1
|
Germeys C, Vandoorne T, Davie K, Poovathingal S, Heeren K, Vermeire W, Nami F, Moisse M, Quaegebeur A, Sierksma A, Rué L, Sicart A, Eykens C, De Cock L, De Strooper B, Carmeliet P, Van Damme P, De Bock K, Van Den Bosch L. Targeting EGLN2/PHD1 protects motor neurons and normalizes the astrocytic interferon response. Cell Rep 2024; 43:114719. [PMID: 39255062 DOI: 10.1016/j.celrep.2024.114719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/08/2024] [Accepted: 08/20/2024] [Indexed: 09/12/2024] Open
Abstract
Neuroinflammation and dysregulated energy metabolism are linked to motor neuron degeneration in amyotrophic lateral sclerosis (ALS). The egl-9 family hypoxia-inducible factor (EGLN) enzymes, also known as prolyl hydroxylase domain (PHD) enzymes, are metabolic sensors regulating cellular inflammation and metabolism. Using an oligonucleotide-based and a genetic approach, we showed that the downregulation of Egln2 protected motor neurons and mitigated the ALS phenotype in two zebrafish models and a mouse model of ALS. Single-nucleus RNA sequencing of the murine spinal cord revealed that the loss of EGLN2 induced an astrocyte-specific downregulation of interferon-stimulated genes, mediated via the stimulator of interferon genes (STING) protein. In addition, we found that the genetic deletion of EGLN2 restored this interferon response in patient induced pluripotent stem cell (iPSC)-derived astrocytes, confirming the link between EGLN2 and astrocytic interferon signaling. In conclusion, we identified EGLN2 as a motor neuron protective target normalizing the astrocytic interferon-dependent inflammatory axis in vivo, as well as in patient-derived cells.
Collapse
Affiliation(s)
- Christine Germeys
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), 3000 Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium
| | - Tijs Vandoorne
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), 3000 Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium
| | - Kristofer Davie
- VIB-KU Leuven, Center for Brain & Disease Research Technologies, Single Cell Bioinformatics Unit, 3000 Leuven, Belgium
| | - Suresh Poovathingal
- VIB-KU Leuven, Center for Brain & Disease Research Technologies, Single Cell Microfluidics & Analytics Unit, 3000 Leuven, Belgium; VIB, Center for AI & Computational Biology (VIB.AI), 3000 Leuven, Belgium
| | - Kara Heeren
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), 3000 Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium
| | - Wendy Vermeire
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), 3000 Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium
| | - FatemehArefeh Nami
- KU Leuven - University of Leuven, Department of Development and Regeneration, Stem Cell Institute Leuven (SCIL), 3000 Leuven, Belgium
| | - Matthieu Moisse
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), 3000 Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium
| | - Annelies Quaegebeur
- University of Cambridge, Department of Clinical Neurosciences, CB2 2PY Cambridge, UK; Cambridge University Hospitals, Department of Histopathology, CB2 0QQ Cambridge, UK
| | - Annerieke Sierksma
- KU Leuven - University of Leuven, Department of Neurosciences, Research Group Molecular Neurobiology and Leuven Brain Institute (LBI), 3000 Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory for the Research of Neurodegenerative Diseases, 3000 Leuven, Belgium
| | - Laura Rué
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), 3000 Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium
| | - Adrià Sicart
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), 3000 Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium
| | - Caroline Eykens
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), 3000 Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium
| | - Lenja De Cock
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), 3000 Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium
| | - Bart De Strooper
- KU Leuven - University of Leuven, Department of Neurosciences, Research Group Molecular Neurobiology and Leuven Brain Institute (LBI), 3000 Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory for the Research of Neurodegenerative Diseases, 3000 Leuven, Belgium; Dementia Research Institute, University College London, WC1E 6BT London, UK
| | - Peter Carmeliet
- KU Leuven - University of Leuven, Department of Oncology and Leuven Cancer Institute (LKI), Laboratory of Angiogenesis and Vascular Metabolism, 3000 Leuven, Belgium; VIB, Center for Cancer Biology, Laboratory of Angiogenesis and Vascular Metabolism, 3000 Leuven, Belgium; Khalifa University of Science and Technology, Center for Biotechnology, Abu Dhabi, United Arab Emirates
| | - Philip Van Damme
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), 3000 Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium; University Hospitals Leuven, Department of Neurology, 3000 Leuven, Belgium
| | - Katrien De Bock
- ETH Zürich, Department of Health Sciences and Technology, 8092 Zürich, Switzerland
| | - Ludo Van Den Bosch
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), 3000 Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium.
| |
Collapse
|
2
|
Ho PC, Hsieh TC, Tsai KJ. TDP-43 proteinopathy in frontotemporal lobar degeneration and amyotrophic lateral sclerosis: From pathomechanisms to therapeutic strategies. Ageing Res Rev 2024; 100:102441. [PMID: 39069095 DOI: 10.1016/j.arr.2024.102441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/12/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Proteostasis failure is a common pathological characteristic in neurodegenerative diseases. Revitalizing clearance systems could effectively mitigate these diseases. The transactivation response (TAR) DNA-binding protein 43 (TDP-43) plays a critical role as an RNA/DNA-binding protein in RNA metabolism and synaptic function. Accumulation of TDP-43 aggregates in the central nervous system is a hallmark of frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). Autophagy, a major and highly conserved degradation pathway, holds the potential for degrading aggregated TDP-43 and alleviating FTLD/ALS. This review explores the causes of TDP-43 aggregation, FTLD/ALS-related genes, key autophagy factors, and autophagy-based therapeutic strategies targeting TDP-43 proteinopathy. Understanding the underlying pathological mechanisms of TDP-43 proteinopathy can facilitate therapeutic interventions.
