1
|
Artasensi A, Mazzotta S, Sanz I, Lin L, Vistoli G, Fumagalli L, Regazzoni L. Exploring Secondary Amine Carnosine Derivatives: Design, Synthesis, and Properties. Molecules 2024; 29:5083. [PMID: 39519724 PMCID: PMC11547551 DOI: 10.3390/molecules29215083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Carnosine is a naturally occurring dipeptide that has been advocated by some authors as an interesting scaffold for the development of potential therapeutic agents in view of the positive outcomes of its supplementation in animal models of human diseases. Its mode of action seems to depend on the quenching of toxic electrophiles, such as 4-hydroxynonenal (HNE). However, carnosine's bioavailability in humans is lower than that in other mammals. The main reason for such an unfavorable pharmacokinetic profile is the activity of the enzyme human serum carnosinase (E.C. 3.4.13.20), which rapidly hydrolyzes carnosine upon absorption. Therefore, some studies have focused on the design of carnosinase-resistant derivatives that retain binding activity toward toxic electrophiles. Nevertheless, the structural modification of the N-terminus amino group of carnosine has rarely been considered, possibly because of its key role in the electrophile scavenging mechanism. This was proven, since some carnosine N-terminus modification generated inactive compounds, despite some derivatives retaining oral bioavailability and gaining resistance to carnosinase hydrolysis. Herein, we therefore report a study aimed at exploring whether the amino group of carnosine can be conveniently modified to develop carnosinase-resistant derivatives retaining the dipeptide activity toward toxic electrophiles.
Collapse
Affiliation(s)
- Angelica Artasensi
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via L. Mangiagalli 25, 20133 Milan, Italy
| | - Sarah Mazzotta
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via L. Mangiagalli 25, 20133 Milan, Italy
- Department of Chemistry, Università degli Studi di Milano, Via Golgi 19, 20133 Milan, Italy
| | - Ines Sanz
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via L. Mangiagalli 25, 20133 Milan, Italy
| | - Licheng Lin
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via L. Mangiagalli 25, 20133 Milan, Italy
| | - Giulio Vistoli
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via L. Mangiagalli 25, 20133 Milan, Italy
| | - Laura Fumagalli
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via L. Mangiagalli 25, 20133 Milan, Italy
| | - Luca Regazzoni
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via L. Mangiagalli 25, 20133 Milan, Italy
| |
Collapse
|
2
|
Patterson JS, Rana BK, Gu H, Sears DD. Sitting Interruption Modalities during Prolonged Sitting Acutely Improve Postprandial Metabolome in a Crossover Pilot Trial among Postmenopausal Women. Metabolites 2024; 14:478. [PMID: 39330485 PMCID: PMC11433994 DOI: 10.3390/metabo14090478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/20/2024] [Accepted: 08/28/2024] [Indexed: 09/28/2024] Open
Abstract
Older adults sit during most hours of the day; more than 30% are considered physically inactive. The accumulation of prolonged sitting time is an exercise-independent risk factor for aging-related conditions such as cardiometabolic disease and cancer. Archival plasma samples from a randomized controlled, four-condition crossover study conducted in 10 postmenopausal women with overweight or obesity were analyzed. During 5-hour conditions completed on separate days, the trial tested three interruption modalities: two-minute stands each 20 min (STS), hourly ten-minute standing breaks (Stand), hourly two-minute walks (Walk), and a controlled sit. Fasting baseline and 5-hour end point (2 h postprandial) samples were used for targeted metabolomic profiling. Condition-associated metabolome changes were compared using paired t-tests. STS eliminated the postprandial elevation of amino acid metabolites that was observed in the control. A norvaline derivative shown to have anti-hypertensive and -hyperglycemic effects was significantly increased during Stand and STS. Post-hoc testing identified 19 significantly different metabolites across the interventions. Tight metabolite clustering by condition was driven by amino acid, vasoactive, and sugar metabolites, as demonstrated by partial least squares-discriminant analyses. This exploratory study suggests that brief, low-intensity modalities of interrupting prolonged sitting can acutely elucidate beneficial cardiometabolic changes in postmenopausal women with cardiometabolic risk.
Collapse
Affiliation(s)
- Jeffrey S. Patterson
- College of Health Solutions, Arizona State University, 850 N. 5th Street, Phoenix, AZ 85004, USA; (J.S.P.)
| | - Brinda K. Rana
- Department of Psychiatry, UC San Diego, La Jolla, CA 92093, USA
| | - Haiwei Gu
- College of Health Solutions, Arizona State University, 850 N. 5th Street, Phoenix, AZ 85004, USA; (J.S.P.)
| | - Dorothy D. Sears
- College of Health Solutions, Arizona State University, 850 N. 5th Street, Phoenix, AZ 85004, USA; (J.S.P.)
