1
|
Ghahramani Almanghadim H, Karimi B, Valizadeh S, Ghaedi K. Biological functions and affected signaling pathways by Long Non-Coding RNAs in the immune system. Noncoding RNA Res 2025; 10:70-90. [PMID: 39315339 PMCID: PMC11417496 DOI: 10.1016/j.ncrna.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/14/2024] [Accepted: 09/01/2024] [Indexed: 09/25/2024] Open
Abstract
Recently, the various regulative functions of long non-coding RNAs (LncRNAs) have been well determined. Recently, the vital role of LncRNAs as gene regulators has been identified in the immune system, especially in the inflammatory response. All cells of the immune system are governed by a complex and ever-changing gene expression program that is regulated through both transcriptional and post-transcriptional processes. LncRNAs regulate gene expression within the cell nucleus by influencing transcription or through post-transcriptional processes that affect the splicing, stability, or translation of messenger RNAs (mRNAs). Recent studies in immunology have revealed substantial alterations in the expression of lncRNAs during the activation of the innate immune system as well as the development, differentiation, and activation of T cells. These lncRNAs regulate key aspects of immune function, including the manufacturing of inflammatory molecules, cellular distinction, and cell movement. They do this by modulating protein-protein interactions or through base pairing with RNA and DNA. Here we review the current understanding of the mechanism of action of lncRNAs as novel immune-related regulators and their impact on physiological and pathological processes related to the immune system, including autoimmune diseases. We also highlight the emerging pattern of gene expression control in important research areas at the intersection between immunology and lncRNA biology.
Collapse
Affiliation(s)
| | - Bahareh Karimi
- Department of Cellular and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Sepehr Valizadeh
- Department of Internal Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kamran Ghaedi
- Department of Cell and Molecular Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| |
Collapse
|
2
|
Farhan SH, Jasim SA, Bansal P, Kaur H, Abed Jawad M, Qasim MT, Jabbar AM, Deorari M, Alawadi A, Hadi A. Exosomal Non-coding RNA Derived from Mesenchymal Stem Cells (MSCs) in Autoimmune Diseases Progression and Therapy; an Updated Review. Cell Biochem Biophys 2024; 82:3091-3108. [PMID: 39225902 DOI: 10.1007/s12013-024-01432-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2024] [Indexed: 09/04/2024]
Abstract
Inflammation and autoimmune diseases (AD) are common outcomes of an overactive immune system. Inflammation occurs due to the immune system reacting to damaging stimuli. Exosomes are being recognized as an advanced therapeutic approach for addressing an overactive immune system, positioning them as a promising option for treating AD. Mesenchymal stem cells (MSCs) release exosomes that have strong immunomodulatory effects, influenced by their cell of origin. MSCs-exosomes, being a cell-free therapy, exhibit less toxicity and provoke a diminished immune response compared to cell-based therapies. Exosomal non-coding RNAs (ncRNA), particularly microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are intricately linked to various biological and functional aspects of human health. Exosomal ncRNAs can lead to tissue malfunction, aging, and illnesses when they experience tissue-specific alterations as a result of various internal or external problems. In this study, we will examine current trends in exosomal ncRNA researches regarding AD. Then, therapeutic uses of MSCs-exosomal ncRNA will be outlined, with a particle focus on the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Shireen Hamid Farhan
- Biotechnology department, College of Applied Science, Fallujah University, Fallujah, Iraq
| | | | - Pooja Bansal
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, India
| | - Harpreet Kaur
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh, India
- Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand, India
| | - Mohammed Abed Jawad
- Department of Medical Laboratories Technology, Al-Nisour University College, Baghdad, Iraq.
| | - Maytham T Qasim
- College of Health and Medical Technology, Al-Ayen University, Thi-Qar, Iraq
| | - Abeer Mhussan Jabbar
- College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq.
| | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Ahmed Alawadi
- College of technical engineering, the Islamic University, Najaf, Iraq
- College of technical engineering, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of technical engineering, the Islamic University of Babylon, Babylon, Iraq
| | - Ali Hadi
- Department of medical laboratories techniques, Imam Ja'afar Al-Sadiq University, Al-Muthanna, Iraq
| |
Collapse
|
3
|
Kadian LK, Verma D, Lohani N, Yadav R, Ranga S, Gulshan G, Pal S, Kumari K, Chauhan SS. Long non-coding RNAs in cancer: multifaceted roles and potential targets for immunotherapy. Mol Cell Biochem 2024; 479:3229-3254. [PMID: 38413478 DOI: 10.1007/s11010-024-04933-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 01/05/2024] [Indexed: 02/29/2024]
Abstract
Cancer remains a major global health concern with high mortality rates mainly due to late diagnosis and poor prognosis. Long non-coding RNAs (lncRNAs) are emerging as key regulators of gene expression in human cancer, functioning through various mechanisms including as competing endogenous RNAs (ceRNAs) and indirectly regulating miRNA expression. LncRNAs have been found to have both oncogenic and tumor-suppressive roles in cancer, with the former promoting cancer cell proliferation, migration, invasion, and poor prognosis. Recent research has shown that lncRNAs are expressed in various immune cells and are involved in cancer cell immune escape and the modulation of the tumor microenvironment, thus highlighting their potential as targets for cancer immunotherapy. Targeting lncRNAs in cancer or immune cells could enhance the anti-tumor immune response and improve cancer immunotherapy outcomes. However, further research is required to fully understand the functional roles of lncRNAs in cancer and the immune system and their potential as targets for cancer immunotherapy. This review offers a comprehensive examination of the multifaceted roles of lncRNAs in human cancers, with a focus on their potential as targets for cancer immunotherapy. By exploring the intricate mechanisms underlying lncRNA-mediated regulation of cancer cell proliferation, invasion, and immune evasion, we provide insights into the diverse therapeutic applications of these molecules.