Collapse
Affiliation(s)
- Pei-Chuan Ho
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tsung-Chi Hsieh
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kuen-Jer Tsai
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Research Center of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
3
|
Ren K, Wang Q, Jiang D, Liu E, Alsmaan J, Jiang R, Rutkove SB, Tian F. A comprehensive review of electrophysiological techniques in amyotrophic lateral sclerosis research. Front Cell Neurosci 2024; 18:1435619. [PMID: 39280794 PMCID: PMC11393746 DOI: 10.3389/fncel.2024.1435619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/08/2024] [Indexed: 09/18/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS), a devastating neurodegenerative disease, is characterized by progressive motor neuron degeneration, leading to widespread weakness and respiratory failure. While a variety of mechanisms have been proposed as causes of this disease, a full understanding remains elusive. Electrophysiological alterations, including increased motor axon excitability, likely play an important role in disease progression. There remains a critical need for non-animal disease models that can integrate electrophysiological tools to better understand underlying mechanisms, track disease progression, and evaluate potential therapeutic interventions. This review explores the integration of electrophysiological technologies with ALS disease models. It covers cellular and clinical electrophysiological tools and their applications in ALS research. Additionally, we examine conventional animal models and highlight advancements in humanized models and 3D organoid technologies. By bridging the gap between these models, we aim to enhance our understanding of ALS pathogenesis and facilitate the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Keyuan Ren
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Qinglong Wang
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Douglas Jiang
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Scripps Institution of Oceanography, San Diego, CA, United States
| | - Ethan Liu
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Julie Alsmaan
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- School of Arts and Science, Harvard College, Cambridge, MA, United States
| | - Rui Jiang
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- School of Arts and Science, Harvard College, Cambridge, MA, United States
| | - Seward B Rutkove
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Feng Tian
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
4
|
Cóppola-Segovia V, Reggiori F. Molecular Insights into Aggrephagy: Their Cellular Functions in the Context of Neurodegenerative Diseases. J Mol Biol 2024; 436:168493. [PMID: 38360089 DOI: 10.1016/j.jmb.2024.168493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/17/2024]
Abstract
Protein homeostasis or proteostasis is an equilibrium of biosynthetic production, folding and transport of proteins, and their timely and efficient degradation. Proteostasis is guaranteed by a network of protein quality control systems aimed at maintaining the proteome function and avoiding accumulation of potentially cytotoxic proteins. Terminal unfolded and dysfunctional proteins can be directly turned over by the ubiquitin-proteasome system (UPS) or first amassed into aggregates prior to degradation. Aggregates can also be disposed into lysosomes by a selective type of autophagy known as aggrephagy, which relies on a set of so-called selective autophagy receptors (SARs) and adaptor proteins. Failure in eliminating aggregates, also due to defects in aggrephagy, can have devastating effects as underscored by several neurodegenerative diseases or proteinopathies, which are characterized by the accumulation of aggregates mostly formed by a specific disease-associated, aggregate-prone protein depending on the clinical pathology. Despite its medical relevance, however, the process of aggrephagy is far from being understood. Here we review the findings that have helped in assigning a possible function to specific SARs and adaptor proteins in aggrephagy in the context of proteinopathies, and also highlight the interplay between aggrephagy and the pathogenesis of proteinopathies.
Collapse
Affiliation(s)
| | - Fulvio Reggiori
- Department of Biomedicine, Aarhus University, Ole Worms Allé 4, 8000 Aarhus C, Denmark; Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Høegh-Guldbergs Gade 6B, 8000 Aarhus C, Denmark.
| |
Collapse
|
5
|
Huang D, Zhu Y, Shen J, Song C. Identification of Potential Neddylation-related Key Genes in Ischemic Stroke based on Machine Learning Methods. Mol Neurobiol 2024; 61:2530-2541. [PMID: 37910287 DOI: 10.1007/s12035-023-03738-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/22/2023] [Indexed: 11/03/2023]
Abstract
Ischemic stroke (IS) is a complex neurological disease that can lead to severe disability or even death. Understanding the molecular mechanisms involved in the occurrence and progression of IS is of great significance for developing effective treatment strategies. In this context, the role of neddylation refers to the potential impact of neddylation on various cellular processes, which may contribute to the pathogenesis and outcome of IS. First, differential analysis was conducted on the GSE16561 dataset from the GEO database to identify 350 differentially expressed genes (DEGs) between the IS and Control groups. By intersecting the differential genes with neddylation-related genes, 11 neddylation-related DEGs were obtained. Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses showed that the DEGs were mainly enriched in hematopoietic cell lineage and neutrophil degranulation, while the neddylation-related DEGs were mainly enriched in apoptosis and post-translational protein modification. Further Lasso-Cox and random forest analyses were performed on the 11 neddylation-related DEGs, identifying key genes SRPK1, BIRC2, and KLHL3. Additionally, validation of the key genes was carried out using the GSE58294 dataset and clinical patients. Finally, the correlation between the key genes and ferroptosis and cuproptosis was analyzed, and a ceRNA network was constructed. Our study helps to elucidate the complex role of neddylation in the mechanism of ischemic stroke, providing potential opportunities for the development of therapeutic interventions.
Collapse
Affiliation(s)
- Dian Huang
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Yan Zhu
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Junfei Shen
- Cardiac Color Doppler Ultrasound Room, Wuxi No.2 People's Hospital, Wuxi, 214000, China.
| | - Chenglin Song
- Nutritional Department, The Second People's Hospital of Lianyungang, Lianyungang, 222000, China.
| |
Collapse
|
6
|
Wang X, Hu Y, Xu R. The pathogenic mechanism of TAR DNA-binding protein 43 (TDP-43) in amyotrophic lateral sclerosis. Neural Regen Res 2024; 19:800-806. [PMID: 37843214 PMCID: PMC10664110 DOI: 10.4103/1673-5374.382233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/19/2023] [Accepted: 07/03/2023] [Indexed: 10/17/2023] Open
Abstract
The onset of amyotrophic lateral sclerosis is usually characterized by focal death of both upper and/or lower motor neurons occurring in the motor cortex, basal ganglia, brainstem, and spinal cord, and commonly involves the muscles of the upper and/or lower extremities, and the muscles of the bulbar and/or respiratory regions. However, as the disease progresses, it affects the adjacent body regions, leading to generalized muscle weakness, occasionally along with memory, cognitive, behavioral, and language impairments; respiratory dysfunction occurs at the final stage of the disease. The disease has a complicated pathophysiology and currently, only riluzole, edaravone, and phenylbutyrate/taurursodiol are licensed to treat amyotrophic lateral sclerosis in many industrialized countries. The TAR DNA-binding protein 43 inclusions are observed in 97% of those diagnosed with amyotrophic lateral sclerosis. This review provides a preliminary overview of the potential effects of TAR DNA-binding protein 43 in the pathogenesis of amyotrophic lateral sclerosis, including the abnormalities in nucleoplasmic transport, RNA function, post-translational modification, liquid-liquid phase separation, stress granules, mitochondrial dysfunction, oxidative stress, axonal transport, protein quality control system, and non-cellular autonomous functions (e.g., glial cell functions and prion-like propagation).
