1
|
Morales F, Corrales E, Vásquez M, Zhang B, Fernández H, Alvarado F, Cortés S, Santamaría-Ulloa C, Initiative-Mmdbdi MMDBD, Krahe R, Monckton DG. Individual-specific levels of CTG•CAG somatic instability are shared across multiple tissues in myotonic dystrophy type 1. Hum Mol Genet 2023; 32:621-631. [PMID: 36099027 DOI: 10.1093/hmg/ddac231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/16/2022] [Accepted: 09/09/2022] [Indexed: 02/07/2023] Open
Abstract
Myotonic dystrophy type 1 is a complex disease caused by a genetically unstable CTG repeat expansion in the 3'-untranslated region of the DMPK gene. Age-dependent, tissue-specific somatic instability has confounded genotype-phenotype associations, but growing evidence suggests that it also contributes directly toward disease progression. Using a well-characterized clinical cohort of DM1 patients from Costa Rica, we quantified somatic instability in blood, buccal cells, skin and skeletal muscle. Whilst skeletal muscle showed the largest expansions, modal allele lengths in skin were also very large and frequently exceeded 2000 CTG repeats. Similarly, the degree of somatic expansion in blood, muscle and skin were associated with each other. Notably, we found that the degree of somatic expansion in skin was highly predictive of that in skeletal muscle. More importantly, we established that individuals whose repeat expanded more rapidly than expected in one tissue (after correction for progenitor allele length and age) also expanded more rapidly than expected in other tissues. We also provide evidence suggesting that individuals in whom the repeat expanded more rapidly than expected in skeletal muscle have an earlier age at onset than expected (after correction for the progenitor allele length). Pyrosequencing analyses of the genomic DNA flanking the CTG repeat revealed that the degree of methylation in muscle was well predicted by the muscle modal allele length and age, but that neither methylation of the flanking DNA nor levels of DMPK sense and anti-sense transcripts could obviously explain individual- or tissue-specific patterns of somatic instability.
Collapse
Affiliation(s)
- Fernando Morales
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, San José 2060, Costa Rica
| | - Eyleen Corrales
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, San José 2060, Costa Rica
| | - Melissa Vásquez
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, San José 2060, Costa Rica
| | - Baili Zhang
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - Huberth Fernández
- Hospital Calderón Guardia/Escuela de Medicina, Universidad de Costa Rica, San José 2060, Costa Rica
| | - Fernando Alvarado
- Hospital Calderón Guardia/Escuela de Medicina, Universidad de Costa Rica, San José 2060, Costa Rica
| | - Sergio Cortés
- Hospital Calderón Guardia/Escuela de Medicina, Universidad de Costa Rica, San José 2060, Costa Rica
| | | | | | - Ralf Krahe
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - Darren G Monckton
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
2
|
Braun M, Shoshani S, Tabach Y. Transcriptome changes in DM1 patients’ tissues are governed by the RNA interference pathway. Front Mol Biosci 2022; 9:955753. [PMID: 36060259 PMCID: PMC9437208 DOI: 10.3389/fmolb.2022.955753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a multisystemic disease caused by pathogenic expansions of CTG repeats. The expanded repeats are transcribed to long RNA and induce cellular toxicity. Recent studies suggest that the CUG repeats are processed by the RNA interference (RNAi) pathway to generate small interfering repeated RNA (siRNA). However, the effects of the CTG repeat-derived siRNAs remain unclear. We hypothesize that the RNAi machinery in DM1 patients generates distinct gene expression patterns that determine the disease phenotype in the individual patient. The abundance of genes with complementary repeats that are targeted by siRNAs in each tissue determines the way that the tissue is affected in DM1. We integrated and analyzed published transcriptome data from muscle, heart, and brain biopsies of DM1 patients, and revealed shared, characteristic changes that correlated with disease phenotype. These signatures are overrepresented by genes and transcription factors bearing endogenous CTG/CAG repeats and are governed by aberrant activity of the RNAi machinery, miRNAs, and a specific gain-of-function of the CTG repeats. Computational analysis of the DM1 transcriptome enhances our understanding of the complex pathophysiology of the disease and may reveal a path for cure.
Collapse
|
3
|
Koehorst E, Núñez-Manchón J, Ballester-López A, Almendrote M, Lucente G, Arbex A, Chojnacki J, Vázquez-Manrique RP, Gómez-Escribano AP, Pintos-Morell G, Coll-Cantí J, Ramos-Fransi A, Martínez-Piñeiro A, Suelves M, Nogales-Gadea G. Characterization of RAN Translation and Antisense Transcription in Primary Cell Cultures of Patients with Myotonic Dystrophy Type 1. J Clin Med 2021; 10:jcm10235520. [PMID: 34884222 PMCID: PMC8658563 DOI: 10.3390/jcm10235520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 11/16/2022] Open
Abstract
Myotonic Dystrophy type 1 (DM1) is a muscular dystrophy with a multi-systemic nature. It was one of the first diseases in which repeat associated non-ATG (RAN) translation was described in 2011, but has not been further explored since. In order to enhance our knowledge of RAN translation in DM1, we decided to study the presence of DM1 antisense (DM1-AS) transcripts (the origin of the polyglutamine (polyGln) RAN protein) using RT-PCR and FISH, and that of RAN translation via immunoblotting and immunofluorescence in distinct DM1 primary cell cultures, e.g., myoblasts, skin fibroblasts and lymphoblastoids, from ten patients. DM1-AS transcripts were found in all DM1 cells, with a lower expression in patients compared to controls. Antisense RNA foci were found in the nuclei and cytoplasm of a subset of DM1 cells. The polyGln RAN protein was undetectable in all three cell types with both approaches. Immunoblots revealed a 42 kD polyGln containing protein, which was most likely the TATA-box-binding protein. Immunofluorescence revealed a cytoplasmic aggregate, which co-localized with the Golgi apparatus. Taken together, DM1-AS transcript levels were lower in patients compared to controls and a small portion of the transcripts included the expanded repeat. However, RAN translation was not present in patient-derived DM1 cells, or was in undetectable quantities for the available methods.