Collapse
Affiliation(s)
- Lokesh K Kadian
- Dept of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
- Dept of Dermatology, Indiana University School of Medicine, Indianapolis, 46202, USA
| | - Deepika Verma
- Dept of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Neelam Lohani
- Dept of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Ritu Yadav
- Dept of Genetics, MD University, Rohtak, 124001, India
| | - Shalu Ranga
- Dept of Genetics, MD University, Rohtak, 124001, India
| | - Gulshan Gulshan
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, Maharashtra, India
| | - Sanghapriya Pal
- Dept of Biochemistry, Maulana Azad Medical College and Associated Hospital, New Delhi, 110002, India
| | - Kiran Kumari
- Dept of Forensic Science, Lovely Professional University, Jalandhar, Punjab, 144411, India
| | - Shyam S Chauhan
- Dept of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
4
|
Lu J, Ma H, Wang Q, Song Z, Wang J. Chemotherapy-mediated lncRNA-induced immune cell plasticity in cancer immunopathogenesis. Int Immunopharmacol 2024; 141:112967. [PMID: 39181018 DOI: 10.1016/j.intimp.2024.112967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/05/2024] [Accepted: 08/15/2024] [Indexed: 08/27/2024]
Abstract
Tumor cells engage with the immune system in a complex manner, utilizing evasion and adaptability mechanisms. The development of cancer and resistance to treatment relies on the ability of immune cells to adjust their phenotype and function in response to cues from the tumor microenvironment, known as immunological cell plasticity. This study delves into the role of long non-coding RNAs (lncRNAs) in enhancing immune cell flexibility in cancer, focusing on their regulatory actions in the tumor microenvironment and potential therapeutic implications. Through a comprehensive review of existing literature, the study analyzes the impact of lncRNAs on macrophages, T-cells, and MDSCs, as well as the influence of cytokines and growth factors like TNF, IL-6, HGF, and TGFβ on immunological cell plasticity and tumor immunoediting. LncRNAs exert a strong influence on immune cell plasticity through mechanisms such as transcriptional regulation, post-transcriptional modifications, and chromatin remodeling. These RNA molecules intricately modulate gene expression networks, acting as scaffolding, decoys, guides, and sponges. Moreover, both direct cell-cell interactions and soluble chemicals in the tumor microenvironment contribute to enhancing immune cell activation and survival. Understanding the influence of lncRNAs on immune cell flexibility sheds light on the biological pathways of immune evasion and cancer progression. Targeting long non-coding RNAs holds promise for amplifying anti-tumor immunity and overcoming drug resistance in cancer treatment. However, further research is necessary to determine the therapeutic potential of manipulating lncRNAs in the tumor microenvironment.
Collapse
Affiliation(s)
- Jingyuan Lu
- Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China.
| | - Haowei Ma
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Qian Wang
- Division of Hematology and Solid Tumor Oncology, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Zhiheng Song
- Plasma Applied Physics Lab, C&J Nyheim Plasma Institute, Drexel University, 200 Federal St, Suite 500, Camden, NJ 08103.
| | - Jinli Wang
- School of Medicine, Department of Epidemiology and Biochemistry and Molecular & Cellular Biology, Georgetown University, 3700 O ST NW, Washington, DC 20057.
| |
Collapse
|
5
|
Bose GS, Jindal S, Landage KG, Jindal A, Mahale MP, Kulkarni AP, Mittal S. SMAR1 and p53-regulated lncRNA RP11-431M3.1 enhances HIF1A translation via miR-138 in colorectal cancer cells under oxidative stress. FEBS J 2024; 291:4696-4713. [PMID: 39240540 DOI: 10.1111/febs.17253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/16/2024] [Accepted: 08/14/2024] [Indexed: 09/07/2024]
Abstract
Eukaryotic cells respond to stress by altering coding and non-coding gene expression programs. Alongside many approaches and regulatory mechanisms, long non-coding RNAs (lncRNA) are finding a significant place in gene regulation, suggesting an involvement in various cellular processes and pathophysiology. LncRNAs are regulated by many transcription factors, including SMAR1 and p53, which are tumor suppressor genes. SMAR1 inhibits cancer cell metastasis and invasion and is also known to inhibit apoptosis during low-dose stress in coordination with p53. Data mining analysis suggested that these tumor suppressor genes might coregulate the lncRNA RP11-431M3.1 in colon cancer cells. Importantly, RP11-431M3.1 expression was found to be negatively correlated with patient survival rates in a number of cancers. Oxidative stress occurs when an imbalance in the body is caused by reactive oxygen species (ROS). This imbalance is known to be important in the development/pathogenesis of colon cancer. We are researching the role and control of this lncRNA in HCT116 cells under conditions of oxidative stress. We observed a dose-dependent differential expression of lncRNA upon H2O2 treatment and found that p53 and SMAR1 bind differentially to the promoter in response to the dose of stress inducer used. RP11-431M3.1 was observed to sponge miR-138 which has an important target gene, hypoxia-inducible factor (HIF1A). miR-138 was observed to bind differentially to RP11-431M3.1 and HIF1A RNA depending on the dose of oxidative stress. Furthermore, the knockdown of RP11-431M3.1 decreased the migration and proliferation of colon cancer cells. Our results suggest a previously undescribed regulatory mechanism through which RP11-431M3.1 is transcriptionally regulated by SMAR1 and p53, target HIF1A through miR-138, and highlight its potential as a therapeutic and diagnostic marker for cancer.
Collapse
Affiliation(s)
- Ganesh Suraj Bose
- Department of Biotechnology, Savitribai Phule Pune University, India
| | - Shruti Jindal
- Department of Biotechnology, Savitribai Phule Pune University, India
| | | | - Aarzoo Jindal
- Department of Biotechnology, Savitribai Phule Pune University, India
| | | | | | - Smriti Mittal
- Department of Biotechnology, Savitribai Phule Pune University, India
| |
Collapse
|
6
|
Rajabi A, Saber A, Kluiver J, van den Berg A, Hosseinpourfeizi MA, Safaralizadeh R. NEAT1 and CHROMR lncRNAs: a promising diagnostic tool for diffuse large B-cell lymphoma especially in elderly patients. Biomark Med 2024; 18:685-693. [PMID: 39263799 PMCID: PMC11404575 DOI: 10.1080/17520363.2024.2389036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 07/29/2024] [Indexed: 09/13/2024] Open
Abstract
Background: Long non-coding (lnc) RNAs have crucial regulatory roles in molecular pathways, and their dysregulation is associated with the pathogenesis of malignancies such as Diffuse large B-cell lymphoma (DLBCL). Therefore, we aimed to study the NEAT1 and CHROMR expression in DLBCL and explore their association with clinicopathological characteristics.Methods & materials: DLBCL and non-tumor lymph node specimens were obtained to assess the expression levels.Results: NEAT1 and CHROMR expressions were significantly increased in DLBCL, and were linked with the age of DLBCL patients (aged >60). NEAT1 and CHROMR overexpression may serve as moderate-to-good diagnostic biomarkers, with NEAT1 and CHROMR exhibiting area under the curve values of 0.781 and 0.831, respectively.