- Department of Family Medicine, UC San Diego, La Jolla, CA 92093, USA
- Department of Medicine, UC San Diego, La Jolla, CA 92093, USA
- UCSD Moores Cancer Center, 3855 Health Sciences Dr, La Jolla, CA 92093, USA
| |
Collapse
|
3
|
Regazzoni L. State of the Art in the Development of Human Serum Carnosinase Inhibitors. Molecules 2024; 29:2488. [PMID: 38893364 PMCID: PMC11173852 DOI: 10.3390/molecules29112488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Human serum carnosinase is an enzyme that operates the preferential hydrolysis of dipeptides with a C-terminus histidine. Only higher primates excrete such an enzyme in serum and cerebrospinal fluid. In humans, the serum hydrolytic rate has high interindividual variability owing to gene polymorphism, although age, gender, diet, and also diseases and surgical interventions can modify serum activity. Human genetic diseases with altered carnosinase activity have been identified and associated with neurological disorders and age-related cognitive decline. On the contrary, low peripheral carnosinase activity has been associated with kidney protection, especially in diabetic nephropathy. Therefore, serum carnosinase is a druggable target for the development of selective inhibitors. However, only one molecule (i.e., carnostatine) has been discovered with the purpose of developing serum carnosinase inhibitors. Bestatin is the only inhibitor reported other than carnostatine, although its activity is not selective towards serum carnosinase. Herein, we present a review of the most critical findings on human serum carnosinase, including enzyme expression, localization and substrate selectivity, along with factors affecting the hydrolytic activity, its implication in human diseases and the properties of known inhibitors of the enzyme.
Collapse
Affiliation(s)
- Luca Regazzoni
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy
| |
Collapse
|
4
|
Spaas J, Van der Stede T, de Jager S, van de Waterweg Berends A, Tiane A, Baelde H, Baba SP, Eckhardt M, Wolfs E, Vanmierlo T, Hellings N, Eijnde BO, Derave W. Carnosine synthase deficiency aggravates neuroinflammation in multiple sclerosis. Prog Neurobiol 2023; 231:102532. [PMID: 37774767 DOI: 10.1016/j.pneurobio.2023.102532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/05/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023]
Abstract
Multiple sclerosis (MS) pathology features autoimmune-driven neuroinflammation, demyelination, and failed remyelination. Carnosine is a histidine-containing dipeptide (HCD) with pluripotent homeostatic properties that is able to improve outcomes in an animal MS model (EAE) when supplied exogenously. To uncover if endogenous carnosine is involved in, and protects against, MS-related neuroinflammation, demyelination or remyelination failure, we here studied the HCD-synthesizing enzyme carnosine synthase (CARNS1) in human MS lesions and two preclinical mouse MS models (EAE, cuprizone). We demonstrate that due to its presence in oligodendrocytes, CARNS1 expression is diminished in demyelinated MS lesions and mouse models mimicking demyelination/inflammation, but returns upon remyelination. Carns1-KO mice that are devoid of endogenous HCDs display exaggerated neuroinflammation and clinical symptoms during EAE, which could be partially rescued by exogenous carnosine treatment. Worsening of the disease appears to be driven by a central, not peripheral immune-modulatory, mechanism possibly linked to impaired clearance of the reactive carbonyl acrolein in Carns1-KO mice. In contrast, CARNS1 is not required for normal oligodendrocyte precursor cell differentiation and (re)myelin to occur, and neither endogenous nor exogenous HCDs protect against cuprizone-induced demyelination. In conclusion, the loss of CARNS1 from demyelinated MS lesions can aggravate disease progression through weakening the endogenous protection against neuroinflammation.