Collapse
Affiliation(s)
- Emma Koehorst
- Neuromuscular and Neuropediatric Research Group, Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain; (E.K.); (J.N.-M.); (A.B.-L.); (M.A.); (G.L.); (A.A.); (G.P.-M.); (J.C.-C.); (A.R.-F.); (A.M.-P.); (M.S.)
| | - Judit Núñez-Manchón
- Neuromuscular and Neuropediatric Research Group, Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain; (E.K.); (J.N.-M.); (A.B.-L.); (M.A.); (G.L.); (A.A.); (G.P.-M.); (J.C.-C.); (A.R.-F.); (A.M.-P.); (M.S.)
| | - Alfonsina Ballester-López
- Neuromuscular and Neuropediatric Research Group, Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain; (E.K.); (J.N.-M.); (A.B.-L.); (M.A.); (G.L.); (A.A.); (G.P.-M.); (J.C.-C.); (A.R.-F.); (A.M.-P.); (M.S.)
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain; (R.P.V.-M.); (A.P.G.-E.)
| | - Miriam Almendrote
- Neuromuscular and Neuropediatric Research Group, Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain; (E.K.); (J.N.-M.); (A.B.-L.); (M.A.); (G.L.); (A.A.); (G.P.-M.); (J.C.-C.); (A.R.-F.); (A.M.-P.); (M.S.)
- Neuromuscular Pathology Unit, Neurology Service, Neuroscience Department, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain
| | - Giuseppe Lucente
- Neuromuscular and Neuropediatric Research Group, Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain; (E.K.); (J.N.-M.); (A.B.-L.); (M.A.); (G.L.); (A.A.); (G.P.-M.); (J.C.-C.); (A.R.-F.); (A.M.-P.); (M.S.)
- Neuromuscular Pathology Unit, Neurology Service, Neuroscience Department, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain
| | - Andrea Arbex
- Neuromuscular and Neuropediatric Research Group, Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain; (E.K.); (J.N.-M.); (A.B.-L.); (M.A.); (G.L.); (A.A.); (G.P.-M.); (J.C.-C.); (A.R.-F.); (A.M.-P.); (M.S.)
- Neuromuscular Pathology Unit, Neurology Service, Neuroscience Department, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain
| | | | - Rafael P. Vázquez-Manrique
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain; (R.P.V.-M.); (A.P.G.-E.)
- Laboratory of Molecular, Cellular and Genomic Biomedicine, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
- Joint Unit for Rare Diseases IIS La Fe-CIPF, 46012 Valencia, Spain
| | - Ana Pilar Gómez-Escribano
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain; (R.P.V.-M.); (A.P.G.-E.)
- Laboratory of Molecular, Cellular and Genomic Biomedicine, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
- Joint Unit for Rare Diseases IIS La Fe-CIPF, 46012 Valencia, Spain
| | - Guillem Pintos-Morell
- Neuromuscular and Neuropediatric Research Group, Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain; (E.K.); (J.N.-M.); (A.B.-L.); (M.A.); (G.L.); (A.A.); (G.P.-M.); (J.C.-C.); (A.R.-F.); (A.M.-P.); (M.S.)
- Reference Unit for Hereditary Metabolic Disorders (MetabERN), Vall d’Hebron University Hospital, 08035 Barcelona, Spain
| | - Jaume Coll-Cantí
- Neuromuscular and Neuropediatric Research Group, Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain; (E.K.); (J.N.-M.); (A.B.-L.); (M.A.); (G.L.); (A.A.); (G.P.-M.); (J.C.-C.); (A.R.-F.); (A.M.-P.); (M.S.)
- Neuromuscular Pathology Unit, Neurology Service, Neuroscience Department, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain
| | - Alba Ramos-Fransi
- Neuromuscular and Neuropediatric Research Group, Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain; (E.K.); (J.N.-M.); (A.B.-L.); (M.A.); (G.L.); (A.A.); (G.P.-M.); (J.C.-C.); (A.R.-F.); (A.M.-P.); (M.S.)
- Neuromuscular Pathology Unit, Neurology Service, Neuroscience Department, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain
| | - Alicia Martínez-Piñeiro
- Neuromuscular and Neuropediatric Research Group, Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain; (E.K.); (J.N.-M.); (A.B.-L.); (M.A.); (G.L.); (A.A.); (G.P.-M.); (J.C.-C.); (A.R.-F.); (A.M.-P.); (M.S.)
- Neuromuscular Pathology Unit, Neurology Service, Neuroscience Department, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain
| | - Mònica Suelves
- Neuromuscular and Neuropediatric Research Group, Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain; (E.K.); (J.N.-M.); (A.B.-L.); (M.A.); (G.L.); (A.A.); (G.P.-M.); (J.C.-C.); (A.R.-F.); (A.M.-P.); (M.S.)
| | - Gisela Nogales-Gadea
- Neuromuscular and Neuropediatric Research Group, Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain; (E.K.); (J.N.-M.); (A.B.-L.); (M.A.); (G.L.); (A.A.); (G.P.-M.); (J.C.-C.); (A.R.-F.); (A.M.-P.); (M.S.)
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain; (R.P.V.-M.); (A.P.G.-E.)