Collapse
MESH Headings
- Humans
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/diagnosis
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/pathology
- Male
- Aged
- Female
- Middle Aged
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Adult
- Gene Expression Regulation, Neoplastic
- Aged, 80 and over
- Prognosis
- ROC Curve
Collapse
Affiliation(s)
- Ali Rajabi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, 5166/15731, Iran
| | - Ali Saber
- Dr. Saber Medical Genetics Laboratory, Almas Complex, Namaz Blvd., Golsar, Rasht, Gilan, 4165685538, Iran
| | - Joost Kluiver
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, 9700RB, The Netherlands
| | - Anke van den Berg
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, 9700RB, The Netherlands
| | | | - Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, 5166/15731, Iran
| |
Collapse
|
7
|
Saleh RO, Jasim SA, Kadhum WR, Hjazi A, Faraz A, Abid MK, Yumashev A, Alawadi A, Aiad IAZ, Alsalamy A. Exploring the detailed role of interleukins in cancer: A comprehensive review of literature. Pathol Res Pract 2024; 257:155284. [PMID: 38663179 DOI: 10.1016/j.prp.2024.155284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/25/2024] [Accepted: 03/30/2024] [Indexed: 05/12/2024]
Abstract
The cancer cells that are not normal can grow into tumors, invade surrounding tissues, and travel to other parts of the body via the lymphatic or circulatory systems. Interleukins, a vital class of signaling proteins, facilitate cell-to-cell contact within the immune system. A type of non-coding RNA known as lncRNAs mediates its actions by regulating miRNA-mRNA roles (Interleukins). Because of their dual function in controlling the growth of tumors and altering the immune system's response to cancer cells, interleukins have been extensively studied concerning cancer. Understanding the complex relationships between interleukins, the immune system, the tumor microenvironment, and the components of interleukin signaling pathways that impact the miRNA-mRNA axis, including lncRNAs, has advanced significantly in cancer research. Due to the significant and all-encompassing influence of interleukins on the immune system and the development and advancement of cancers, lncRNAs play a crucial role in cancer research by modulating interleukins. Their diverse effects on immune system regulation, tumor growth encouragement, and tumor inhibition make them appealing candidates for potential cancer treatments and diagnostics. A deeper understanding of the relationship between the biology of interleukin and lncRNAs will likely result in more effective immunotherapy strategies and individualized cancer treatments.
Collapse
Affiliation(s)
- Raed Obaid Saleh
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Iraq
| | - Saade Abdalkareem Jasim
- Pharmacy Department, Al-Huda University College, Anbar, Iraq; Biotechnology Department, College of Applied Science, Fallujah University, Anbar, Iraq.
| | - Wesam R Kadhum
- Department of Pharmacy, Kut University College, Kut, Wasit 52001, Iraq; Advanced Research Center, Kut University College, Kut, Wasit 52001, Iraq
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Ali Faraz
- Department of Basic Medical Sciences, College of Medicine, Majmaah University, Majmaah 11952, Saudi Arabia.
| | - Mohammed Kadhem Abid
- Department of Anesthesia, College of Health & Medical Technology, Al-Ayen University, Thi-Qar, Iraq
| | - Alexey Yumashev
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Ahmed Alawadi
- College of Technical Engineering, the Islamic University, Najaf, Iraq; College of Technical Engineering, the Islamic University of Al Diwaniyah, Iraq; College of Technical Engineering, the Islamic University of Babylon, Iraq
| | - Ibrahim Ahmed Zaki Aiad
- Department of Pediatrics, General Medicine Practice Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia
| | - Ali Alsalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna 66002, Iraq
| |
Collapse
|
8
|
Alrefai AA, Abouelenin MAH, Salman MMA, Tawfeek GAE, Abbas MA. Expression profile of long-noncoding RNAs MIR31HG, NKILA, and PACER in systemic lupus erythematosus patients. Clin Biochem 2024; 126:110734. [PMID: 38395324 DOI: 10.1016/j.clinbiochem.2024.110734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 01/09/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
OBJECTIVES Growing evidence suggests that systemic lupus erythematosus (SLE), an organ-damaging systemic autoimmune illness, may be influenced by long-noncoding RNAs (lncRNAs). This study aimed to assess the relative expression of lncRNAs (MIR31HG, NKILA, and PACER) in patients with SLE to evaluate their role in the disease. DESIGN AND METHODS This study involved 70 patients with SLE and 70 apparently healthy control subjects. The expression levels of lnc-MIR31HG, NKILA, and PACER were quantified using real-time PCR. RESULTS Lnc-MIR31HG, NKILA, and PACER were significantly upregulated in SLE cases compared to controls (P < 0.001). ROC curve analysis revealed a 91.43 % sensitivity of PACER for the diagnosis of SLE at a cutoff point of > 1.46, followed by NKILA with 90 % sensitivity at a cutoff point of > 1.16, and MIR31HG with 85.71 % sensitivity at a cutoff point of > 1.43. MIR31HG had the highest sensitivity for the diagnosis of lupus nephritis (86.67 %) at a cutoff point of > 7.19, then NKILA with 80 % sensitivity at a cutoff point of > 8.12, and finally PACER expression with 73.33 % sensitivity at a cutoff point of > 18.19. Moreover, MIR31HG and NKILA revealed a significant correlation with albumin/creatinine ratio, estimated glomerular filtration rate, and the SLEDAI score. Regression analysis revealed the potential roles of MIR31HG, NKILA, and PACER expression as predictors for SLE. CONCLUSION An upregulated lncRNA panel (MIR31HG, NKILA, and PACER) could play a role in the pathogenesis and, hence, the predispositiontoSLE. MIR31HG and NKILA can serve as prognostic markers significantly linked with disease activity.
Collapse
Affiliation(s)
- Abeer A Alrefai
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt; Department of Biochemistry- Faculty of Medicine, Umm-Al Qura University, Saudi Arabia.
| | - Mai A H Abouelenin
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt.
| | - Maha M A Salman
- Department of Physical Medicine, Rheumatology and Rehabilitation, Faculty of Medicine, Menoufia University, Menoufia, Egypt.
| | - Gehan A E Tawfeek
- Department of Clinical Pathology, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Mona A Abbas
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt.
| |
Collapse
|
9
|
Lin Q, Zhu J, Hu Y. Involvement of lncRNAs in the tumor microenvironment: a new property of tumor immunity. Cancer Biol Med 2023; 20:j.issn.2095-3941.2023.0163. [PMID: 37646231 PMCID: PMC10476471 DOI: 10.20892/j.issn.2095-3941.2023.0163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/14/2023] [Indexed: 09/01/2023] Open
Affiliation(s)
- Qingyu Lin
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
- Zhengzhou Research Institute of Harbin Institute of Technology, Zhengzhou 450000, China
- Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, Zhengzhou 450000, China
| | - Jiaqi Zhu
- Zhengzhou Research Institute of Harbin Institute of Technology, Zhengzhou 450000, China
- School of Astronautics, Harbin Institute of Technology, Harbin 150001, China
| | - Ying Hu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
- Zhengzhou Research Institute of Harbin Institute of Technology, Zhengzhou 450000, China
- Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, Zhengzhou 450000, China
| |
Collapse
|
10
|
Elazazy O, Midan HM, Shahin RK, Elesawy AE, Elballal MS, Sallam AAM, Elbadry AMM, Elrebehy MA, Bhnsawy A, Doghish AS. Long non-coding RNAs and rheumatoid arthritis: Pathogenesis and clinical implications. Pathol Res Pract 2023; 246:154512. [PMID: 37172525 DOI: 10.1016/j.prp.2023.154512] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023]
Abstract
Long non-coding RNAs (lncRNAs) are a class of noncoding RNAs with a length larger than 200 nucleotides that participate in various diseases and biological processes as they can control gene expression by different mechanisms. Rheumatoid arthritis (RA) is an inflammatory autoimmune disorder characterized by symmetrical destructive destruction of distal joints as well as extra-articular involvement. Different studies have documented and proven the abnormal expression of lncRNAs in RA patients. Various lncRNAs have proven potential as biomarkers and targets for diagnosing, prognosis and treating RA. This review will focus on RA pathogenesis, clinical implications, and related lncRNA expressions that help to identify new biomarkers and treatment targets.