Collapse
Affiliation(s)
- Xinxin Wang
- Medical College of Nanchang University, Nanchang, Jiangxi Province, China
- Department of Neurology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, The Clinical College of Nanchang Medical College, Nanchang, Jiangxi Province, China
| | - Yushu Hu
- Medical College of Nanchang University, Nanchang, Jiangxi Province, China
- Department of Neurology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, The Clinical College of Nanchang Medical College, Nanchang, Jiangxi Province, China
| | - Renshi Xu
- Medical College of Nanchang University, Nanchang, Jiangxi Province, China
- Department of Neurology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, The Clinical College of Nanchang Medical College, Nanchang, Jiangxi Province, China
| |
Collapse
|
7
|
Zhou L, Xu R. Invertebrate genetic models of amyotrophic lateral sclerosis. Front Mol Neurosci 2024; 17:1328578. [PMID: 38500677 PMCID: PMC10944931 DOI: 10.3389/fnmol.2024.1328578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/24/2024] [Indexed: 03/20/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a common adult-onset neurodegenerative disease characterized by the progressive death of motor neurons in the cerebral cortex, brain stem, and spinal cord. The exact mechanisms underlying the pathogenesis of ALS remain unclear. The current consensus regarding the pathogenesis of ALS suggests that the interaction between genetic susceptibility and harmful environmental factors is a promising cause of ALS onset. The investigation of putative harmful environmental factors has been the subject of several ongoing studies, but the use of transgenic animal models to study ALS has provided valuable information on the onset of ALS. Here, we review the current common invertebrate genetic models used to study the pathology, pathophysiology, and pathogenesis of ALS. The considerations of the usage, advantages, disadvantages, costs, and availability of each invertebrate model will also be discussed.
Collapse
Affiliation(s)
- LiJun Zhou
- Department of Neurology, National Regional Center for Neurological Diseases, Clinical College of Nanchang Medical College, Jiangxi Provincial People's Hospital, First Affiliated Hospital of Nanchang Medical College, Xiangya Hospital of Central South University Jiangxi Hospital, Nanchang, Jiangxi, China
- Medical College of Nanchang University, Nanchang, China
| | - RenShi Xu
- Department of Neurology, National Regional Center for Neurological Diseases, Clinical College of Nanchang Medical College, Jiangxi Provincial People's Hospital, First Affiliated Hospital of Nanchang Medical College, Xiangya Hospital of Central South University Jiangxi Hospital, Nanchang, Jiangxi, China
- Medical College of Nanchang University, Nanchang, China
| |
Collapse
|
8
|
Han M, Saxton A, Currey H, Waldherr SM, Liachko NF, Kraemer BC. Transgenic Dendra2::tau expression allows in vivo monitoring of tau proteostasis in Caenorhabditis elegans. Dis Model Mech 2024; 17:dmm050473. [PMID: 38469687 PMCID: PMC10985736 DOI: 10.1242/dmm.050473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 03/04/2024] [Indexed: 03/13/2024] Open
Abstract
Protein homeostasis is perturbed in aging-related neurodegenerative diseases called tauopathies, which are pathologically characterized by aggregation of the microtubule-associated protein tau (encoded by the human MAPT gene). Transgenic Caenorhabditis elegans serve as a powerful model organism to study tauopathy disease mechanisms, but moderating transgenic expression level has proven problematic. To study neuronal tau proteostasis, we generated a suite of transgenic strains expressing low, medium or high levels of Dendra2::tau fusion proteins by comparing integrated multicopy transgene arrays with single-copy safe-harbor locus strains generated by recombinase-mediated cassette exchange. Multicopy Dendra2::tau strains exhibited expression level-dependent neuronal dysfunction that was modifiable by known genetic suppressors or an enhancer of tauopathy. Single-copy Dendra2::tau strains lacked distinguishable phenotypes on their own but enabled detection of enhancer-driven neuronal dysfunction. We used multicopy Dendra2::tau strains in optical pulse-chase experiments measuring tau turnover in vivo and found that Dendra2::tau turned over faster than the relatively stable Dendra2. Furthermore, Dendra2::tau turnover was dependent on the protein expression level and independent of co-expression with human TDP-43 (officially known as TARDBP), an aggregating protein interacting with pathological tau. We present Dendra2::tau transgenic C. elegans as a novel tool for investigating molecular mechanisms of tau proteostasis.
Collapse
Affiliation(s)
- Marina Han
- Graduate Program in Neuroscience, University of Washington, Seattle, WA 98195, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA 98104, USA
| | - Aleen Saxton
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Heather Currey
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Sarah M. Waldherr
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA 98104, USA
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Nicole F. Liachko
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA 98104, USA
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Brian C. Kraemer
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA 98104, USA
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
9
|
Tang P, Yu Z, Sun H, Liu L, Gong L, Fang T, Sun X, Xie S, An G, Xu Z, Qiu L, Hao M. CRIP1 involves the pathogenesis of multiple myeloma via dual-regulation of proteasome and autophagy. EBioMedicine 2024; 100:104961. [PMID: 38199044 PMCID: PMC10825369 DOI: 10.1016/j.ebiom.2023.104961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/18/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Multiple myeloma (MM) is an incurable hematological malignancy of the plasma cells. The maintenance of protein homeostasis is critical for MM cell survival. Elevated levels of paraproteins in MM cells are cleared by proteasomes or lysosomes, which are independent but inter-connected with each other. Proteasome inhibitors (PIs) work as a backbone agent and successfully improved the outcome of patients; however, the increasing activity of autophagy suppresses the sensitivity to PIs treatment. METHODS The transcription levels of CRIP1 were explored in plasma cells obtained from healthy donors, patients with newly diagnosed multiple myeloma (NDMM), and relapsed/refractory multiple myeloma (RRMM) using Gene expression omnibus datasets. Doxycycline-inducible CRIP1-shRNA and CRIP1 overexpressed MM cell lines were constructed to explore the role of CRIP1 in MM pathogenesis. Proliferation, invasion, migration, proteasome activity and autophagy were examined in MM cells with different CRIP1 levels. Co-immunoprecipitation (Co-IP) with Tandem affinity purification/Mass spectrum (TAP/MS) was performed to identify the binding proteins of CRIP1. The mouse xenograft model was used to determine the role of CRIP1 in the proliferation and drug-resistance of MM cells. FINDINGS High CRIP1 expression was associated with unfavorable clinical outcomes in patients with MM and served as a biomarker for RRMM with shorter overall survival. In vitro and in vivo studies showed that CRIP1 plays a critical role in protein homeostasis via the dual regulation of the activities of proteasome and autophagy in MM cells. A combined analysis of RNA-seq, Co-IP and TAP/MS demonstrated that CRIP1 promotes proteasome inhibitors resistance in MM cells by simultaneously binding to de-ubiquitinase USP7 and proteasome coactivator PA200. CRIP1 promoted proteasome activity and autophagosome maturation by facilitating the dequbiquitination and stabilization of PA200. INTERPRETATION Our findings clarified the pivotal roles of the CRIP1/USP7/PA200 complex in ubiquitin-dependent proteasome degradation and autophagy maturation involved in the pathogenesis of MM. FUNDING A full list of funding sources can be found in the acknowledgements section.