- Correspondence: ; Tel.: +34-930330530
| |
Collapse
|
4
|
Liu J, Guo ZN, Yan XL, Yang Y, Huang S. Brain Pathogenesis and Potential Therapeutic Strategies in Myotonic Dystrophy Type 1. Front Aging Neurosci 2021; 13:755392. [PMID: 34867280 PMCID: PMC8634727 DOI: 10.3389/fnagi.2021.755392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 10/20/2021] [Indexed: 12/17/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is the most common muscular dystrophy that affects multiple systems including the muscle and heart. The mutant CTG expansion at the 3'-UTR of the DMPK gene causes the expression of toxic RNA that aggregate as nuclear foci. The foci then interfere with RNA-binding proteins, affecting hundreds of mis-spliced effector genes, leading to aberrant alternative splicing and loss of effector gene product functions, ultimately resulting in systemic disorders. In recent years, increasing clinical, imaging, and pathological evidence have indicated that DM1, though to a lesser extent, could also be recognized as true brain diseases, with more and more researchers dedicating to develop novel therapeutic tools dealing with it. In this review, we summarize the current advances in the pathogenesis and pathology of central nervous system (CNS) deficits in DM1, intervention measures currently being investigated are also highlighted, aiming to promote novel and cutting-edge therapeutic investigations.
Collapse
Affiliation(s)
- Jie Liu
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Zhen-Ni Guo
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Xiu-Li Yan
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
| | - Yi Yang
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Shuo Huang
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| |
Collapse
|
5
|
Verdile V, Guizzo G, Ferrante G, Paronetto MP. RNA Targeting in Inherited Neuromuscular Disorders: Novel Therapeutic Strategies to Counteract Mis-Splicing. Cells 2021; 10:cells10112850. [PMID: 34831073 PMCID: PMC8616048 DOI: 10.3390/cells10112850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/08/2021] [Accepted: 10/18/2021] [Indexed: 01/14/2023] Open
Abstract
Neuromuscular disorders represent multifaceted abnormal conditions, with little or no cure, leading to patient deaths from complete muscle wasting and atrophy. Despite strong efforts in the past decades, development of effective treatments is still urgently needed. Advent of next-generation sequencing technologies has allowed identification of novel genes and mutations associated with neuromuscular pathologies, highlighting splicing defects as essential players. Deciphering the significance and relative contributions of defective RNA metabolism will be instrumental to address and counteract these malignancies. We review here recent progress on the role played by alternative splicing in ensuring functional neuromuscular junctions (NMJs), and its involvement in the pathogenesis of NMJ-related neuromuscular disorders, with particular emphasis on congenital myasthenic syndromes and muscular dystrophies. We will also discuss novel strategies based on oligonucleotides designed to bind their cognate sequences in the RNA or targeting intermediary of mRNA metabolism. These efforts resulted in several chemical classes of RNA molecules that have recently proven to be clinically effective, more potent and better tolerated than previous strategies.
Collapse
Affiliation(s)
- Veronica Verdile
- Laboratory of Molecular and Cellular Neurobiology, Fondazione Santa Lucia, CERC, 00143 Rome, Italy; (V.V.); (G.G.); (G.F.)
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 6, 00135 Rome, Italy
| | - Gloria Guizzo
- Laboratory of Molecular and Cellular Neurobiology, Fondazione Santa Lucia, CERC, 00143 Rome, Italy; (V.V.); (G.G.); (G.F.)
| | - Gabriele Ferrante
- Laboratory of Molecular and Cellular Neurobiology, Fondazione Santa Lucia, CERC, 00143 Rome, Italy; (V.V.); (G.G.); (G.F.)
| | - Maria Paola Paronetto
- Laboratory of Molecular and Cellular Neurobiology, Fondazione Santa Lucia, CERC, 00143 Rome, Italy; (V.V.); (G.G.); (G.F.)
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 6, 00135 Rome, Italy
- Correspondence:
| |
Collapse
|
6
|
Todorow V, Hintze S, Kerr ARW, Hehr A, Schoser B, Meinke P. Transcriptome Analysis in a Primary Human Muscle Cell Differentiation Model for Myotonic Dystrophy Type 1. Int J Mol Sci 2021; 22:8607. [PMID: 34445314 PMCID: PMC8395314 DOI: 10.3390/ijms22168607] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/30/2021] [Accepted: 08/06/2021] [Indexed: 01/01/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1) is caused by CTG-repeat expansions leading to a complex pathology with a multisystemic phenotype that primarily affects the muscles and brain. Despite a multitude of information, especially on the alternative splicing of several genes involved in the pathology, information about additional factors contributing to the disease development is still lacking. We performed RNAseq and gene expression analyses on proliferating primary human myoblasts and differentiated myotubes. GO-term analysis indicates that in myoblasts and myotubes, different molecular pathologies are involved in the development of the muscular phenotype. Gene set enrichment for splicing reveals the likelihood of whole, differentiation stage specific, splicing complexes that are misregulated in DM1. These data add complexity to the alternative splicing phenotype and we predict that it will be of high importance for therapeutic interventions to target not only mature muscle, but also satellite cells.
Collapse
Affiliation(s)
- Vanessa Todorow
- Department of Neurology, Friedrich-Baur-Institute, LMU Klinikum, Ludwig-Maximilians-University Munich, 80336 Munich, Germany
| | - Stefan Hintze
- Department of Neurology, Friedrich-Baur-Institute, LMU Klinikum, Ludwig-Maximilians-University Munich, 80336 Munich, Germany
| | - Alastair R W Kerr
- Cancer Biomarker Centre, CRUK Manchester Institute, University of Manchester, Manchester SK10 4TG, UK
| | - Andreas Hehr
- Centre for Human Genetics, 93047 Regensburg, Germany
| | - Benedikt Schoser
- Department of Neurology, Friedrich-Baur-Institute, LMU Klinikum, Ludwig-Maximilians-University Munich, 80336 Munich, Germany
| | - Peter Meinke
- Department of Neurology, Friedrich-Baur-Institute, LMU Klinikum, Ludwig-Maximilians-University Munich, 80336 Munich, Germany
| |
Collapse
|
7
|
Koscianska E, Kozlowska E, Fiszer A. Regulatory Potential of Competing Endogenous RNAs in Myotonic Dystrophies. Int J Mol Sci 2021; 22:6089. [PMID: 34200099 PMCID: PMC8201210 DOI: 10.3390/ijms22116089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023] Open
Abstract
Non-coding RNAs (ncRNAs) have been reported to be implicated in cell fate determination and various human diseases. All ncRNA molecules are emerging as key regulators of diverse cellular processes; however, little is known about the regulatory interaction among these various classes of RNAs. It has been proposed that the large-scale regulatory network across the whole transcriptome is mediated by competing endogenous RNA (ceRNA) activity attributed to both protein-coding and ncRNAs. ceRNAs are considered to be natural sponges of miRNAs that can influence the expression and availability of multiple miRNAs and, consequently, the global mRNA and protein levels. In this review, we summarize the current understanding of the role of ncRNAs in two neuromuscular diseases, myotonic dystrophy type 1 and 2 (DM1 and DM2), and the involvement of expanded CUG and CCUG repeat-containing transcripts in miRNA-mediated RNA crosstalk. More specifically, we discuss the possibility that long repeat tracts present in mutant transcripts can be potent miRNA sponges and may affect ceRNA crosstalk in these diseases. Moreover, we highlight practical information related to innovative disease modelling and studying RNA regulatory networks in cells. Extending knowledge of gene regulation by ncRNAs, and of complex regulatory ceRNA networks in DM1 and DM2, will help to address many questions pertinent to pathogenesis and treatment of these disorders; it may also help to better understand general rules of gene expression and to discover new rules of gene control.
