserved role among these species. Taken together, these results add significant insights into the co-evolution of TERs, telomeric repeats and telomere-binding proteins in yeasts.
Collapse
Affiliation(s)
- Filip Červenák
- Departments of Genetics and Biochemistry, Comenius University in Bratislava, Faculty of Natural Sciences, Ilkovičova 6, Mlynská dolina, 84215, Bratislava, Slovakia
| | - Katarína Juríková
- Departments of Genetics and Biochemistry, Comenius University in Bratislava, Faculty of Natural Sciences, Ilkovičova 6, Mlynská dolina, 84215, Bratislava, Slovakia
| | - Hugo Devillers
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Binyamin Kaffe
- Department of Genetics, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Safra Campus, Jerusalem, 91904, Israel
| | - Areej Khatib
- Department of Genetics, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Safra Campus, Jerusalem, 91904, Israel
| | - Erin Bonnell
- Department of Microbiology and Infectiology, RNA Group, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada
| | - Martina Sopkovičová
- Departments of Genetics and Biochemistry, Comenius University in Bratislava, Faculty of Natural Sciences, Ilkovičova 6, Mlynská dolina, 84215, Bratislava, Slovakia
| | - Raymund J Wellinger
- Department of Microbiology and Infectiology, RNA Group, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada
| | - Jozef Nosek
- Departments of Genetics and Biochemistry, Comenius University in Bratislava, Faculty of Natural Sciences, Ilkovičova 6, Mlynská dolina, 84215, Bratislava, Slovakia
| | - Yehuda Tzfati
- Department of Genetics, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Safra Campus, Jerusalem, 91904, Israel.
| | - Cécile Neuvéglise
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.
| | - Ľubomír Tomáška
- Departments of Genetics and Biochemistry, Comenius University in Bratislava, Faculty of Natural Sciences, Ilkovičova 6, Mlynská dolina, 84215, Bratislava, Slovakia.
| |
Collapse
|
9
|
Alnafakh RAA, Adishesh M, Button L, Saretzki G, Hapangama DK. Telomerase and Telomeres in Endometrial Cancer. Front Oncol 2019; 9:344. [PMID: 31157162 PMCID: PMC6533802 DOI: 10.3389/fonc.2019.00344] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/15/2019] [Indexed: 12/11/2022] Open
Abstract
Telomeres at the termini of human chromosomes are shortened with each round of cell division due to the “end replication problem” as well as oxidative stress. During carcinogenesis, cells acquire or retain mechanisms to maintain telomeres to avoid initiation of cellular senescence or apoptosis and halting cell division by critically short telomeres. The unique reverse transcriptase enzyme complex, telomerase, catalyzes the maintenance of telomeres but most human somatic cells do not have sufficient telomerase activity to prevent telomere shortening. Tissues with high and prolonged replicative potential demonstrate adequate cellular telomerase activity to prevent telomere erosion, and high telomerase activity appears to be a critical feature of most (80–90%) epithelial cancers, including endometrial cancer. Endometrial cancers regress in response to progesterone which is frequently used to treat advanced endometrial cancer. Endometrial telomerase is inhibited by progestogens and deciphering telomere and telomerase biology in endometrial cancer is therefore important, as targeting telomerase (a downstream target of progestogens) in endometrial cancer may provide novel and more effective therapeutic avenues. This review aims to examine the available evidence for the role and importance of telomere and telomerase biology in endometrial cancer.