Collapse
Affiliation(s)
- Peixia Tang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin, China
| | - Zhen Yu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin, China
| | - Hao Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Lanting Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin, China
| | - Lixin Gong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Teng Fang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xiyue Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Shiyi Xie
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Gang An
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Zhenshu Xu
- Hematology Department Fujian Medical University Union Hospital, Fujian Institute of Hematology, Fuzhou, Fujian, China.
| | - Lugui Qiu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin, China; Gobroad Healthcare Group, Beijing, China.
| | - Mu Hao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin, China.
| |
Collapse
|
10
|
Geraci J, Bhargava R, Qorri B, Leonchyk P, Cook D, Cook M, Sie F, Pani L. Machine learning hypothesis-generation for patient stratification and target discovery in rare disease: our experience with Open Science in ALS. Front Comput Neurosci 2024; 17:1199736. [PMID: 38260713 PMCID: PMC10801647 DOI: 10.3389/fncom.2023.1199736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 11/20/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction Advances in machine learning (ML) methodologies, combined with multidisciplinary collaborations across biological and physical sciences, has the potential to propel drug discovery and development. Open Science fosters this collaboration by releasing datasets and methods into the public space; however, further education and widespread acceptance and adoption of Open Science approaches are necessary to tackle the plethora of known disease states. Motivation In addition to providing much needed insights into potential therapeutic protein targets, we also aim to demonstrate that small patient datasets have the potential to provide insights that usually require many samples (>5,000). There are many such datasets available and novel advancements in ML can provide valuable insights from these patient datasets. Problem statement Using a public dataset made available by patient advocacy group AnswerALS and a multidisciplinary Open Science approach with a systems biology augmented ML technology, we aim to validate previously reported drug targets in ALS and provide novel insights about ALS subpopulations and potential drug targets using a unique combination of ML methods and graph theory. Methodology We use NetraAI to generate hypotheses about specific patient subpopulations, which were then refined and validated through a combination of ML techniques, systems biology methods, and expert input. Results We extracted 8 target classes, each comprising of several genes that shed light into ALS pathophysiology and represent new avenues for treatment. These target classes are broadly categorized as inflammation, epigenetic, heat shock, neuromuscular junction, autophagy, apoptosis, axonal transport, and excitotoxicity. These findings are not mutually exclusive, and instead represent a systematic view of ALS pathophysiology. Based on these findings, we suggest that simultaneous targeting of ALS has the potential to mitigate ALS progression, with the plausibility of maintaining and sustaining an improved quality of life (QoL) for ALS patients. Even further, we identified subpopulations based on disease onset. Conclusion In the spirit of Open Science, this work aims to bridge the knowledge gap in ALS pathophysiology to aid in diagnostic, prognostic, and therapeutic strategies and pave the way for the development of personalized treatments tailored to the individual's needs.
Collapse
Affiliation(s)
- Joseph Geraci
- NetraMark Corp, Toronto, ON, Canada
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
- Centre for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
- Arthur C. Clarke Center for Human Imagination, School of Physical Sciences, University of California San Diego, San Diego, CA, United States
| | - Ravi Bhargava
- Department of Biomedical and Molecular Science, Queens University, Kingston, ON, Canada
- Science and Research, Roche Integrated Informatics, F. Hoffmann La-Roche, Toronto, ON, Canada
| | | | | | - Douglas Cook
- NetraMark Corp, Toronto, ON, Canada
- Department of Surgery, Queen's University, Kingston, ON, Canada
| | - Moses Cook
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Fanny Sie
- Science and Research, Roche Integrated Informatics, F. Hoffmann La-Roche, Toronto, ON, Canada
| | - Luca Pani
- NetraMark Corp, Toronto, ON, Canada
- Department of Psychiatry and Behavioral Sciences, Leonard M. Miller School of Medicine, University of Miami, Coral Gables, FL, United States
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
11
|
Zhang C, Duan Y, Huang C, Li L. Inhibition of SQSTM1 S403 phosphorylation facilitates the aggresome formation of ubiquitinated proteins during proteasome dysfunction. Cell Mol Biol Lett 2023; 28:85. [PMID: 37872526 PMCID: PMC10594750 DOI: 10.1186/s11658-023-00500-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/11/2023] [Indexed: 10/25/2023] Open
Abstract
BACKGROUND Ubiquitin-proteasome-system-mediated clearance of misfolded proteins is essential for cells to maintain proteostasis and reduce the proteotoxicity caused by these aberrant proteins. When proteasome activity is inadequate, ubiquitinated proteins are sorted into perinuclear aggresomes, which is a significant defense mechanism employed by cells to combat insufficient proteasome activity, hence mitigating the proteotoxic crisis. It has been demonstrated that phosphorylation of SQSTM1 is crucial in regulating misfolded protein aggregation and autophagic degradation. Although SQSTM1 S403 phosphorylation is essential for the autophagic degradation of ubiquitinated proteins, its significance in proteasome inhibition-induced aggresome formation is yet unknown. Herein, we investigated the influence of SQSTM1 S403 phosphorylation on the aggresome production of ubiquitinated proteins during proteasome suppression. METHODS We examined the phosphorylation levels of SQSTM1 S403 or T269/S272 in cells after treated with proteasome inhibitors or/and autophagy inhibitors, by western blot and immunofluorescence. We detected the accumulation and aggresome formation of ubiquitinated misfolded proteins in cells treated with proteasome inhibition by western blot and immunofluorescence. Furthermore, we used SQSTM1 phosphorylation-associated kinase inhibitors and mutant constructs to confirm the regulation of different SQSTM1 phosphorylation in aggresome formation. We examined the cell viability using CCK-8 assay. RESULTS Herein, we ascertained that phosphorylation of SQSTM1 S403 did not enhance the autophagic degradation of ubiquitinated proteins during proteasome inhibition. Proteasome inhibition suppresses the phosphorylation of SQSTM1 S403, which facilitated the aggresome production of polyubiquitinated proteins. Interestingly, we found proteasome inhibition-induced SQSTM1 T269/S272 phosphorylation inhibits the S403 phosphorylation. Suppressing S403 phosphorylation rescues the defective aggresome formation and protects cells from cell death caused by unphosphorylated SQSTM1 (T269/S272). CONCLUSIONS This study shows that inhibition of SQSTM1 S403 phosphorylation facilitates the aggresome formation of ubiquitinated proteins during proteasome dysfunction. SQSTM1 T269/S272 phosphorylation inhibits the S403 phosphorylation, boosting the aggresome formation of ubiquitinated protein and shielding cells from proteotoxic crisis.