Collapse
Affiliation(s)
- Edyta Koscianska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland; (E.K.); (A.F.)
| | | | | |
Collapse
|
8
|
The Biomarker Potential of miRNAs in Myotonic Dystrophy Type I. J Clin Med 2020; 9:jcm9123939. [PMID: 33291833 PMCID: PMC7762003 DOI: 10.3390/jcm9123939] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/19/2020] [Accepted: 12/01/2020] [Indexed: 02/08/2023] Open
Abstract
MicroRNAs (miRNAs) are mostly known for their gene regulation properties, but they also play an important role in intercellular signaling. This means that they can be found in bodily fluids, giving them excellent biomarker potential. Myotonic Dystrophy type I (DM1) is the most frequent autosomal dominant muscle dystrophy in adults, with an estimated prevalence of 1:8000. DM1 symptoms include muscle weakness, myotonia, respiratory failure, cardiac conduction defects, cataracts, and endocrine disturbances. Patients display heterogeneity in both age of onset and disease manifestation. No treatment or cure currently exists for DM1, which shows the necessity for a biomarker that can predict disease progression, providing the opportunity to implement preventative measures before symptoms arise. In the past two decades, extensive research has been conducted in the miRNA expression profiles of DM1 patients and their biomarker potential. Here we review the current state of the field with a tissue-specific focus, given the multi-systemic nature of DM1 and the intracellular signaling role of miRNAs.
Collapse
|
9
|
Wansink DG, Gourdon G, van Engelen BGM, Schoser B. 248th ENMC International Workshop: Myotonic dystrophies: Molecular approaches for clinical purposes, framing a European molecular research network, Hoofddorp, the Netherlands, 11-13 October 2019. Neuromuscul Disord 2020; 30:521-531. [PMID: 32417002 DOI: 10.1016/j.nmd.2020.03.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 01/11/2023]
Affiliation(s)
- Derick G Wansink
- Radboud Institute for Molecular Life Sciences, Department of Cell Biology, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Geneviève Gourdon
- Inserm UMR 974, Sorbonne Université, Centre de Recherche en Myologie, Association Institut de Myologie, 75013 Paris, France
| | - Baziel G M van Engelen
- Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Radboud University Medical Center, 6525 GC Nijmegen, the Netherlands
| | - Benedikt Schoser
- Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-University, Munich, Germany.
| |
Collapse
|
10
|
Abstract
Studies on myotonic dystrophy type 1 (DM1) have led to the RNA-mediated disease model for hereditary disorders caused by noncoding microsatellite expansions. This model proposes that DM1 disease manifestations are caused by a reversion to fetal RNA processing patterns in adult tissues due to the expression of toxic CUG RNA expansions (CUGexp) leading to decreased muscleblind-like, but increased CUGBP1/ETR3-like factor 1 (CELF1), alternative splicing activities. Here, we test this model in vivo, using the mouse HSA LR poly(CUG) model for DM1 and recombinant adeno-associated virus (rAAV)-mediated transduction of specific splicing factors. Surprisingly, systemic overexpression of HNRNPA1, not previously linked to DM1, also shifted DM1-relevant splicing targets to fetal isoforms, resulting in more severe muscle weakness/myopathy as early as 4 to 6 wk posttransduction, whereas rAAV controls were unaffected. Overexpression of HNRNPA1 promotes fetal exon inclusion of representative DM1-relevant splicing targets in differentiated myoblasts, and HITS-CLIP of rAAV-mycHnrnpa1-injected muscle revealed direct interactions of HNRNPA1 with these targets in vivo. Similar to CELF1, HNRNPA1 protein levels decrease during postnatal development, but are elevated in both regenerating mouse muscle and DM1 skeletal muscle. Our studies suggest that CUGexp RNA triggers abnormal expression of multiple nuclear RNA binding proteins, including CELF1 and HNRNPA1, that antagonize MBNL activity to promote fetal splicing patterns.