Collapse
Affiliation(s)
- Rafah A A Alnafakh
- Liverpool Women's Hospital NHS Foundation Trust, Liverpool, United Kingdom.,Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Meera Adishesh
- Liverpool Women's Hospital NHS Foundation Trust, Liverpool, United Kingdom.,Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Lucy Button
- Liverpool Women's Hospital NHS Foundation Trust, Liverpool, United Kingdom.,Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Gabriele Saretzki
- The Ageing Biology Centre and Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Dharani K Hapangama
- Liverpool Women's Hospital NHS Foundation Trust, Liverpool, United Kingdom.,Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
10
|
The Function of Non-Coding RNAs in Lung Cancer Tumorigenesis. Cancers (Basel) 2019; 11:cancers11050605. [PMID: 31052265 PMCID: PMC6563001 DOI: 10.3390/cancers11050605] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/18/2019] [Accepted: 04/25/2019] [Indexed: 01/08/2023] Open
Abstract
Lung cancer is the most prevalent and deadliest cancer worldwide. A significant part of lung cancer studies is dedicated to the expression alterations of non-coding RNAs. The non-coding RNAs are transcripts that cannot be translated into proteins. While the study of microRNAs and siRNAs in lung cancer received a lot of attention over the last decade, highly efficient therapeutic option or the diagnostic methods based on non-coding RNAs are still lacking. Because of this, it is of utmost importance to direct future research on lung cancer towards analyzing other RNA types for which the currently available data indicates that are essential at modulating lung tumorigenesis. Through our review of studies on this subject, we identify the following non-coding RNAs as tumor suppressors: ts-46, ts-47, ts-101, ts-53, ts-3676, ts-4521 (tRNA fragments), SNORD116-26, HBII-420, SNORD15A, SNORA42 (snoRNAs), piRNA-like-163, piR-35127, the piR-46545 (piRNAs), CHIAP2, LOC100420907, RPL13AP17 (pseudogenes), and uc.454 (T-UCR). We also found non-coding RNAs with tumor-promoting function: tRF-Leu-CAG, tRNA-Leu, tRNA-Val (tRNA fragments), circ-RAD23B, circRNA 100146, circPVT1, circFGFR3, circ_0004015, circPUM1, circFLI1, circABCB10, circHIPK3 (circRNAs), SNORA42, SNORA3, SNORD46, SNORA21, SNORD28, SNORA47, SNORD66, SNORA68, SNORA78 (snoRNAs), piR-65, piR-34871, piR-52200, piR651 (piRNAs), hY4 5’ fragments (YRNAs), FAM83A-AS1, WRAP53, NKX2-1-AS1 (NATs), DUXAP8, SFTA1P (pseudogene transcripts), uc.338, uc.339 (T-UCRs), and hTERC.
Collapse
|
11
|
Zhu Y, Liu X, Ding X, Wang F, Geng X. Telomere and its role in the aging pathways: telomere shortening, cell senescence and mitochondria dysfunction. Biogerontology 2018; 20:1-16. [PMID: 30229407 DOI: 10.1007/s10522-018-9769-1] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 09/12/2018] [Indexed: 01/10/2023]
Abstract
Aging is a biological process characterized by a progressive functional decline in tissues and organs, which eventually leads to mortality. Telomeres, the repetitive DNA repeat sequences at the end of linear eukaryotic chromosomes protecting chromosome ends from degradation and illegitimate recombination, play a crucial role in cell fate and aging. Due to the mechanism of replication, telomeres shorten as cells proliferate, which consequently contributes to cellular senescence and mitochondrial dysfunction. Cells are the basic unit of organismal structure and function, and mitochondria are the powerhouse and metabolic center of cells. Therefore, cellular senescence and mitochondrial dysfunction would result in tissue or organ degeneration and dysfunction followed by somatic aging through multiple pathways. In this review, we summarized the main mechanisms of cellular senescence, mitochondrial malfunction and aging triggered by telomere attrition. Understanding the molecular mechanisms involved in the aging process may elicit new strategies for improving health and extending lifespan.
Collapse
Affiliation(s)
- Yukun Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.,Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China
| | - Xuewen Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.,Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China
| | - Xuelu Ding
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.,Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China
| | - Fei Wang
- Department of Neurology, General Hospital, Tianjin Medical University, Tianjin, 300052, China
| | - Xin Geng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China. .,Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
12
|
Waldl M, Thiel BC, Ochsenreiter R, Holzenleiter A, de Araujo Oliveira JV, Walter MEMT, Wolfinger MT, Stadler PF. TERribly Difficult: Searching for Telomerase RNAs in Saccharomycetes. Genes (Basel) 2018; 9:genes9080372. [PMID: 30049970 PMCID: PMC6115765 DOI: 10.3390/genes9080372] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/17/2018] [Accepted: 07/18/2018] [Indexed: 11/20/2022] Open
Abstract
The telomerase RNA in yeasts is large, usually >1000 nt, and contains functional elements that have been extensively studied experimentally in several disparate species. Nevertheless, they are very difficult to detect by homology-based methods and so far have escaped annotation in the majority of the genomes of Saccharomycotina. This is a consequence of sequences that evolve rapidly at nucleotide level, are subject to large variations in size, and are highly plastic with respect to their secondary structures. Here, we report on a survey that was aimed at closing this gap in RNA annotation. Despite considerable efforts and the combination of a variety of different methods, it was only partially successful. While 27 new telomerase RNAs were identified, we had to restrict our efforts to the subgroup Saccharomycetacea because even this narrow subgroup was diverse enough to require different search models for different phylogenetic subgroups. More distant branches of the Saccharomycotina remain without annotated telomerase RNA.