Collapse
Affiliation(s)
- Jan Spaas
- University MS Center (UMSC), Hasselt - Pelt, Belgium; BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium; Department of Movement and Sports Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Thibaux Van der Stede
- Department of Movement and Sports Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium; Department of Nutrition, Exercise and Sports, Copenhagen University, Copenhagen, Denmark
| | - Sarah de Jager
- Department of Movement and Sports Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Annet van de Waterweg Berends
- University MS Center (UMSC), Hasselt - Pelt, Belgium; BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium; Laboratory of Immunology and Vaccinology, Faculty of Veterinary Medicine, FARAH, ULiège, Belgium
| | - Assia Tiane
- University MS Center (UMSC), Hasselt - Pelt, Belgium; BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium; Department Psychiatry and Neuropsychology, Division of Translational Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Hans Baelde
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Shahid P Baba
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA
| | - Matthias Eckhardt
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Esther Wolfs
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Tim Vanmierlo
- University MS Center (UMSC), Hasselt - Pelt, Belgium; BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium; Department Psychiatry and Neuropsychology, Division of Translational Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Niels Hellings
- University MS Center (UMSC), Hasselt - Pelt, Belgium; BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Bert O Eijnde
- University MS Center (UMSC), Hasselt - Pelt, Belgium; BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Wim Derave
- Department of Movement and Sports Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.
| |
Collapse
|
5
|
Van der Stede T, Spaas J, de Jager S, De Brandt J, Hansen C, Stautemas J, Vercammen B, De Baere S, Croubels S, Van Assche CH, Pastor BC, Vandenbosch M, Van Thienen R, Verboven K, Hansen D, Bové T, Lapauw B, Van Praet C, Decaestecker K, Vanaudenaerde B, Eijnde BO, Gliemann L, Hellsten Y, Derave W. Extensive profiling of histidine-containing dipeptides reveals species- and tissue-specific distribution and metabolism in mice, rats, and humans. Acta Physiol (Oxf) 2023; 239:e14020. [PMID: 37485756 DOI: 10.1111/apha.14020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/26/2023] [Accepted: 07/13/2023] [Indexed: 07/25/2023]
Abstract
AIM Histidine-containing dipeptides (HCDs) are pleiotropic homeostatic molecules with potent antioxidative and carbonyl quenching properties linked to various inflammatory, metabolic, and neurological diseases, as well as exercise performance. However, the distribution and metabolism of HCDs across tissues and species are still unclear. METHODS Using a sensitive UHPLC-MS/MS approach and an optimized quantification method, we performed a systematic and extensive profiling of HCDs in the mouse, rat, and human body (in n = 26, n = 25, and n = 19 tissues, respectively). RESULTS Our data show that tissue HCD levels are uniquely produced by carnosine synthase (CARNS1), an enzyme that was preferentially expressed by fast-twitch skeletal muscle fibres and brain oligodendrocytes. Cardiac HCD levels are remarkably low compared to other excitable tissues. Carnosine is unstable in human plasma, but is preferentially transported within red blood cells in humans but not rodents. The low abundant carnosine analogue N-acetylcarnosine is the most stable plasma HCD, and is enriched in human skeletal muscles. Here, N-acetylcarnosine is continuously secreted into the circulation, which is further induced by acute exercise in a myokine-like fashion. CONCLUSION Collectively, we provide a novel basis to unravel tissue-specific, paracrine, and endocrine roles of HCDs in human health and disease.
Collapse
Affiliation(s)
- Thibaux Van der Stede
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
- Department of Nutrition, Exercise and Sports, Copenhagen University, Copenhagen, Denmark
| | - Jan Spaas
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
- University MS Center (UMSC) Hasselt, Pelt, Belgium
- BIOMED Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Sarah de Jager
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Jana De Brandt
- BIOMED Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
- REVAL Rehabilitation Research Center, Hasselt University, Hasselt, Belgium
| | - Camilla Hansen
- Department of Nutrition, Exercise and Sports, Copenhagen University, Copenhagen, Denmark
| | - Jan Stautemas
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Bjarne Vercammen
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Siegrid De Baere
- Department of Pathobiology, Pharmacology and Zoological Medicine, Ghent University, Ghent, Belgium
| | - Siska Croubels
- Department of Pathobiology, Pharmacology and Zoological Medicine, Ghent University, Ghent, Belgium