Collapse
|
11
|
Ausems CRM, Raaijmakers RHL, van den Broek WJAA, Willemse M, van Engelen BGM, Wansink DG, van Bokhoven H. Intrinsic Myogenic Potential of Skeletal Muscle-Derived Pericytes from Patients with Myotonic Dystrophy Type 1. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 15:120-132. [PMID: 31649961 PMCID: PMC6804802 DOI: 10.1016/j.omtm.2019.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 09/04/2019] [Indexed: 12/21/2022]
Abstract
Pericytes are multipotent, vessel-associated progenitors that exhibit high proliferative capacity, can cross the blood-muscle barrier, and have the ability to home to muscle tissue and contribute to myogenesis. Consequently, pericyte-based therapies hold great promise for muscular dystrophies. A complex multi-system disorder exhibiting muscular dystrophy for which pericytes might be a valuable cell source is myotonic dystrophy type 1 (DM1). DM1 is caused by an unstable (CTG)n repeat in the DMPK gene and characterized by skeletal muscle weakness, muscle wasting, and myotonia. We have successfully isolated alkaline phosphatase-positive pericytes from skeletal muscle of DM1 patients and a transgenic mouse model. Intranuclear (CUG)n RNA foci, a pathogenic DM1 hallmark, were identified in human and mouse pericytes. Notably, pericytes from DM1 patients maintained similar growth parameters and innate myogenic characteristics in vitro compared to cells from unaffected controls. Our in vitro results thus demonstrate the potential of pericytes to ameliorate muscle features in DM1 in a therapeutic setting.
Collapse
Affiliation(s)
- Cornelia Rosanne Maria Ausems
- Department of Human Genetics, Radboud University Medical Center, Donders lnstitute for Brain Cognition and Behavior, 6525 GA Nijmegen, the Netherlands.,Department of Neurology, Radboud University Medical Center, Donders lnstitute for Brain Cognition and Behavior, 6500 HB Nijmegen, the Netherlands.,Department of Cell Biology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, 6525 GA Nijmegen, the Netherlands
| | - Renée Henrica Lamberta Raaijmakers
- Department of Human Genetics, Radboud University Medical Center, Donders lnstitute for Brain Cognition and Behavior, 6525 GA Nijmegen, the Netherlands.,Department of Neurology, Radboud University Medical Center, Donders lnstitute for Brain Cognition and Behavior, 6500 HB Nijmegen, the Netherlands.,Department of Cell Biology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, 6525 GA Nijmegen, the Netherlands
| | | | - Marieke Willemse
- Department of Cell Biology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, 6525 GA Nijmegen, the Netherlands
| | - Baziel Gerardus Maria van Engelen
- Department of Neurology, Radboud University Medical Center, Donders lnstitute for Brain Cognition and Behavior, 6500 HB Nijmegen, the Netherlands
| | - Derick Gert Wansink
- Department of Cell Biology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, 6525 GA Nijmegen, the Netherlands
| | - Hans van Bokhoven
- Department of Human Genetics, Radboud University Medical Center, Donders lnstitute for Brain Cognition and Behavior, 6525 GA Nijmegen, the Netherlands
| |
Collapse
|
12
|
Raaijmakers RHL, Ripken L, Ausems CRM, Wansink DG. CRISPR/Cas Applications in Myotonic Dystrophy: Expanding Opportunities. Int J Mol Sci 2019; 20:ijms20153689. [PMID: 31357652 PMCID: PMC6696057 DOI: 10.3390/ijms20153689] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 02/06/2023] Open
Abstract
CRISPR/Cas technology holds promise for the development of therapies to treat inherited diseases. Myotonic dystrophy type 1 (DM1) is a severe neuromuscular disorder with a variable multisystemic character for which no cure is yet available. Here, we review CRISPR/Cas-mediated approaches that target the unstable (CTG•CAG)n repeat in the DMPK/DM1-AS gene pair, the autosomal dominant mutation that causes DM1. Expansion of the repeat results in a complex constellation of toxicity at the DNA level, an altered transcriptome and a disturbed proteome. To restore cellular homeostasis and ameliorate DM1 disease symptoms, CRISPR/Cas approaches were directed at the causative mutation in the DNA and the RNA. Specifically, the triplet repeat has been excised from the genome by several laboratories via dual CRISPR/Cas9 cleavage, while one group prevented transcription of the (CTG)n repeat through homology-directed insertion of a polyadenylation signal in DMPK. Independently, catalytically deficient Cas9 (dCas9) was recruited to the (CTG)n repeat to block progression of RNA polymerase II and a dCas9-RNase fusion was shown to degrade expanded (CUG)n RNA. We compare these promising developments in DM1 with those in other microsatellite instability diseases. Finally, we look at hurdles that must be taken to make CRISPR/Cas-mediated editing a therapeutic reality in patients.
Collapse
Affiliation(s)
- Renée H L Raaijmakers
- Department of Cell Biology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, 6525 GA Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain Cognition and Behavior, 6525 GA Nijmegen, The Netherlands
| | - Lise Ripken
- Department of Cell Biology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, 6525 GA Nijmegen, The Netherlands
| | - C Rosanne M Ausems
- Department of Cell Biology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, 6525 GA Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain Cognition and Behavior, 6525 GA Nijmegen, The Netherlands
| | - Derick G Wansink
- Department of Cell Biology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, 6525 GA Nijmegen, The Netherlands.
| |
Collapse
|
13
|
Hu J, Rong Z, Gong X, Zhou Z, Sharma VK, Xing C, Watts JK, Corey DR, Mootha VV. Oligonucleotides targeting TCF4 triplet repeat expansion inhibit RNA foci and mis-splicing in Fuchs' dystrophy. Hum Mol Genet 2019; 27:1015-1026. [PMID: 29325021 PMCID: PMC5886168 DOI: 10.1093/hmg/ddy018] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/03/2018] [Indexed: 12/21/2022] Open
Abstract
Fuchs' endothelial corneal dystrophy (FECD) is the most common repeat expansion disorder. FECD impacts 4% of U.S. population and is the leading indication for corneal transplantation. Most cases are caused by an expanded intronic CUG tract in the TCF4 gene that forms nuclear foci, sequesters splicing factors and impairs splicing. We investigated the sense and antisense RNA landscape at the FECD gene and find that the sense-expanded repeat transcript is the predominant species in patient corneas. In patient tissue, sense foci number were negatively correlated with age and showed no correlation with sex. Each endothelial cell has ∼2 sense foci and each foci is single RNA molecule. We designed antisense oligonucleotides (ASOs) to target the mutant-repetitive RNA and demonstrated potent inhibition of foci in patient-derived cells. Ex vivo treatment of FECD human corneas effectively inhibits foci and reverses pathological changes in splicing. FECD has the potential to be a model for treating many trinucleotide repeat diseases and targeting the TCF4 expansion with ASOs represents a promising therapeutic strategy to prevent and treat FECD.