Collapse
Affiliation(s)
- Maria Waldl
- Institute for Theoretical Chemistry, University of Vienna, Währingerstraße 17, A-1090 Wien, Austria.
| | - Bernhard C Thiel
- Institute for Theoretical Chemistry, University of Vienna, Währingerstraße 17, A-1090 Wien, Austria.
| | - Roman Ochsenreiter
- Institute for Theoretical Chemistry, University of Vienna, Währingerstraße 17, A-1090 Wien, Austria.
| | - Alexander Holzenleiter
- BioInformatics Group, Fakultät CB Hochschule Mittweida, Technikumplatz 17, D-09648 Mittweida, Germany.
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstraße 16-18, D-04107 Leipzig, Germany.
| | - João Victor de Araujo Oliveira
- Departamento de Ciência da Computação, Instituto de Ciências Exatas, Universidade de Brasília, Campus Universitário⁻Asa Norte, Brasília, DF CEP: 70910-900, Brazil.
| | - Maria Emília M T Walter
- Departamento de Ciência da Computação, Instituto de Ciências Exatas, Universidade de Brasília, Campus Universitário⁻Asa Norte, Brasília, DF CEP: 70910-900, Brazil.
| | - Michael T Wolfinger
- Institute for Theoretical Chemistry, University of Vienna, Währingerstraße 17, A-1090 Wien, Austria.
- Center for Anatomy and Cell Biology, Medical University of Vienna, Währingerstraße 13, 1090 Vienna, Austria.
| | - Peter F Stadler
- Institute for Theoretical Chemistry, University of Vienna, Währingerstraße 17, A-1090 Wien, Austria.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Competence Center for Scalable Data Services and Solutions, and Leipzig Research Center for Civilization Diseases, Universität Leipzig, D-04107 Leipzig, Germany.
- Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, D-04103 Leipzig, Germany.
- Santa Fe Institute, 1399 Hyde Park Rd., Santa Fe, NM 87501, USA.
| |
Collapse
|
13
|
|
14
|
Musgrove C, Jansson LI, Stone MD. New perspectives on telomerase RNA structure and function. WILEY INTERDISCIPLINARY REVIEWS-RNA 2017; 9. [PMID: 29124890 DOI: 10.1002/wrna.1456] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/08/2017] [Accepted: 09/18/2017] [Indexed: 12/20/2022]
Abstract
Telomerase is an ancient ribonucleoprotein (RNP) that protects the ends of linear chromosomes from the loss of critical coding sequences through repetitive addition of short DNA sequences. These repeats comprise the telomere, which together with many accessory proteins, protect chromosomal ends from degradation and unwanted DNA repair. Telomerase is a unique reverse transcriptase (RT) that carries its own RNA to use as a template for repeat addition. Over decades of research, it has become clear that there are many diverse, crucial functions played by telomerase RNA beyond simply acting as a template. In this review, we highlight recent findings in three model systems: ciliates, yeast and vertebrates, that have shifted the way the field views the structural and mechanistic role(s) of RNA within the functional telomerase RNP complex. Viewed in this light, we hope to demonstrate that while telomerase RNA is just one example of the myriad functional RNA in the cell, insights into its structure and mechanism have wide-ranging impacts. WIREs RNA 2018, 9:e1456. doi: 10.1002/wrna.1456 This article is categorized under: RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems RNA Structure and Dynamics > RNA Structure, Dynamics and Chemistry RNA Evolution and Genomics > RNA and Ribonucleoprotein Evolution.