Collapse
Affiliation(s)
- Chenliang Zhang
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China.
| | - YiChun Duan
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Chen Huang
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Liping Li
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, Sichuan Province, China
| |
Collapse
|
12
|
Ortiz GG, Ramírez-Jirano J, Arizaga RL, Delgado-Lara DLC, Torres-Sánchez ED. Frontotemporal-TDP and LATE Neurocognitive Disorders: A Pathophysiological and Genetic Approach. Brain Sci 2023; 13:1474. [PMID: 37891841 PMCID: PMC10605418 DOI: 10.3390/brainsci13101474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/07/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Frontotemporal lobar degeneration (FTLD) belongs to a heterogeneous group of highly complex neurodegenerative diseases and represents the second cause of presenile dementia in individuals under 65. Frontotemporal-TDP is a subgroup of frontotemporal dementia characterized by the aggregation of abnormal protein deposits, predominantly transactive response DNA-binding protein 43 (TDP-43), in the frontal and temporal brain regions. These deposits lead to progressive degeneration of neurons resulting in cognitive and behavioral impairments. Limbic age-related encephalopathy (LATE) pertains to age-related cognitive decline primarily affecting the limbic system, which is crucial for memory, emotions, and learning. However, distinct, emerging research suggests a potential overlap in pathogenic processes, with some cases of limbic encephalopathy displaying TDP-43 pathology. Genetic factors play a pivotal role in both disorders. Mutations in various genes, such as progranulin (GRN) and chromosome 9 open reading frame 72 (C9orf72), have been identified as causative in frontotemporal-TDP. Similarly, specific genetic variants have been associated with an increased risk of developing LATE. Understanding these genetic links provides crucial insights into disease mechanisms and the potential for targeted therapies.
Collapse
Affiliation(s)
- Genaro Gabriel Ortiz
- Department of Philosophical and Methodological Disciplines, University Health Sciences Center, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico;
- Postgraduate Gerontology Program, University Health Sciences Center, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Javier Ramírez-Jirano
- Neurosciences Division, Western Biomedical Research Center, Mexican Social Security Institute, IMSS, Guadalajara 44340, Jalisco, Mexico;
| | - Raul L. Arizaga
- Public Health Department, School of Medicine, University of Buenos Aires, Buenos Aires C1121ABG, Argentina;
| | - Daniela L. C. Delgado-Lara
- Department of Philosophical and Methodological Disciplines, University Health Sciences Center, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico;
- Departamento Académico de Formación Universitaria, Ciencias de la Salud, Universidad Autónoma de Guadalajara, Zapopan 45129, Jalisco, Mexico
| | - Erandis D. Torres-Sánchez
- Department of Medical and Life Sciences, University Center of la Cienega, University of Guadalajara, Ocotlan 47820, Jalisco, Mexico
| |
Collapse
|
13
|
Zhou W, Xu R. Current insights in the molecular genetic pathogenesis of amyotrophic lateral sclerosis. Front Neurosci 2023; 17:1189470. [PMID: 37638324 PMCID: PMC10448825 DOI: 10.3389/fnins.2023.1189470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 07/27/2023] [Indexed: 08/29/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive and fatal neurodegenerative disease that leads to the massive loss of motor neurons in cerebrum, brain stem and spinal cord. It affects not only motor neurons but also other neurons and glial cells, resulting in the progressive muscle atrophy, the severe disability and the eventual death due to the respiratory failure. The pathogenesis of ALS is not fully understood. Currently, several factors are considered to be involved in the pathogenesis of ALS, such as genetic factors, imbalances in protein homeostasis, RNA metabolism disorders, mitochondrial dysfunctions, glutamate-mediated excitatory toxicities and intra-neuronal material transport disorders in neurons. The study of genetic mutations related to ALS pathogenesis will link the molecular and cellular mechanisms of the disease, thus enhancing the understanding of its occurrence and progression, thereby providing new insights for the pathogenesis of ALS. This review summarizes the current insights in the molecular genetic pathogenesis of ALS.
Collapse
Affiliation(s)
- Wan Zhou
- Medical College of Nanchang University, Nanchang, China
- Department of Neurology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, The Clinical College of Nanchang Medical College, Nanchang, China
| | - Renshi Xu
- Medical College of Nanchang University, Nanchang, China
- Department of Neurology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, The Clinical College of Nanchang Medical College, Nanchang, China
| |
Collapse
|
14
|
Santarelli S, Londero C, Soldano A, Candelaresi C, Todeschini L, Vernizzi L, Bellosta P. Drosophila melanogaster as a model to study autophagy in neurodegenerative diseases induced by proteinopathies. Front Neurosci 2023; 17:1082047. [PMID: 37274187 PMCID: PMC10232775 DOI: 10.3389/fnins.2023.1082047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 04/14/2023] [Indexed: 06/06/2023] Open
Abstract
Proteinopathies are a large group of neurodegenerative diseases caused by both genetic and sporadic mutations in particular genes which can lead to alterations of the protein structure and to the formation of aggregates, especially toxic for neurons. Autophagy is a key mechanism for clearing those aggregates and its function has been strongly associated with the ubiquitin-proteasome system (UPS), hence mutations in both pathways have been associated with the onset of neurodegenerative diseases, particularly those induced by protein misfolding and accumulation of aggregates. Many crucial discoveries regarding the molecular and cellular events underlying the role of autophagy in these diseases have come from studies using Drosophila models. Indeed, despite the physiological and morphological differences between the fly and the human brain, most of the biochemical and molecular aspects regulating protein homeostasis, including autophagy, are conserved between the two species.In this review, we will provide an overview of the most common neurodegenerative proteinopathies, which include PolyQ diseases (Huntington's disease, Spinocerebellar ataxia 1, 2, and 3), Amyotrophic Lateral Sclerosis (C9orf72, SOD1, TDP-43, FUS), Alzheimer's disease (APP, Tau) Parkinson's disease (a-syn, parkin and PINK1, LRRK2) and prion diseases, highlighting the studies using Drosophila that have contributed to understanding the conserved mechanisms and elucidating the role of autophagy in these diseases.