Collapse
Affiliation(s)
- Jiaxin Hu
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA.,Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, USA.,Department of Ophthalmology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Ziye Rong
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, TX, USA.,McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, TX, USA
| | - Xin Gong
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Zhengyang Zhou
- McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, TX, USA.,Department of Statistical Science, Southern Methodist University, Dallas, TX, USA
| | - Vivek K Sharma
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA.,Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Chao Xing
- McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, TX, USA.,Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA.,Department of Clinical Sciences, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jonathan K Watts
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA.,Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - David R Corey
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA.,Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, USA
| | - V Vinod Mootha
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, TX, USA.,McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
14
|
Wang Y, Hao L, Wang H, Santostefano K, Thapa A, Cleary J, Li H, Guo X, Terada N, Ashizawa T, Xia G. Therapeutic Genome Editing for Myotonic Dystrophy Type 1 Using CRISPR/Cas9. Mol Ther 2018; 26:2617-2630. [PMID: 30274788 PMCID: PMC6225032 DOI: 10.1016/j.ymthe.2018.09.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 08/30/2018] [Accepted: 09/06/2018] [Indexed: 12/18/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is caused by a CTG nucleotide repeat expansion within the 3' UTR of the Dystrophia Myotonica protein kinase gene. In this study, we explored therapeutic genome editing using CRISPR/Cas9 via targeted deletion of expanded CTG repeats and targeted insertion of polyadenylation signals in the 3' UTR upstream of the CTG repeats to eliminate toxic RNA CUG repeats. We found paired SpCas9 or SaCas9 guide RNA induced deletion of expanded CTG repeats. However, this approach incurred frequent inversion in both the mutant and normal alleles. In contrast, the insertion of polyadenylation signals in the 3' UTR upstream of the CTG repeats eliminated toxic RNA CUG repeats, which led to phenotype reversal in differentiated neural stem cells, forebrain neurons, cardiomyocytes, and skeletal muscle myofibers. We concluded that targeted insertion of polyadenylation signals in the 3' UTR is a viable approach to develop therapeutic genome editing for DM1.
Collapse
Affiliation(s)
- Yanlin Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Henan 450000, China
| | - Lei Hao
- Department of Neurology, The Fifth People's Hospital of Chongqing, Chongqing 400062, China
| | - Hongcai Wang
- Department of Neurology, Affiliated Hospital of Binzhou Medical University, Binzhou City, Shandong Province, China; Department of Neurology, University of New Mexico, Albuquerque, NM, USA
| | - Katherine Santostefano
- Department of Pathology, Immunology & Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Arjun Thapa
- Department of Neurology, University of New Mexico, Albuquerque, NM, USA
| | - John Cleary
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA
| | - Hui Li
- Department of Neurology, University of Wisconsin, Madison, WI, USA
| | - Xiuming Guo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Naohiro Terada
- Department of Pathology, Immunology & Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Tetsuo Ashizawa
- Houston Methodist Neurological Institute and Research Institute, 6670 Bertner Ave. R11-117, Houston, TX, USA
| | - Guangbin Xia
- Department of Neurology, University of New Mexico, Albuquerque, NM, USA; Department of Neuroscience, University of New Mexico, Albuquerque, NM, USA.
| |
Collapse
|
15
|
Braz SO, Acquaire J, Gourdon G, Gomes-Pereira M. Of Mice and Men: Advances in the Understanding of Neuromuscular Aspects of Myotonic Dystrophy. Front Neurol 2018; 9:519. [PMID: 30050493 PMCID: PMC6050950 DOI: 10.3389/fneur.2018.00519] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 06/12/2018] [Indexed: 12/26/2022] Open
Abstract
Intensive effort has been directed toward the modeling of myotonic dystrophy (DM) in mice, in order to reproduce human disease and to provide useful tools to investigate molecular and cellular pathogenesis and test efficient therapies. Mouse models have contributed to dissect the multifaceted impact of the DM mutation in various tissues, cell types and in a pleiotropy of pathways, through the expression of toxic RNA transcripts. Changes in alternative splicing, transcription, translation, intracellular RNA localization, polyadenylation, miRNA metabolism and phosphorylation of disease intermediates have been described in different tissues. Some of these events have been directly associated with specific disease symptoms in the skeletal muscle and heart of mice, offering the molecular explanation for individual disease phenotypes. In the central nervous system (CNS), however, the situation is more complex. We still do not know how the molecular abnormalities described translate into CNS dysfunction, nor do we know if the correction of individual molecular events will provide significant therapeutic benefits. The variability in model design and phenotypes described so far requires a thorough and critical analysis. In this review we discuss the recent contributions of mouse models to the understanding of neuromuscular aspects of disease, therapy development, and we provide a reflective assessment of our current limitations and pressing questions that remain unanswered.