| | - Charles-Henri Van Assche
- The Maastricht MultiModal Molecular Imaging (M4I) institute, Maastricht University, Maastricht, The Netherlands
| | - Berta Cillero Pastor
- The Maastricht MultiModal Molecular Imaging (M4I) institute, Maastricht University, Maastricht, The Netherlands
| | - Michiel Vandenbosch
- The Maastricht MultiModal Molecular Imaging (M4I) institute, Maastricht University, Maastricht, The Netherlands
| | - Ruud Van Thienen
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Kenneth Verboven
- BIOMED Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
- REVAL Rehabilitation Research Center, Hasselt University, Hasselt, Belgium
| | - Dominique Hansen
- BIOMED Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
- REVAL Rehabilitation Research Center, Hasselt University, Hasselt, Belgium
- Heart Center Hasselt, Jessa Hospital Hasselt, Hasselt, Belgium
| | - Thierry Bové
- Department of Cardiac Surgery, Ghent University Hospital, Ghent, Belgium
| | - Bruno Lapauw
- Department of Endocrinology, Ghent University Hospital, Ghent, Belgium
| | - Charles Van Praet
- Department of Urology, Ghent University Hospital, Ghent, Belgium
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Karel Decaestecker
- Department of Urology, Ghent University Hospital, Ghent, Belgium
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Bart Vanaudenaerde
- Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Bert O Eijnde
- University MS Center (UMSC) Hasselt, Pelt, Belgium
- SMRC Sports Medical Research Center, BIOMED Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
- Division of Sport Science, Stellenbosch University, Stellenbosch, South Africa
| | - Lasse Gliemann
- Department of Nutrition, Exercise and Sports, Copenhagen University, Copenhagen, Denmark
| | - Ylva Hellsten
- Department of Nutrition, Exercise and Sports, Copenhagen University, Copenhagen, Denmark
| | - Wim Derave
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
6
|
de Jager S, Vermeulen A, De Baere S, Van der Stede T, Lievens E, Croubels S, Jäger R, Purpura M, Bourgois JG, Derave W. Acute balenine supplementation in humans as a natural carnosinase-resistant alternative to carnosine. Sci Rep 2023; 13:6484. [PMID: 37081019 PMCID: PMC10119279 DOI: 10.1038/s41598-023-33300-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 04/11/2023] [Indexed: 04/22/2023] Open
Abstract
Balenine possesses some of carnosine's and anserine's functions, yet it appears more resistant to the hydrolysing CN1 enzyme. The aim of this study was to elucidate the stability of balenine in the systemic circulation and its bioavailability in humans following acute supplementation. Two experiments were conducted in which (in vitro) carnosine, anserine and balenine were added to plasma to compare degradation profiles and (in vivo) three increasing doses (1-4-10 mg/kg) of balenine were acutely administered to 6 human volunteers. Half-life of balenine (34.9 ± 14.6 min) was respectively 29.1 and 16.3 times longer than that of carnosine (1.20 ± 0.36 min, p = 0.0044) and anserine (2.14 ± 0.58 min, p = 0.0044). In vivo, 10 mg/kg of balenine elicited a peak plasma concentration (Cmax) of 28 µM, which was 4 and 18 times higher than with 4 (p = 0.0034) and 1 mg/kg (p = 0.0017), respectively. CN1 activity showed strong negative correlations with half-life (ρ = - 0.829; p = 0.0583), Cmax (r = - 0.938; p = 0.0372) and incremental area under the curve (r = - 0.825; p = 0.0433). Overall, balenine seems more resistant to CN1 hydrolysis resulting in better in vivo bioavailability, yet its degradation remains dependent on enzyme activity. Although a similar functionality as carnosine and anserine remains to be demonstrated, opportunities arise for balenine as nutraceutical or ergogenic aid.
Collapse
Affiliation(s)
- Sarah de Jager
- Department of Movement and Sports Sciences, Ghent University, Watersportlaan 2, 9000, Ghent, Belgium
| | - An Vermeulen
- Department of Bioanalysis, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Siegrid De Baere
- Department of Pathobiology, Pharmacology and Zoological Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Thibaux Van der Stede
- Department of Movement and Sports Sciences, Ghent University, Watersportlaan 2, 9000, Ghent, Belgium
- Department of Nutrition, Exercise and Sports, Copenhagen University, Nørre Allé 51, 2200, Copenhagen, Denmark
| | - Eline Lievens
- Department of Movement and Sports Sciences, Ghent University, Watersportlaan 2, 9000, Ghent, Belgium
| | - Siska Croubels
- Department of Pathobiology, Pharmacology and Zoological Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Ralf Jäger
- Increnovo LLC, 730 E. Carlisle Avenue, Whitefish Bay, WI, 53217, USA
| | - Martin Purpura
- Increnovo LLC, 730 E. Carlisle Avenue, Whitefish Bay, WI, 53217, USA
| | - Jan G Bourgois
- Department of Movement and Sports Sciences, Ghent University, Watersportlaan 2, 9000, Ghent, Belgium
| | - Wim Derave
- Department of Movement and Sports Sciences, Ghent University, Watersportlaan 2, 9000, Ghent, Belgium.