Collapse
Affiliation(s)
- Stefania Santarelli
- Department of Cellular, Computational and Integrative Biology (CiBiO), University of Trento, Trento, Italy
| | - Chiara Londero
- Department of Cellular, Computational and Integrative Biology (CiBiO), University of Trento, Trento, Italy
| | - Alessia Soldano
- Department of Cellular, Computational and Integrative Biology (CiBiO), University of Trento, Trento, Italy
- Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Carlotta Candelaresi
- Department of Cellular, Computational and Integrative Biology (CiBiO), University of Trento, Trento, Italy
| | - Leonardo Todeschini
- Department of Cellular, Computational and Integrative Biology (CiBiO), University of Trento, Trento, Italy
| | - Luisa Vernizzi
- Institute of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
| | - Paola Bellosta
- Department of Cellular, Computational and Integrative Biology (CiBiO), University of Trento, Trento, Italy
- Department of Medicine, NYU Langone Medical Center, New York, NY, United States
| |
Collapse
|
15
|
Zhao Y, Pan H, Liu W, Liu E, Pang Y, Gao H, He Q, Liao W, Yao Y, Zeng J, Guo J. Menthol: An underestimated anticancer agent. Front Pharmacol 2023; 14:1148790. [PMID: 37007039 PMCID: PMC10063798 DOI: 10.3389/fphar.2023.1148790] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/06/2023] [Indexed: 03/19/2023] Open
Abstract
Menthol, a widely used natural, active compound, has recently been shown to have anticancer activity. Moreover, it has been found to have a promising future in the treatment of various solid tumors. Therefore, using literature from PubMed, EMBASE, Web of Science, Ovid, ScienceDirect, and China National Knowledge Infrastructure databases, the present study reviewed the anticancer activity of menthol and the underlying mechanism. Menthol has a good safety profile and exerts its anticancer activity via multiple pathways and targets. As a result, it has gained popularity for significantly inhibiting different types of cancer cells by various mechanisms such as induction of apoptosis, cell cycle arrest, disruption of tubulin polymerization, and inhibition of tumor angiogenesis. Owing to the excellent anticancer activity menthol has demonstrated, further research is warranted for developing it as a novel anticancer agent. However, there are limitations and gaps in the current research on menthol, and its antitumor mechanism has not been completely elucidated. It is expected that more basic experimental and clinical studies focusing on menthol and its derivatives will eventually help in its clinical application as a novel anticancer agent.
Collapse
Affiliation(s)
- Yijia Zhao
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huafeng Pan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Liu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - E. Liu
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yaobin Pang
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongjin Gao
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qingying He
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenhao Liao
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yejing Yao
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinhao Zeng
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Jinhao Zeng, ; Jing Guo,
| | - Jing Guo
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Jinhao Zeng, ; Jing Guo,
| |
Collapse
|
16
|
Diab R, Pilotto F, Saxena S. Autophagy and neurodegeneration: Unraveling the role of C9ORF72 in the regulation of autophagy and its relationship to ALS-FTD pathology. Front Cell Neurosci 2023; 17:1086895. [PMID: 37006471 PMCID: PMC10060823 DOI: 10.3389/fncel.2023.1086895] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/01/2023] [Indexed: 03/18/2023] Open
Abstract
The proper functioning of the cell clearance machinery is critical for neuronal health within the central nervous system (CNS). In normal physiological conditions, the cell clearance machinery is actively involved in the elimination of misfolded and toxic proteins throughout the lifetime of an organism. The highly conserved and regulated pathway of autophagy is one of the important processes involved in preventing and neutralizing pathogenic buildup of toxic proteins that could eventually lead to the development of neurodegenerative diseases (NDs) such as Alzheimer’s disease or Amyotrophic lateral sclerosis (ALS). The most common genetic cause of ALS and frontotemporal dementia (FTD) is a hexanucleotide expansion consisting of GGGGCC (G4C2) repeats in the chromosome 9 open reading frame 72 gene (C9ORF72). These abnormally expanded repeats have been implicated in leading to three main modes of disease pathology: loss of function of the C9ORF72 protein, the generation of RNA foci, and the production of dipeptide repeat proteins (DPRs). In this review, we discuss the normal physiological role of C9ORF72 in the autophagy-lysosome pathway (ALP), and present recent research deciphering how dysfunction of the ALP synergizes with C9ORF72 haploinsufficiency, which together with the gain of toxic mechanisms involving hexanucleotide repeat expansions and DPRs, drive the disease process. This review delves further into the interactions of C9ORF72 with RAB proteins involved in endosomal/lysosomal trafficking, and their role in regulating various steps in autophagy and lysosomal pathways. Lastly, the review aims to provide a framework for further investigations of neuronal autophagy in C9ORF72-linked ALS-FTD as well as other neurodegenerative diseases.
Collapse
Affiliation(s)
- Rim Diab
- Department of Neurology, Center for Experimental Neurology, Inselspital University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Federica Pilotto
- Department of Neurology, Center for Experimental Neurology, Inselspital University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Smita Saxena
- Department of Neurology, Center for Experimental Neurology, Inselspital University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- *Correspondence: Smita Saxena,
| |
Collapse
|
17
|
Huang R, Chen J, Tan Q, Hu W, Chen X, Yu Y, Zang G, Tang Z. Role of Autophagy in the Ubiquitinated Hepatitis B Virus Core Antigen Enhancing Dendritic Cell Function. Viral Immunol 2022; 35:629-639. [DOI: 10.1089/vim.2022.0062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Run Huang
- Department of Infectious Disease, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Chen
- Department of Infectious Disease, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Quanhui Tan
- Department of Infectious Disease, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiwei Hu
- Department of Infectious Disease, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaohua Chen
- Department of Infectious Disease, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongsheng Yu
- Department of Infectious Disease, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guoqing Zang
- Department of Infectious Disease, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenghao Tang
- Department of Infectious Disease, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
18
|
Lee S, Jo M, Kwon Y, Jeon YM, Kim S, Lee KJ, Kim HJ. PTK2 regulates tau-induced neurotoxicity via phosphorylation of p62 at Ser403. J Neurogenet 2022:1-10. [PMID: 36000467 DOI: 10.1080/01677063.2022.2114471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Tau is a microtubule-associated protein that forms insoluble filaments that accumulate as neurofibrillary tangles in neurodegenerative diseases such as Alzheimer's disease and other related tauopathies. A relationship between abnormal Tau accumulation and ubiquitin-proteasome system impairment has been reported. However, the molecular mechanism linking Tau accumulation and ubiquitin proteasome system (UPS) dysfunction remains unclear. Here, we show that overexpression of wild-type or mutant (P301L) Tau increases the abundance of polyubiquitinated proteins and activates the autophagy-lysosome pathway in mammalian neuronal cells. Previous studies found that PTK2 inhibition mitigates toxicity induced by UPS impairment. Thus, we investigated whether PTK2 inhibition can attenuate Tau-induced UPS impairment and cell toxicity. We found that PTK2 inhibition significantly reduces Tau-induced death in mammalian neuronal cells. Moreover, overexpression of WT or mutant Tau increased the phosphorylation levels of PTK2 and p62. We also confirmed that PTK2 inhibition suppresses Tau-induced phosphorylation of PTK2 and p62. Furthermore, PTK2 inhibition significantly attenuated the climbing defect and shortened the lifespan in the Drosophila model of tauopathy. In addition, we observed that phosphorylation of p62 is markedly increased in Alzheimer's disease patients with tauopathies. Taken together, our results indicate that the UPS dysfunction induced by Tau accumulation might contribute directly to neurodegeneration in tauopathies and that PTK2 could be a promising therapeutic target for tauopathies.