Collapse
Affiliation(s)
- Sandra O Braz
- Laboratory CTGDM, INSERM UMR1163, Paris, France.,Institut Imagine, Université Paris Descartes-Sorbonne Paris Cité, Paris, France
| | - Julien Acquaire
- Laboratory CTGDM, INSERM UMR1163, Paris, France.,Institut Imagine, Université Paris Descartes-Sorbonne Paris Cité, Paris, France
| | - Geneviève Gourdon
- Laboratory CTGDM, INSERM UMR1163, Paris, France.,Institut Imagine, Université Paris Descartes-Sorbonne Paris Cité, Paris, France
| | - Mário Gomes-Pereira
- Laboratory CTGDM, INSERM UMR1163, Paris, France.,Institut Imagine, Université Paris Descartes-Sorbonne Paris Cité, Paris, France
| |
Collapse
|
16
|
André LM, Ausems CRM, Wansink DG, Wieringa B. Abnormalities in Skeletal Muscle Myogenesis, Growth, and Regeneration in Myotonic Dystrophy. Front Neurol 2018; 9:368. [PMID: 29892259 PMCID: PMC5985300 DOI: 10.3389/fneur.2018.00368] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/07/2018] [Indexed: 12/16/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) and 2 (DM2) are autosomal dominant degenerative neuromuscular disorders characterized by progressive skeletal muscle weakness, atrophy, and myotonia with progeroid features. Although both DM1 and DM2 are characterized by skeletal muscle dysfunction and also share other clinical features, the diseases differ in the muscle groups that are affected. In DM1, distal muscles are mainly affected, whereas in DM2 problems are mostly found in proximal muscles. In addition, manifestation in DM1 is generally more severe, with possible congenital or childhood-onset of disease and prominent CNS involvement. DM1 and DM2 are caused by expansion of (CTG•CAG)n and (CCTG•CAGG)n repeats in the 3' non-coding region of DMPK and in intron 1 of CNBP, respectively, and in overlapping antisense genes. This critical review will focus on the pleiotropic problems that occur during development, growth, regeneration, and aging of skeletal muscle in patients who inherited these expansions. The current best-accepted idea is that most muscle symptoms can be explained by pathomechanistic effects of repeat expansion on RNA-mediated pathways. However, aberrations in DNA replication and transcription of the DM loci or in protein translation and proteome homeostasis could also affect the control of proliferation and differentiation of muscle progenitor cells or the maintenance and physiological integrity of muscle fibers during a patient's lifetime. Here, we will discuss these molecular and cellular processes and summarize current knowledge about the role of embryonic and adult muscle-resident stem cells in growth, homeostasis, regeneration, and premature aging of healthy and diseased muscle tissue. Of particular interest is that also progenitor cells from extramuscular sources, such as pericytes and mesoangioblasts, can participate in myogenic differentiation. We will examine the potential of all these types of cells in the application of regenerative medicine for muscular dystrophies and evaluate new possibilities for their use in future therapy of DM.
Collapse
Affiliation(s)
- Laurène M André
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - C Rosanne M Ausems
- Department of Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, Netherlands
| | - Derick G Wansink
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Bé Wieringa
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
17
|
Wojciechowska M, Sobczak K, Kozlowski P, Sedehizadeh S, Wojtkowiak-Szlachcic A, Czubak K, Markus R, Lusakowska A, Kaminska A, Brook JD. Quantitative Methods to Monitor RNA Biomarkers in Myotonic Dystrophy. Sci Rep 2018; 8:5885. [PMID: 29651162 PMCID: PMC5897446 DOI: 10.1038/s41598-018-24156-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 03/22/2018] [Indexed: 12/18/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) and type 2 (DM2) are human neuromuscular disorders associated with mutations of simple repetitive sequences in affected genes. The abnormal expansion of CTG repeats in the 3'-UTR of the DMPK gene elicits DM1, whereas elongated CCTG repeats in intron 1 of ZNF9/CNBP triggers DM2. Pathogenesis of both disorders is manifested by nuclear retention of expanded repeat-containing RNAs and aberrant alternative splicing. The precise determination of absolute numbers of mutant RNA molecules is important for a better understanding of disease complexity and for accurate evaluation of the efficacy of therapeutic drugs. We present two quantitative methods, Multiplex Ligation-Dependent Probe Amplification and droplet digital PCR, for studying the mutant DMPK transcript (DMPKexpRNA) and the aberrant alternative splicing in DM1 and DM2 human tissues and cells. We demonstrate that in DM1, the DMPKexpRNA is detected in higher copy number than its normal counterpart. Moreover, the absolute number of the mutant transcript indicates its low abundance with only a few copies per cell in DM1 fibroblasts. Most importantly, in conjunction with fluorescence in-situ hybridization experiments, our results suggest that in DM1 fibroblasts, the vast majority of nuclear RNA foci consist of a few molecules of DMPKexpRNA.
Collapse
Affiliation(s)
- Marzena Wojciechowska
- University of Nottingham, Queen's Medical Centre, School of Life Sciences, Nottingham, NG7 2UH, United Kingdom. .,Institute of Bioorganic Chemistry, Polish Academy of Sciences, Department of Molecular Genetics, Poznan, 61-704, Poland.
| | - Krzysztof Sobczak
- Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Department of Gene Expression, Poznan, 60-614, Poland
| | - Piotr Kozlowski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Department of Molecular Genetics, Poznan, 61-704, Poland
| | - Saam Sedehizadeh
- University of Nottingham, Queen's Medical Centre, School of Life Sciences, Nottingham, NG7 2UH, United Kingdom
| | - Agnieszka Wojtkowiak-Szlachcic
- Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Department of Gene Expression, Poznan, 60-614, Poland
| | - Karol Czubak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Department of Molecular Genetics, Poznan, 61-704, Poland
| | - Robert Markus
- University of Nottingham, Queen's Medical Centre, School of Life Sciences, Nottingham, NG7 2UH, United Kingdom
| | - Anna Lusakowska
- Medical University of Warsaw, Department of Neurology, Warsaw, 02-097, Poland
| | - Anna Kaminska
- Medical University of Warsaw, Department of Neurology, Warsaw, 02-097, Poland
| | - J David Brook
- University of Nottingham, Queen's Medical Centre, School of Life Sciences, Nottingham, NG7 2UH, United Kingdom.
| |
Collapse
|
18
|
Abstract
More than 40 diseases, most of which primarily affect the nervous system, are caused by expansions of simple sequence repeats dispersed throughout the human genome. Expanded trinucleotide repeat diseases were discovered first and remain the most frequent. More recently tetra-, penta-, hexa-, and even dodeca-nucleotide repeat expansions have been identified as the cause of human disease, including some of the most common genetic disorders seen by neurologists. Repeat expansion diseases include both causes of myotonic dystrophy (DM1 and DM2), the most common genetic cause of amyotrophic lateral sclerosis/frontotemporal dementia (C9ORF72), Huntington disease, and eight other polyglutamine disorders, including the most common forms of dominantly inherited ataxia, the most common recessive ataxia (Friedreich ataxia), and the most common heritable mental retardation (fragile X syndrome). Here I review distinctive features of this group of diseases that stem from the unusual, dynamic nature of the underlying mutations. These features include marked clinical heterogeneity and the phenomenon of clinical anticipation. I then discuss the diverse molecular mechanisms driving disease pathogenesis, which vary depending on the repeat sequence, size, and location within the disease gene, and whether the repeat is translated into protein. I conclude with a brief clinical and genetic description of individual repeat expansion diseases that are most relevant to neurologists.