Collapse
Affiliation(s)
- Ola Elazazy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt
| | - Heba M Midan
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt
| | - Reem K Shahin
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt
| | - Ahmed E Elesawy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt
| | - Al-Aliaa M Sallam
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt
| | - Abdullah M M Elbadry
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt.
| | - Abdelmenem Bhnsawy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr, Cairo 11231, Egypt.
| |
Collapse
|
11
|
Chen P, Cai M, Feng YJ, Li C, Dong ZQ, Xiao WF, Tang L, Zhu Y, Tian T, Deng BY, Pan MH, Lu C. Apoptosis-related long non-coding RNA LINC5438 of Bombyx mori promotes the proliferation of BmNPV. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 191:105380. [PMID: 36963947 DOI: 10.1016/j.pestbp.2023.105380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/12/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
Apoptosis, as an important part of the immune response, is one of the core events in the host-virus interaction. Studies have shown that long non-coding RNAs (lncRNAs) play important roles in the process of cell apoptosis and pathophysiology. To investigate the apoptosis-related lncRNAs involved in Bombyx mori nucleopolyhedrovirus (BmNPV) infecting silkworms, transcriptome sequencing was conducted based on silkworm cells infected with BmNPV before and after B. mori inhibitor of apoptosis (Bmiap) gene knockout. A total of 23 differentially expressed lncRNAs were identified as being associated with the mitochondrial apoptosis pathway. Moreover, we demonstrated that B. mori LINC5438 has the function of inhibiting apoptosis in silkworm cells. Overexpression of LINC5438 promoted the proliferation of BmNPV, while interference with LINC5438 inhibited its proliferation, indicating that LINC5438 plays an important role in BmNPV infection. Our results also showed that LINC5438 can regulate the expression of Bmiap, BmDronc, BmICE, and its predicted target gene BmAIF, suggesting that LINC5438 may function through the mitochondrial pathway. These findings provide important insights into the mechanisms of virus-host interaction and the applications of baculoviruses as biological insecticides.
Collapse
Affiliation(s)
- Peng Chen
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei 400715, China
| | - Min Cai
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei 400715, China
| | - Yu-Jie Feng
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei 400715, China
| | - Cong Li
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei 400715, China
| | - Zhan-Qi Dong
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei 400715, China
| | - Wen-Fu Xiao
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei 400715, China; Sericultural Research Institute Sichuan Academy of Agricultural Sciences, Nanchong 637000, China
| | - Liang Tang
- Sericulture Technology Promotion Station of Guangxi, Nanning 530007, China
| | - Yan Zhu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei 400715, China
| | - Ting Tian
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei 400715, China
| | - Bo-Yuan Deng
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei 400715, China
| | - Min-Hui Pan
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei 400715, China.
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei 400715, China.
| |
Collapse
|
12
|
Long Noncoding RNA: A Novel Insight into the Pathogenesis of Acute Lung Injury. J Clin Med 2023; 12:jcm12020604. [PMID: 36675533 PMCID: PMC9861694 DOI: 10.3390/jcm12020604] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/03/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Acute lung injury (ALI) and its severe form, acute respiratory distress syndrome (ARDS), represent an acute stage of lung inflammation where the alveolar epithelium loses its functionality. ALI has a devastating impact on the population as it not only has a high rate of incidence, but also has high rates of morbidity and mortality. Due to the involvement of multiple factors, the pathogenesis of ALI is complex and is not fully understood yet. Long noncoding RNAs (lncRNAs) are a group of non-protein-coding transcripts longer than 200 nucleotides. Growing evidence has shown that lncRNAs have a decisive role in the pathogenesis of ALI. LncRNAs can either promote or hinder the development of ALI in various cell types in the lungs. Mechanistically, current studies have found that lncRNAs play crucial roles in the pathogenesis of ALI via the regulation of small RNAs (e.g., microRNAs) or downstream proteins. Undoubtedly, lncRNAs not only have the potential to reveal the underlying mechanisms of ALI pathogenesis but also serve as diagnostic and therapeutic targets for the therapy of ALI.
Collapse
|
13
|
Guan X, Sun Y, Zhang C. LncRNAs in blood cells: Roles in cell development and potential pathogenesis in hematological malignancies. Crit Rev Oncol Hematol 2022; 180:103849. [DOI: 10.1016/j.critrevonc.2022.103849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 09/11/2022] [Accepted: 10/12/2022] [Indexed: 11/24/2022] Open
|
14
|
MacPherson RA, Shankar V, Sunkara LT, Hannah RC, Campbell MR, Anholt RRH, Mackay TFC. Pleiotropic fitness effects of the lncRNA Uhg4 in Drosophila melanogaster. BMC Genomics 2022; 23:781. [PMID: 36451091 PMCID: PMC9710044 DOI: 10.1186/s12864-022-08972-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/26/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) are a diverse class of RNAs that are critical for gene regulation, DNA repair, and splicing, and have been implicated in development, stress response, and cancer. However, the functions of many lncRNAs remain unknown. In Drosophila melanogaster, U snoRNA host gene 4 (Uhg4) encodes an antisense long noncoding RNA that is host to seven small nucleolar RNAs (snoRNAs). Uhg4 is expressed ubiquitously during development and in all adult tissues, with maximal expression in ovaries; however, it has no annotated function(s). RESULTS We used CRISPR-Cas9 germline gene editing to generate multiple deletions spanning the promoter region and first exon of Uhg4. Females showed arrested egg development and both males and females were sterile. In addition, Uhg4 deletion mutants showed delayed development and decreased viability, and changes in sleep and responses to stress. Whole-genome RNA sequencing of Uhg4 deletion flies and their controls identified co-regulated genes and genetic interaction networks associated with Uhg4. Gene ontology analyses highlighted a broad spectrum of biological processes, including regulation of transcription and translation, morphogenesis, and stress response. CONCLUSION Uhg4 is a lncRNA essential for reproduction with pleiotropic effects on multiple fitness traits.