Collapse
Affiliation(s)
- Cherie Musgrove
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA, USA
| | - Linnea I Jansson
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Cruz, CA, USA
| | - Michael D Stone
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, USA.,Center for Molecular Biology of RNA, University of California, Santa Cruz, CA, USA
| |
Collapse
|
15
|
Hapangama DK, Kamal A, Saretzki G. Implications of telomeres and telomerase in endometrial pathology. Hum Reprod Update 2017; 23:166-187. [PMID: 27979878 PMCID: PMC5850744 DOI: 10.1093/humupd/dmw044] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 12/02/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Eukaryotic chromosomal ends are linear and are protected by nucleoprotein complexes known as telomeres. The complex structural anatomy and the diverse functions of telomeres as well as the unique reverse transcriptase enzyme, telomerase that maintains telomeres are under intensive scientific scrutiny. Both are involved in many human diseases including cancer, but also in ageing and chronic disease such as diabetes. Their intricate involvement in many cellular processes and pathways is being dynamically deciphered in many organs including the endometrium. This review summarizes our current knowledge on the topic of telomeres and telomerase and their potential role in providing plausible explanations for endometrial aberrations related to common gynaecological pathologies. OBJECTIVE AND RATIONALE This review outlines the recent major findings in telomere and telomerase functions in the context of endometrial biology. It highlights the contemporary discoveries in hormonal regulation, normal endometrial regeneration, stem cells and common gynaecological diseases such as endometriosis, infertility, recurrent reproductive failure and endometrial cancer (EC). SEARCH METHODS The authors carried out systematic PubMed (Medline) and Ovid searches using the key words: telomerase, telomeres, telomere length, human telomerase reverse transcriptase, telomeric RNA component, with endometrium, hormonal regulation, endometrial stem/progenitor cells, endometrial regeneration, endometriosis, recurrent miscarriage, infertility, endometrial hyperplasia, EC and uterine cancer. Publications used in this review date from 1995 until 31st June 2016. OUTCOMES The human endometrium is a unique somatic organ, which displays dynamic telomerase activity (TA) related to the menstrual cycle. Telomerase is implicated in almost all endometrial pathologies and appears to be crucial to endometrial stem cells. In particular, it is vital for normal endometrial regeneration, providing a distinct route to formulate possible curative, non-hormonal therapies to treat chronic endometrial conditions. Furthermore, our current understanding of telomere maintenance in EC is incomplete. Data derived from other malignancies on the role of telomerase in carcinogenesis cannot be extrapolated to EC because unlike in other cancers, TA is already present in proliferating healthy endometrial cells. WIDER IMPLICATIONS Since telomerase is pivotal to endometrial regeneration, further studies elucidating the role of telomeres, telomerase, their associated proteins and their regulation in normal endometrial regeneration as well as their role in endometrial pathologies are essential. This approach may allow future development of novel treatment strategies that are not only non-hormonal but also potentially curative.
Collapse
Affiliation(s)
- D K Hapangama
- Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, L8 7SS, UK.,Liverpool Women's Hospital NHS Foundation Trust, Crown Street, Liverpool L8 7SS, UK
| | - A Kamal
- Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, L8 7SS, UK.,The National Center for Early Detection of Cancer, Oncology Teaching Hospital, Baghdad Medical City, Baghdad, Iraq
| | - G Saretzki
- Institute for Ageing and Institute for Cell and Molecular Biosciences, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
| |
Collapse
|
16
|
TERRA RNA Antagonizes ATRX and Protects Telomeres. Cell 2017; 170:86-101.e16. [PMID: 28666128 DOI: 10.1016/j.cell.2017.06.017] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 05/26/2017] [Accepted: 06/09/2017] [Indexed: 12/20/2022]
Abstract
Through an integration of genomic and proteomic approaches to advance understanding of long noncoding RNAs, we investigate the function of the telomeric transcript, TERRA. By identifying thousands of TERRA target sites in the mouse genome, we demonstrate that TERRA can bind both in cis to telomeres and in trans to genic targets. We then define a large network of interacting proteins, including epigenetic factors, telomeric proteins, and the RNA helicase, ATRX. TERRA and ATRX share hundreds of target genes and are functionally antagonistic at these loci: whereas TERRA activates, ATRX represses gene expression. At telomeres, TERRA competes with telomeric DNA for ATRX binding, suppresses ATRX localization, and ensures telomeric stability. Depleting TERRA increases telomerase activity and induces telomeric pathologies, including formation of telomere-induced DNA damage foci and loss or duplication of telomeric sequences. We conclude that TERRA functions as an epigenomic modulator in trans and as an essential regulator of telomeres in cis.
Collapse
|
17
|
The Telomere/Telomerase System in Chronic Inflammatory Diseases. Cause or Effect? Genes (Basel) 2016; 7:genes7090060. [PMID: 27598205 PMCID: PMC5042391 DOI: 10.3390/genes7090060] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/26/2016] [Accepted: 08/29/2016] [Indexed: 12/23/2022] Open
Abstract
Telomeres are specialized nucleoprotein structures located at the end of linear chromosomes and telomerase is the enzyme responsible for telomere elongation. Telomerase activity is a key component of many cancer cells responsible for rapid cell division but it has also been found by many laboratories around the world that telomere/telomerase biology is dysfunctional in many other chronic conditions as well. These conditions are characterized by chronic inflammation, a situation mostly overlooked by physicians regarding patient treatment. Among others, these conditions include diabetes, renal failure, chronic obstructive pulmonary disease, etc. Since researchers have in many cases identified the association between telomerase and inflammation but there are still many missing links regarding this correlation, the latest findings about this phenomenon will be discussed by reviewing the literature. Our focus will be describing telomere/telomerase status in chronic diseases under the prism of inflammation, reporting molecular findings where available and proposing possible future approaches.
Collapse
|