Collapse
Affiliation(s)
- Shinrye Lee
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu, South Korea
| | - Myungjin Jo
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu, South Korea
| | - Younghwi Kwon
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu, South Korea.,Department of Brain & Cognitive Sciences, DGIST, Daegu, South Korea
| | - Yu-Mi Jeon
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu, South Korea
| | - Seyeon Kim
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu, South Korea.,Department of Brain & Cognitive Sciences, DGIST, Daegu, South Korea
| | - Kea Joo Lee
- Neural Circuits Research Group, Korea Brain Research Institute (KBRI), Daegu, South Korea
| | - Hyung-Jun Kim
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu, South Korea.,Department of Brain & Cognitive Sciences, DGIST, Daegu, South Korea
| |
Collapse
|
19
|
Deng Y, Song H, Xiao Y, Zhao Y, Chu L, Ding J, Shen X, Qi X. High-Throughput Sequencing to Investigate lncRNA-circRNA-miRNA-mRNA Networks Underlying the Effects of Beta-Amyloid Peptide and Senescence on Astrocytes. Front Genet 2022; 13:868856. [PMID: 35646066 PMCID: PMC9133720 DOI: 10.3389/fgene.2022.868856] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/25/2022] [Indexed: 11/21/2022] Open
Abstract
Astrocytes are widely distributed in the central nervous system and play an essential role in the function of neuronal cells. Associations between astrocytes and Alzheimer’s disease (AD) have been noted, and recent work has implicated circular RNA (circRNA) and long non-coding RNA (lncRNA) in the development of AD. However, few reports have investigated which lncRNA and circRNA are involved in the influence of amyloid beta (Aβ) and senescence on astrocytes. This study therefore examines changes at the transcriptome level to explore the effects of Aβ and senescence on astrocytes. Primary cultured astrocytes were treated with Aβ and cultured for 90 days in vitro, and high-throughput sequencing was performed to identify differentially expressed RNAs. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses revealed that differentially expressed genes were associated with the focal adhesion signaling pathway, extracellular matrix receptor signaling pathway, and the extracellular matrix. The protein–protein interaction network was then constructed, and 103 hub genes were screened out; most of these were strongly associated with the expression of the extracellular matrix, extracellular matrix receptor signaling pathway, and focal adhesion. Two competing endogenous RNA networks were constructed based on the selected hub gene and differential RNAs, and we identified multiple competing endogenous RNA regulatory axes that were involved in the effects of Aβ and senescence on astrocytes. This is the first study to explore the molecular regulation mechanism of Aβ and senescence on primary astrocytes from the perspective of the whole transcriptome. In uncovering the signaling pathways and biological processes involved in the effects of Aβ and senescence on astrocytes, this work provides novel insights into the pathogenesis of AD at the level of competing endogenous RNA network regulation.
Collapse
Affiliation(s)
- Yuxin Deng
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, China
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Hui Song
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, China
| | - Yan Xiao
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, China
| | - Yi Zhao
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, China
| | - Liangzao Chu
- Department of Neurosurgery, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jiuyang Ding
- School of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Xiangchun Shen
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
- *Correspondence: Xiangchun Shen, ; Xiaolan Qi,
| | - Xiaolan Qi
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, China
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Translational Medicine Research Center, Guizhou Medical University, Guiyang, China
- *Correspondence: Xiangchun Shen, ; Xiaolan Qi,
| |
Collapse
|
20
|
TARDBP Inhibits Porcine Epidemic Diarrhea Virus Replication through Degrading Viral Nucleocapsid Protein and Activating Type I Interferon Signaling. J Virol 2022; 96:e0007022. [DOI: 10.1128/jvi.00070-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PEDV refers to the highly contagious enteric coronavirus that has quickly spread globally and generated substantial financial damage to the global swine industry. During virus infection, the host regulates the innate immunity and autophagy process to inhibit virus infection.
Collapse
|
21
|
Targeted protein degradation: mechanisms, strategies and application. Signal Transduct Target Ther 2022; 7:113. [PMID: 35379777 PMCID: PMC8977435 DOI: 10.1038/s41392-022-00966-4] [Citation(s) in RCA: 216] [Impact Index Per Article: 108.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/21/2022] [Accepted: 03/15/2022] [Indexed: 12/11/2022] Open
Abstract
Traditional drug discovery mainly focuses on direct regulation of protein activity. The development and application of protein activity modulators, particularly inhibitors, has been the mainstream in drug development. In recent years, PROteolysis TArgeting Chimeras (PROTAC) technology has emerged as one of the most promising approaches to remove specific disease-associated proteins by exploiting cells’ own destruction machinery. In addition to PROTAC, many different targeted protein degradation (TPD) strategies including, but not limited to, molecular glue, Lysosome-Targeting Chimaera (LYTAC), and Antibody-based PROTAC (AbTAC), are emerging. These technologies have not only greatly expanded the scope of TPD, but also provided fresh insights into drug discovery. Here, we summarize recent advances of major TPD technologies, discuss their potential applications, and hope to provide a prime for both biologists and chemists who are interested in this vibrant field.