| |
Collapse
|
7
|
No Effect of Acute Balenine Supplementation on Maximal and Submaximal Exercise Performance in Recreational Cyclists. Int J Sport Nutr Exerc Metab 2023; 33:84-92. [PMID: 36623508 DOI: 10.1123/ijsnem.2022-0115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/17/2022] [Accepted: 09/19/2022] [Indexed: 01/11/2023]
Abstract
Carnosine (β-alanyl-L-histidine) and its methylated analogues anserine and balenine are highly concentrated endogenous dipeptides in mammalian skeletal muscle that are implicated in exercise performance. Balenine has a much better bioavailability and stability in human circulation upon acute ingestion, compared to carnosine and anserine. Therefore, ergogenic effects observed with acute carnosine and anserine supplementation may be even more pronounced with balenine. This study investigated whether acute balenine supplementation improves physical performance in four maximal and submaximal exercise modalities. A total of 20 healthy, active volunteers (14 males; six females) performed cycling sprints, maximal isometric contractions, a 4-km TT and 20-km TT following either preexercise placebo or 10 mg/kg of balenine ingestion. Physical, as well as mental performance, along with acid-base balance and glucose concentration were assessed. Balenine was unable to augment peak power (p = .3553), peak torque (p = .3169), time to complete the 4 km (p = .8566), nor 20 km time trial (p = .2660). None of the performances were correlated with plasma balenine or CN1 enzyme activity. In addition, no effect on pH, bicarbonate, and lactate was observed. Also, the supplement did not affect mental performance. In contrast, glucose remained higher during and after the 20 km time trial following balenine ingestion. In conclusion, these results overall indicate that the functionality of balenine does not fully resemble that of carnosine and anserine, since it was unable to elicit performance improvements with similar and even higher plasma concentrations.
Collapse
|
8
|
Uyanga VA, Zhao J, Wang X, Jiao H, Onagbesan OM, Lin H. Dietary L-citrulline modulates the growth performance, amino acid profile, and the growth hormone/insulin-like growth factor axis in broilers exposed to high temperature. Front Physiol 2022; 13:937443. [PMID: 36003654 PMCID: PMC9393253 DOI: 10.3389/fphys.2022.937443] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
Heat stress adversely affects the growth performance, muscle development, and protein metabolism in poultry. l-Citrulline (L-Cit), is a non-essential amino acid that is known to stimulate muscle protein synthesis under stress conditions. This study investigated whether L-Cit could influence the growth performance, amino acid profile, and protein metabolism in broilers exposed to high ambient temperature. In a 2 × 2 factorial arrangement, Arbor acre broilers (288 chickens) were fed with basal diet (CON) or 1% L-Cit supplemented diet and later subjected to either thermoneutral (TNZ: 24°C, 24 h/d) or heat stress (HS: 35°C for 8 h/d) environment for 21 days. The results showed that L-Cit diet promoted the body weight and body weight gain of broilers higher than the CON diet, and it further alleviated HS suppression of body weight and feed intake at certain periods (p < 0.05). Plasma urea, uric acid, glucose, and total cholesterol were elevated during HS, whereas, the triglyceride content was decreased (p < 0.05). Serum amino acids including citrulline, alanine, aspartate, and taurine were decreased by HS. L-Cit supplementation restored the citrulline level and alleviated HS induction of 3-methylhistidine (p < 0.05). L-Cit supplementation increased the plasma growth hormone (GH) and insulin-like growth factor-1 (IGF-1) concentration, as well as the GH concentration in the breast muscle (p < 0.05). The mRNA expression showed that HS elicited tissue-specific responses by upregulating some growth factors in the breast muscle, but downregulated the GH receptor, GH binding protein, and IGF-1 expression in the hypothalamus. L-Cit supplementation upregulated the GHRH and IGFBP2 expression in the hypothalamus. L-Cit also upregulated the expression of IGF-1R and IGFBP2 in the breast muscle of HS broilers. The total mTOR protein level in the breast muscle of HS broilers was also increased by L-Cit diet (p < 0.05). Therefore, this study demonstrated that HS negatively affected the growth performance of broilers and dysregulated the expression of growth factors related to protein metabolism. Contrarily, L-Cit promoted the growth responses of broilers via its stimulation of circulating GH/IGF-1 concentration. To certain extents, L-Cit supplementation elicited protective effects on the growth performance of HS broilers by diminishing protein catabolism.
Collapse
Affiliation(s)
- Victoria Anthony Uyanga
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control, Department of Animal Science, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Jingpeng Zhao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control, Department of Animal Science, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Xiaojuan Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control, Department of Animal Science, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Hongchao Jiao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control, Department of Animal Science, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | | | - Hai Lin
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control, Department of Animal Science, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| |
Collapse
|