Collapse
Affiliation(s)
- Rebecca A MacPherson
- Center for Human Genetics and Department of Genetics and Biochemistry, Clemson University, 114 Gregor Mendel Circle, Greenwood, SC, 29646, USA
| | - Vijay Shankar
- Center for Human Genetics and Department of Genetics and Biochemistry, Clemson University, 114 Gregor Mendel Circle, Greenwood, SC, 29646, USA
| | - Lakshmi T Sunkara
- Present adress: Clemson Veterinary Diagnostic Center, Livestock Poultry Health, Clemson University, 500 Clemson Road, Columbia, SC, 29229, USA
| | - Rachel C Hannah
- Center for Human Genetics and Department of Genetics and Biochemistry, Clemson University, 114 Gregor Mendel Circle, Greenwood, SC, 29646, USA
| | - Marion R Campbell
- Center for Human Genetics and Department of Genetics and Biochemistry, Clemson University, 114 Gregor Mendel Circle, Greenwood, SC, 29646, USA
| | - Robert R H Anholt
- Center for Human Genetics and Department of Genetics and Biochemistry, Clemson University, 114 Gregor Mendel Circle, Greenwood, SC, 29646, USA.
| | - Trudy F C Mackay
- Center for Human Genetics and Department of Genetics and Biochemistry, Clemson University, 114 Gregor Mendel Circle, Greenwood, SC, 29646, USA.
| |
Collapse
|
15
|
Zohar K, Giladi E, Eliyahu T, Linial M. Oxidative Stress and Its Modulation by Ladostigil Alter the Expression of Abundant Long Non-Coding RNAs in SH-SY5Y Cells. Noncoding RNA 2022; 8:ncrna8060072. [PMID: 36412908 PMCID: PMC9680243 DOI: 10.3390/ncrna8060072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/11/2022] [Accepted: 10/19/2022] [Indexed: 12/14/2022] Open
Abstract
Neurodegenerative disorders, brain injury, and the decline in cognitive function with aging are accompanied by a reduced capacity of cells in the brain to cope with oxidative stress and inflammation. In this study, we focused on the response to oxidative stress in SH-SY5Y, a human neuroblastoma cell line. We monitored the viability of the cells in the presence of oxidative stress. Such stress was induced by hydrogen peroxide or by Sin1 (3-morpholinosydnonimine) that generates reactive oxygen and nitrogen species (ROS and RNS). Both stressors caused significant cell death. Our results from the RNA-seq experiments show that SH-SY5Y cells treated with Sin1 for 24 h resulted in 94 differently expressed long non-coding RNAs (lncRNAs), including many abundant ones. Among the abundant lncRNAs that were upregulated by exposing the cells to Sin1 were those implicated in redox homeostasis, energy metabolism, and neurodegenerative diseases (e.g., MALAT1, MIAT, GABPB1-AS1, NEAT1, MIAT, GABPB1-AS1, and HAND2-AS1). Another group of abundant lncRNAs that were significantly altered under oxidative stress included cancer-related SNHG family members. We tested the impact of ladostigil, a bifunctional reagent with antioxidant and anti-inflammatory properties, on the lncRNA expression levels. Ladostigil was previously shown to enhance learning and memory in the brains of elderly rats. In SH-SY5Y cells, several lncRNAs involved in transcription regulation and the chromatin structure were significantly induced by ladostigil. We anticipate that these poorly studied lncRNAs may act as enhancers (eRNA), regulating transcription and splicing, and in competition for miRNA binding (ceRNA). We found that the induction of abundant lncRNAs, such as MALAT1, NEAT-1, MIAT, and SHNG12, by the Sin1 oxidative stress paradigm specifies only the undifferentiated cell state. We conclude that a global alteration in the lncRNA profiles upon stress in SH-SY5Y may shift cell homeostasis and is an attractive in vitro system to characterize drugs that impact the redox state of the cells and their viability.
Collapse
|
16
|
Xuan R, Zhao X, Li Q, Zhao Y, Wang Y, Du S, Duan Q, Guo Y, Ji Z, Chao T, Wang J. Characterization of long noncoding RNA in nonlactating goat mammary glands reveals their regulatory role in mammary cell involution and remodeling. Int J Biol Macromol 2022; 222:2158-2175. [DOI: 10.1016/j.ijbiomac.2022.09.291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 11/05/2022]
|
17
|
Alghazali MW, Al-Hetty HRAK, Ali ZMM, Saleh MM, Suleiman AA, Jalil AT. Non-coding RNAs, another side of immune regulation during triple-negative breast cancer. Pathol Res Pract 2022; 239:154132. [PMID: 36183439 DOI: 10.1016/j.prp.2022.154132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/23/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022]
Abstract
Triple-negative breast cancer (TNBC) is considered about 12-24 % of all breast cancer cases. Patients experience poor overall survival, high recurrence rate, and distant metastasis compared to other breast cancer subtypes. Numerous studies have highlighted the crucial roles of non-coding RNAs (ncRNAs) in carcinogenesis and proliferation, migration, and metastasis of tumor cells in TNBC. Recent research has demonstrated that long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) play a role in the regulation of the immune system by affecting the tumor microenvironment, the epithelial-mesenchymal transition, the regulation of dendritic cells and myeloid-derived stem cells, and T and B cell activation and differentiation. Immune-related miRNAs and lncRNAs, which have been established as predictive markers for various cancers, are strongly linked to immune cell infiltration and could be a viable therapeutic target for TNBC. In the current review, we discuss the recent updates of ncRNAs, including miRNAs and lncRNAs in TNBC, including their biogenesis, target genes, and biological function of their targets, which are mostly involved in the immune response.
Collapse
Affiliation(s)
| | | | - Zahraa Muhsen M Ali
- Department of Medical Laboratory Techniques, Al-Rafidain University College, Iraq
| | - Marwan Mahmood Saleh
- Department of Biophysics, College of Applied Sciences, University of Anbar, Iraq; Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | | | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla 51001, Iraq.