Collapse
Affiliation(s)
- Henry Paulson
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
19
|
Nakamori M, Hamanaka K, Thomas JD, Wang ET, Hayashi YK, Takahashi MP, Swanson MS, Nishino I, Mochizuki H. Aberrant Myokine Signaling in Congenital Myotonic Dystrophy. Cell Rep 2017; 21:1240-1252. [PMID: 29091763 PMCID: PMC5689469 DOI: 10.1016/j.celrep.2017.10.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/02/2017] [Accepted: 10/04/2017] [Indexed: 02/07/2023] Open
Abstract
Myotonic dystrophy types 1 (DM1) and 2 (DM2) are dominantly inherited neuromuscular disorders caused by a toxic gain of function of expanded CUG and CCUG repeats, respectively. Although both disorders are clinically similar, congenital myotonic dystrophy (CDM), a severe DM form, is found only in DM1. CDM is also characterized by muscle fiber immaturity not observed in adult DM, suggesting specific pathological mechanisms. Here, we revealed upregulation of the interleukin-6 (IL-6) myokine signaling pathway in CDM muscles. We also found a correlation between muscle immaturity and not only IL-6 expression but also expanded CTG repeat length and CpG methylation status upstream of the repeats. Aberrant CpG methylation was associated with transcriptional dysregulation at the repeat locus, increasing the toxic RNA burden that upregulates IL-6. Because the IL-6 pathway is involved in myocyte maturation and muscle atrophy, our results indicate that enhanced RNA toxicity contributes to severe CDM phenotypes through aberrant IL-6 signaling.
Collapse
Affiliation(s)
- Masayuki Nakamori
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan.
| | - Kohei Hamanaka
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan
| | - James D Thomas
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Eric T Wang
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Yukiko K Hayashi
- Department of Pathophysiology, Tokyo Medical University, Shinjuku, Tokyo 160-0022, Japan
| | - Masanori P Takahashi
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan; Department of Functional Diagnostic Science, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Maurice S Swanson
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan
| | - Hideki Mochizuki
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| |
Collapse
|
20
|
Rohilla KJ, Gagnon KT. RNA biology of disease-associated microsatellite repeat expansions. Acta Neuropathol Commun 2017; 5:63. [PMID: 28851463 PMCID: PMC5574247 DOI: 10.1186/s40478-017-0468-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/22/2017] [Indexed: 12/13/2022] Open
Abstract
Microsatellites, or simple tandem repeat sequences, occur naturally in the human genome and have important roles in genome evolution and function. However, the expansion of microsatellites is associated with over two dozen neurological diseases. A common denominator among the majority of these disorders is the expression of expanded tandem repeat-containing RNA, referred to as xtrRNA in this review, which can mediate molecular disease pathology in multiple ways. This review focuses on the potential impact that simple tandem repeat expansions can have on the biology and metabolism of RNA that contain them and underscores important gaps in understanding. Merging the molecular biology of repeat expansion disorders with the current understanding of RNA biology, including splicing, transcription, transport, turnover and translation, will help clarify mechanisms of disease and improve therapeutic development.
Collapse
|
21
|
Morriss GR, Cooper TA. Protein sequestration as a normal function of long noncoding RNAs and a pathogenic mechanism of RNAs containing nucleotide repeat expansions. Hum Genet 2017; 136:1247-1263. [PMID: 28484853 DOI: 10.1007/s00439-017-1807-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 04/28/2017] [Indexed: 12/12/2022]
Abstract
An emerging class of long noncoding RNAs (lncRNAs) function as decoy molecules that bind and sequester proteins thereby inhibiting their normal functions. Titration of proteins by lncRNAs has wide-ranging effects affecting nearly all steps in gene expression. While decoy lncRNAs play a role in normal physiology, RNAs expressed from alleles containing nucleotide repeat expansions can be pathogenic due to protein sequestration resulting in disruption of normal functions. This review focuses on commonalities between decoy lncRNAs that regulate gene expression by competitive inhibition of protein function through sequestration and specific examples of nucleotide repeat expansion disorders mediated by toxic RNA that sequesters RNA-binding proteins and impedes their normal functions. Understanding how noncoding RNAs compete with various RNA and DNA molecules for binding of regulatory proteins will provide insight into how similar mechanisms contribute to disease pathogenesis.
Collapse
Affiliation(s)
- Ginny R Morriss
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Thomas A Cooper
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, 77030, USA. .,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA. .,Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
22
|
Ziegler C, Kretz M. The More the Merrier-Complexity in Long Non-Coding RNA Loci. Front Endocrinol (Lausanne) 2017; 8:90. [PMID: 28487673 PMCID: PMC5403818 DOI: 10.3389/fendo.2017.00090] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 04/06/2017] [Indexed: 12/12/2022] Open
Affiliation(s)
- Christian Ziegler
- Institute of Biochemistry, Genetics and Microbiology, University of Regensburg, Regensburg, Germany
| | - Markus Kretz
- Institute of Biochemistry, Genetics and Microbiology, University of Regensburg, Regensburg, Germany
- *Correspondence: Markus Kretz,
| |
Collapse
|