| |
Collapse
|
18
|
An intersectional analysis of LncRNAs and mRNAs reveals the potential therapeutic targets of Bi Zhong Xiao Decoction in collagen-induced arthritis rats. Chin Med 2022; 17:110. [PMID: 36109779 PMCID: PMC9479270 DOI: 10.1186/s13020-022-00670-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/12/2022] [Indexed: 11/12/2022] Open
Abstract
Background Bi Zhong Xiao decoction (BZXD), a traditional Chinese herbal formula, has been used clinically for many years to treat rheumatoid arthritis (RA). Both clinical and experimental studies have revealed that BZXD is effective in treating RA, but the mechanism remains unclear. In this study, we aimed to explore the mechanism of efficacy of BZXD through transcriptomic analysis of lncRNA and mRNA. Methods The combination method of ultra-high performance liquid chromatography-mass spectrometry/mass spectrometry was used to assess the quality of BZXD. The efficacy of BZXD in treating collagen-induced arthritis (CIA) was evaluated by clinical assessment, weight changes, hematoxylin–eosin and safranin o-fast green staining, and Micro-CT. Arraystar rat lncRNA-mRNA chip technology was used to determine the lncRNA and mRNA expression profiles of the Control, CIA and BZXD groups, and to screen gene expression profiles related to the curative effect of BZXD. A lncRNA-mRNA co-expression network was constructed for the therapeutic efficacy genes. Through GO function and KEGG pathway enrichment analysis, the biological functions and signaling pathways of therapeutic efficacy genes were determined. Based on fold change and functional annotation, key differentially expressed lncRNAs and mRNAs were selected for reverse transcription-quantitative polymerase chain reaction (RT-qPCR) validation. The functions of lncRNAs targeting mRNAs were verified in vitro. Results We demonstrated that BZXD could effectively reverse bone erosion. After BZXD treatment, up to 33 lncRNAs and 107 mRNAs differentially expressed genes were reversely regulated by BZXD. These differentially expressed lncRNAs are mainly involved in the biological process of the immune response and are closely related to the ECM-receptor interaction, MAPK signaling pathway, Focal adhesion, Ras signaling pathway, Antigen processing and presentation, and Chemokine signaling pathway. We identified four lncRNAs (uc.361−, ENSRNOT00000092834, ENSRNOT00000089244, ENSRNOT00000084631) and three mRNAs (Acvr2a, Cbx2, Morc4) as potential therapeutic targets for BZXD and their microarray data consistent with the RT-qPCR. In vitro experiments confirmed that silencing the lncRNAs ENSRNOT00000092834 and ENSRNOT00000084631 reversed the expression of target mRNAs. Conclusions This study elucidates the possible mechanism of BZXD reversing bone erosion in CIA rats from the perspective of lncRNA and mRNA. To provide a basis and direction for further exploration of the mechanism of BZXD in treating RA. Supplementary Information The online version contains supplementary material available at 10.1186/s13020-022-00670-z.
Collapse
|
19
|
Azizidoost S, Ghaedrahmati F, Anbiyaee O, Ahmad Ali R, Cheraghzadeh M, Farzaneh M. Emerging roles for lncRNA-NEAT1 in colorectal cancer. Cancer Cell Int 2022; 22:209. [PMID: 35676702 PMCID: PMC9178824 DOI: 10.1186/s12935-022-02627-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/31/2022] [Indexed: 12/21/2022] Open
Abstract
Colorectal cancer (CRC) is the third cause of cancer death in the world that arises from the glandular and epithelial cells of the large intestine, during a series of genetic or epigenetic alternations. Recently, long non-coding RNAs (lncRNAs) has opened a separate window of research in molecular and translational medicine. Emerging evidence has supported that lncRNAs can regulate cell cycle of CRC cells. LncRNA NEAT1 has been verified to participate in colon cancer development and progression. NEAT1 as a competing endogenous RNA could suppress the expression of miRNAs, and then regulate molecules downstream of these miRNAs. In this review, we summarized emerging roles of NEAT1 in CRC cells.
Collapse
Affiliation(s)
- Shirin Azizidoost
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Farhoodeh Ghaedrahmati
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Omid Anbiyaee
- Cardiovascular Research Center, Nemazi Hospital, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Riyadh Ahmad Ali
- Department of Medical Laboratory Science, College of Health Science, Lebanese French University, Kurdistan Region, Iraq
| | - Maryam Cheraghzadeh
- Department of Biochemistry, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
20
|
Zhang X, Chen C, Xu Y. Long Non-coding RNAs in Tuberculosis: From Immunity to Biomarkers. Front Microbiol 2022; 13:883513. [PMID: 35633669 PMCID: PMC9130765 DOI: 10.3389/fmicb.2022.883513] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/24/2022] [Indexed: 12/05/2022] Open
Abstract
Tuberculosis (TB) caused by Mycobacterium tuberculosis (Mtb) is the leading lethal infectious disease with 1.3 million deaths in 2020. Despite significant advances have been made in detection techniques and therapeutic approaches for tuberculosis, no suitable diagnostic tools are available for early and precise screening. Many studies have reported that Long non-coding RNAs (lncRNAs) play a regulatory role in gene expression in the host immune response against Mtb. Dysregulation of lncRNAs expression patterns associated with immunoregulatory pathways arose in mycobacterial infection. Meanwhile, host-induced lncRNAs regulate antibacterial processes such as apoptosis and autophagy to limit bacterial proliferation. In this review, we try to summarize the latest reports on how dysregulated expressed lncRNAs influence host immune response in tuberculosis infection. We also discuss their potential clinical prospects for tuberculosis diagnosis and development as molecular biomarkers.
Collapse
Affiliation(s)
- Xianyi Zhang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.,The People's Hospital of Baoan Shenzhen, Southern Medical University, Shenzhen, China
| | - Chan Chen
- The People's Hospital of Baoan Shenzhen, Southern Medical University, Shenzhen, China
| | - Yuzhong Xu
- The People's Hospital of Baoan Shenzhen, Southern Medical University, Shenzhen, China
| |
Collapse
|
21
|
Liu Y, Yang H, Zheng C, Wang K, Yan J, Cao H, Zhang Y. NCP-BiRW: A Hybrid Approach for Predicting Long Noncoding RNA-Disease Associations by Network Consistency Projection and Bi-Random Walk. Front Genet 2022; 13:862272. [PMID: 35495166 PMCID: PMC9043107 DOI: 10.3389/fgene.2022.862272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/21/2022] [Indexed: 12/06/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) play significant roles in the disease process. Understanding the pathological mechanisms of lncRNAs during the course of various diseases will help clinicians prevent and treat diseases. With the emergence of high-throughput techniques, many biological experiments have been developed to study lncRNA-disease associations. Because experimental methods are costly, slow, and laborious, a growing number of computational models have emerged. Here, we present a new approach using network consistency projection and bi-random walk (NCP-BiRW) to infer hidden lncRNA-disease associations. First, integrated similarity networks for lncRNAs and diseases were constructed by merging similarity information. Subsequently, network consistency projection was applied to calculate space projection scores for lncRNAs and diseases, which were then introduced into a bi-random walk method for association prediction. To test model performance, we employed 5- and 10-fold cross-validation, with the area under the receiver operating characteristic curve as the evaluation indicator. The computational results showed that our method outperformed the other five advanced algorithms. In addition, the novel method was applied to another dataset in the Mammalian ncRNA-Disease Repository (MNDR) database and showed excellent performance. Finally, case studies were carried out on atherosclerosis and leukemia to confirm the effectiveness of our method in practice. In conclusion, we could infer lncRNA-disease associations using the NCP-BiRW model, which may benefit biomedical studies in the future.
Collapse
Affiliation(s)
- Yanling Liu
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, China
- Department of Mathematics, Changzhi Medical College, Changzhi, China
| | - Hong Yang
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Chu Zheng
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Ke Wang
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Jingjing Yan
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Hongyan Cao
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Yanbo Zhang
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, China
- Shanxi Provincial Key Laboratory of Major Diseases Risk Assessment, Taiyuan, China
- School of Health and Service Management, Shanxi University of Chinese Medicine, Taiyuan, China
- *Correspondence:Yanbo Zhang,
| |
Collapse
|
22
|
Emerging Role of LncRNAs in Autoimmune Lupus. Inflammation 2022; 45:937-948. [DOI: 10.1007/s10753-021-01607-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/11/2021] [Accepted: 12/05/2021] [Indexed: 12/13/2022]
|
23
|
Ghahramani Almanghadim H, Ghorbian S, Khademi NS, Soleymani Sadrabadi M, Jarrahi E, Nourollahzadeh Z, Dastani M, Shirvaliloo M, Sheervalilou R, Sargazi S. New Insights into the Importance of Long Non-Coding RNAs in Lung Cancer: Future Clinical Approaches. DNA Cell Biol 2021; 40:1476-1494. [PMID: 34931869 DOI: 10.1089/dna.2021.0563] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In mammals, a large part of the gene expression products come from the non-coding ribonucleotide sequences of the protein. These short and long sequences are within the range of tens to hundreds of nucleotides, encompassing more than 200 RNA molecules, and their function is known as the molecular structure of long non-coding RNA (lncRNA). LncRNA molecules are unique nucleotides that have a substantial role in epigenetic regulation, transcription, and post-transcriptional modifications in different ways. According to the results of recent studies, lncRNAs have been shown to assume various roles, including tumor suppression or oncogenic functions in common types of cancer such as lung and breast cancer. These non-coding RNAs (ncRNAs) play a pivotal role in activating transcription factors, managing the ribonucleoproteins, the framework for collecting co-proteins, intermittent processing regulations, chromatin status alterations, and maintaining the control within the cell. Cutting-edge technologies have been introduced to disclose several types of lncRNAs within the nucleus and the cytoplasm, which have accomplished important achievements that are applicable in medicine. Due to these efforts, various data centers have been created to facilitate and modify scientific information related to these molecules, including detection, classification, biological evolution, gene status, spatial structure, status, and location of these small molecules. In the present study, we attempt to present the impacts of these ncRNAs on lung cancer with an emphasis on their mechanisms and functions.
Collapse
Affiliation(s)
| | - Saeed Ghorbian
- Department of Molecular Genetics, Ahar Branch, Islamic Azad University, Ahar, Iran
| | - Nazanin Sadat Khademi
- Department of Genetics, Faculty of Biological Science, Shahid Beheshti University, Tehran, Iran
| | | | - Esmaeil Jarrahi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Zahra Nourollahzadeh
- Department of Biological Science, Ahar Branch, Islamic Azad University, Ahar, Iran
| | - Masomeh Dastani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Milad Shirvaliloo
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
24
|
Long non-coding RNAs associated with infection and vaccine-induced immunity. Essays Biochem 2021; 65:657-669. [PMID: 34528687 DOI: 10.1042/ebc20200072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 08/01/2021] [Accepted: 08/10/2021] [Indexed: 12/31/2022]
Abstract
The immune system responds to infection or vaccination through a dynamic and complex process that involves several molecular and cellular factors. Among these factors, long non-coding RNAs (lncRNAs) have emerged as significant players in all areas of biology, particularly in immunology. Most of the mammalian genome is transcribed in a highly regulated manner, generating a diversity of lncRNAs that impact the differentiation and activation of immune cells and affect innate and adaptive immunity. Here, we have reviewed the range of functions and mechanisms of lncRNAs in response to infectious disease, including pathogen recognition, interferon (IFN) response, and inflammation. We describe examples of lncRNAs exploited by pathogenic agents during infection, which indicate that lncRNAs are a fundamental part of the arms race between hosts and pathogens. We also discuss lncRNAs potentially implicated in vaccine-induced immunity and present examples of lncRNAs associated with the antibody response of subjects receiving Influenza or Yellow Fever vaccines. Elucidating the widespread involvement of lncRNAs in the immune system will improve our understanding of the factors affecting immune response to different pathogenic agents, to better prevent and treat disease.
Collapse
|
25
|
Zarzuelo-Romero MJ, Pérez-Ramírez C, Cura Y, Carrasco-Campos MI, Marangoni-Iglecias LM, Ramírez-Tortosa MC, Jiménez-Morales A. Influence of Genetic Polymorphisms on Clinical Outcomes of Glatiramer Acetate in Multiple Sclerosis Patients. J Pers Med 2021; 11:jpm11101032. [PMID: 34683173 PMCID: PMC8540092 DOI: 10.3390/jpm11101032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 02/07/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic, inflammatory, demyelinating disease of autoimmune origin, in which inflammation and demyelination lead to neurodegeneration and progressive disability. Treatment is aimed at slowing down the course of the disease and mitigating its symptoms. One of the first-line treatments used in patients with MS is glatiramer acetate (GA). However, in clinical practice, a response rate of between 30% and 55% is observed. This variability in the effectiveness of the medication may be influenced by genetic factors such as polymorphisms in the genes involved in the pathogenesis of MS. Therefore, this review assesses the impact of genetic variants on the response to GA therapy in patients diagnosed with MS. The results suggest that a relationship exists between the effectiveness of the treatment with GA and the presence of polymorphisms in the following genes: CD86, CLEC16A, CTSS, EOMES, MBP, FAS, TRBC1, IL1R1, IL12RB2, IL22RA2, PTPRT, PVT1, ALOX5AP, MAGI2, ZAK, RFPL3, UVRAG, SLC1A4, and HLA-DRB1*1501. Consequently, the identification of polymorphisms in these genes can be used in the future as a predictive marker of the response to GA treatment in patients diagnosed with MS. Nevertheless, there is a lack of evidence for this and more validation studies need to be conducted to apply this information to clinical practice.
Collapse
Affiliation(s)
- María José Zarzuelo-Romero
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, 18001 Granada, Spain;
| | - Cristina Pérez-Ramírez
- Center of Biomedical Research, Department of Biochemistry and Molecular Biology II, Institute of Nutrition and Food Technology “José Mataix”, University of Granada, Avda. del Conocimiento s/n., 18016 Armilla, Granada, Spain;
- Pharmacogenetics Unit, Pharmacy Service, Virgen de las Nieves University Hospital, 18012 Granada, Spain; (Y.C.); (M.I.C.-C.); (L.M.M.-I.); (A.J.-M.)
- Correspondence:
| | - Yasmín Cura
- Pharmacogenetics Unit, Pharmacy Service, Virgen de las Nieves University Hospital, 18012 Granada, Spain; (Y.C.); (M.I.C.-C.); (L.M.M.-I.); (A.J.-M.)
| | - María Isabel Carrasco-Campos
- Pharmacogenetics Unit, Pharmacy Service, Virgen de las Nieves University Hospital, 18012 Granada, Spain; (Y.C.); (M.I.C.-C.); (L.M.M.-I.); (A.J.-M.)
| | - Luciana María Marangoni-Iglecias
- Pharmacogenetics Unit, Pharmacy Service, Virgen de las Nieves University Hospital, 18012 Granada, Spain; (Y.C.); (M.I.C.-C.); (L.M.M.-I.); (A.J.-M.)
| | - María Carmen Ramírez-Tortosa
- Center of Biomedical Research, Department of Biochemistry and Molecular Biology II, Institute of Nutrition and Food Technology “José Mataix”, University of Granada, Avda. del Conocimiento s/n., 18016 Armilla, Granada, Spain;
| | - Alberto Jiménez-Morales
- Pharmacogenetics Unit, Pharmacy Service, Virgen de las Nieves University Hospital, 18012 Granada, Spain; (Y.C.); (M.I.C.-C.); (L.M.M.-I.); (A.J.-M.)
| |
Collapse
|
26
|
Dabravolski SA, Nikiforov NG, Eid AH, Nedosugova LV, Starodubova AV, Popkova TV, Bezsonov EE, Orekhov AN. Mitochondrial Dysfunction and Chronic Inflammation in Polycystic Ovary Syndrome. Int J Mol Sci 2021; 22:3923. [PMID: 33920227 PMCID: PMC8070512 DOI: 10.3390/ijms22083923] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/26/2021] [Accepted: 03/31/2021] [Indexed: 12/20/2022] Open
Abstract
Polycystic ovarian syndrome (PCOS) is the most common endocrine-metabolic disorder affecting a vast population worldwide; it is linked with anovulation, mitochondrial dysfunctions and hormonal disbalance. Mutations in mtDNA have been identified in PCOS patients and likely play an important role in PCOS aetiology and pathogenesis; however, their causative role in PCOS development requires further investigation. As a low-grade chronic inflammation disease, PCOS patients have permanently elevated levels of inflammatory markers (TNF-α, CRP, IL-6, IL-8, IL-18). In this review, we summarise recent data regarding the role of mtDNA mutations and mitochondrial malfunctions in PCOS pathogenesis. Furthermore, we discuss recent papers dedicated to the identification of novel biomarkers for early PCOS diagnosis. Finally, traditional and new mitochondria-targeted treatments are discussed. This review intends to emphasise the key role of oxidative stress and chronic inflammation in PCOS pathogenesis; however, the exact molecular mechanism is mostly unknown and requires further investigation.
Collapse
Affiliation(s)
- Siarhei A. Dabravolski
- Department of Clinical Diagnostics, Vitebsk State Academy of Veterinary Medicine [UO VGAVM], 7/11 Dovatora str., 210026 Vitebsk, Belarus
| | - Nikita G. Nikiforov
- Center of Collective Usage, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova Street, 119334 Moscow, Russia;
- Laboratory of Medical Genetics, Institute of Experimental Cardiology, National Medical Research Center of Cardiology, 121552 Moscow, Russia
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia; (E.E.B.); (A.N.O.)
| | - Ali H. Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha 2713, Qatar;
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha 2713, Qatar
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon
| | - Ludmila V. Nedosugova
- Federal State Autonomous Educational Institution of Higher Education, I. M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubenskaya Street, 119991 Moscow, Russia;
| | - Antonina V. Starodubova
- Federal Research Centre for Nutrition, Biotechnology and Food Safety, 2/14 Ustinsky Passage, 109240 Moscow, Russia;
- Pirogov Russian National Research Medical University, 1 Ostrovitianov Street, 117997 Moscow, Russia
| | - Tatyana V. Popkova
- V.A. Nasonova Institute of Rheumatology, 34A Kashirskoye Shosse, 115522 Moscow, Russia;
| | - Evgeny E. Bezsonov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia; (E.E.B.); (A.N.O.)
- Laboratory of Angiopathology, The Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, 125315 Moscow, Russia
| | - Alexander N. Orekhov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia; (E.E.B.); (A.N.O.)
| |
Collapse
|
27
|
Lingua MF, Carrà G, Maffeo B, Morotti A. Non-Coding RNAs: The "Dark Side Matter" of the CLL Universe. Pharmaceuticals (Basel) 2021; 14:ph14020168. [PMID: 33669945 PMCID: PMC7924868 DOI: 10.3390/ph14020168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/14/2021] [Accepted: 02/18/2021] [Indexed: 12/11/2022] Open
Abstract
For many years in the field of onco-hematology much attention has been given to mutations in protein-coding genes or to genetic alterations, including large chromosomal losses or rearrangements. Despite this, biological and clinical needs in this sector remain unmet. Therefore, it is not surprising that recent studies have shifted from coded to non-coded matter. The discovery of non-coding RNAs (ncRNAs) has influenced several aspects related to the treatment of cancer. In particular, in chronic lymphocytic leukemia (CLL) the knowledge of ncRNAs and their contextualization have led to the identification of new biomarkers used to follow the course of the disease, to the anticipation of mechanisms that support resistance and relapse, and to the selection of novel targeted treatment regimens. In this review, we will summarize the main ncRNAs discovered in CLL and the molecular mechanisms by which they are affected and how they influence the development and the progression of the disease.
Collapse
Affiliation(s)
| | - Giovanna Carrà
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy;
- Correspondence: (G.C.); (A.M.)
| | - Beatrice Maffeo
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy;
| | - Alessandro Morotti
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy;
- Correspondence: (G.C.); (A.M.)
| |
Collapse
|
28
|
Abstract
The innate immune system relies on a germ-line-encoded repertoire of pattern recognition receptors (PRRs), activated by deeply conserved pathogen signatures, such as bacterial cell wall components or foreign nucleic acids. To enable effective defence against invading pathogens and prevent from deleterious inflammation, PRR-driven immune responses are tightly controlled by a dense network of nuclear and cytoplasmic regulators. Long non-coding RNAs (lncRNAs) are increasingly recognized as important components of these regulatory circuitries, providing positive and negative control of PRR-induced innate immune responses. The present review provides an overview of the presently known roles of lncRNAs in human and murine innate antiviral and antibacterial immunity. The emerging roles in host defence and inflammation suggest that further mechanistic insights into the cellular functions of lncRNAs will decisively advance our molecular understanding of immune-associated diseases and open new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Katharina Walther
- Institute for Lung Research, Philipps University Marburg, Marburg, Germany
| | - Leon N Schulte
- Institute for Lung Research, Philipps University Marburg, Marburg, Germany.,German Center for Lung Research (DZL), Philipps University Marburg, Marburg, Germany
| |
Collapse
|