Collapse
|
22
|
Davidson JM, Chung RS, Lee A. The converging roles of sequestosome-1/p62 in the molecular pathways of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Neurobiol Dis 2022; 166:105653. [PMID: 35143965 DOI: 10.1016/j.nbd.2022.105653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/18/2022] [Accepted: 02/03/2022] [Indexed: 01/03/2023] Open
Abstract
Investigations into the pathogenetic mechanisms underlying amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) have provided significant insight into the disease. At the cellular level, ALS and FTD are classified as proteinopathies, which is motor neuron degeneration and death characterized by pathological protein aggregates or dysregulated proteostasis. At both the clinical and molecular level there are common signaling pathways dysregulated across the ALS and FTD spectrum (ALS/FTD). Sequestosome-1/p62 is a multifunctional scaffold protein with roles in several signaling pathways including proteostasis, protein degradation via the ubiquitin proteasome system and autophagy, the antioxidant response, inflammatory response, and apoptosis. Notably these pathways are dysregulated in ALS and FTD. Mutations in the functional domains of p62 provide links to the pathogenetic mechanisms of p62 and dyshomeostasis of p62 levels is noted in several types of ALS and FTD. We present here that the dysregulated ALS and FTD signaling pathways are linked, with p62 converging the molecular mechanisms. This review summarizes the current literature on the complex role of p62 in the pathogenesis across the ALS/FTD spectrum. The focus is on the underlying convergent molecular mechanisms of ALS and FTD-associated proteins and pathways that dysregulate p62 levels or are dysregulated by p62, with emphasis on how p62 is implicated across the ALS/FTD spectrum.
Collapse
Affiliation(s)
- Jennilee M Davidson
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, 2 Technology Place, NSW 2109, Australia..
| | - Roger S Chung
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, 2 Technology Place, NSW 2109, Australia..
| | - Albert Lee
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, 2 Technology Place, NSW 2109, Australia..
| |
Collapse
|
23
|
Vitamin B12 Reduces TDP-43 Toxicity by Alleviating Oxidative Stress and Mitochondrial Dysfunction. Antioxidants (Basel) 2021; 11:antiox11010082. [PMID: 35052586 PMCID: PMC8773243 DOI: 10.3390/antiox11010082] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/23/2021] [Accepted: 12/26/2021] [Indexed: 01/20/2023] Open
Abstract
TAR DNA-binding protein 43 (TDP-43) is a member of an evolutionarily conserved family of heterogeneous nuclear ribonucleoproteins that modulate multiple steps in RNA metabolic processes. Cytoplasmic aggregation of TDP-43 in affected neurons is a pathological hallmark of many neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), Alzheimer’s disease (AD), and limbic predominant age-related TDP-43 encephalopathy (LATE). Mislocalized and accumulated TDP-43 in the cytoplasm induces mitochondrial dysfunction and reactive oxidative species (ROS) production. Here, we show that TDP-43- and rotenone-induced neurotoxicity in the human neuronal cell line SH-SY5Y were attenuated by hydroxocobalamin (Hb, vitamin B12 analog) treatment. Although Hb did not affect the cytoplasmic accumulation of TDP-43, Hb attenuated TDP-43-induced toxicity by reducing oxidative stress and mitochondrial dysfunction. Moreover, a shortened lifespan and motility defects in TDP-43-expressing Drosophila were significantly mitigated by dietary treatment with hydroxocobalamin. Taken together, these findings suggest that oral intake of hydroxocobalamin may be a potential therapeutic intervention for TDP-43-associated proteinopathies.
Collapse
|
24
|
Lee S, Jo M, Lee HE, Jeon YM, Kim S, Kwon Y, Woo J, Han S, Mun JY, Kim HJ. HEXA-018, a Novel Inducer of Autophagy, Rescues TDP-43 Toxicity in Neuronal Cells. Front Pharmacol 2021; 12:747975. [PMID: 34925009 PMCID: PMC8675103 DOI: 10.3389/fphar.2021.747975] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/05/2021] [Indexed: 11/13/2022] Open
Abstract
The autophagy-lysosomal pathway is an essential cellular mechanism that degrades aggregated proteins and damaged cellular components to maintain cellular homeostasis. Here, we identified HEXA-018, a novel compound containing a catechol derivative structure, as a novel inducer of autophagy. HEXA-018 increased the LC3-I/II ratio, which indicates activation of autophagy. Consistent with this result, HEXA-018 effectively increased the numbers of autophagosomes and autolysosomes in neuronal cells. We also found that the activation of autophagy by HEXA-018 is mediated by the AMPK-ULK1 pathway in an mTOR-independent manner. We further showed that ubiquitin proteasome system impairment- or oxidative stress-induced neurotoxicity was significantly reduced by HEXA-018 treatment. Moreover, oxidative stress-induced mitochondrial dysfunction was strongly ameliorated by HEXA-018 treatment. In addition, we investigated the efficacy of HEXA-018 in models of TDP-43 proteinopathy. HEXA-018 treatment mitigated TDP-43 toxicity in cultured neuronal cell lines and Drosophila. Our data indicate that HEXA-018 could be a new drug candidate for TDP-43-associated neurodegenerative diseases.
Collapse
Affiliation(s)
- Shinrye Lee
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu, South Korea
| | - Myungjin Jo
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu, South Korea
| | - Hye Eun Lee
- Neural Circuit Research Group, Korea Brain Research Institute (KBRI), Daegu, South Korea
| | - Yu-Mi Jeon
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu, South Korea
| | - Seyeon Kim
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu, South Korea.,Department of Brain and Cognitive Sciences, DGIST, Daegu, South Korea
| | - Younghwi Kwon
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu, South Korea.,Department of Brain and Cognitive Sciences, DGIST, Daegu, South Korea
| | - Junghwa Woo
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu, South Korea
| | - Shin Han
- Hexa Pharmatec, Ansan-si, South Korea
| | - Ji Young Mun
- Neural Circuit Research Group, Korea Brain Research Institute (KBRI), Daegu, South Korea
| | - Hyung-Jun Kim
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu, South Korea
| |
Collapse
|
25
|
Hicks DA. TDP-43 and amyloid precursor protein processing: implications for Alzheimer's disease. Neural Regen Res 2021; 16:1402-1403. [PMID: 33318427 PMCID: PMC8284272 DOI: 10.4103/1673-5374.300983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/21/2020] [Accepted: 09/07/2020] [Indexed: 11/26/2022] Open
Affiliation(s)
- David A. Hicks
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
26
|
Wood A, Gurfinkel Y, Polain N, Lamont W, Lyn Rea S. Molecular Mechanisms Underlying TDP-43 Pathology in Cellular and Animal Models of ALS and FTLD. Int J Mol Sci 2021; 22:4705. [PMID: 33946763 PMCID: PMC8125728 DOI: 10.3390/ijms22094705] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/22/2021] [Accepted: 04/28/2021] [Indexed: 02/03/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) are neurodegenerative disorders that exist on a disease spectrum due to pathological, clinical and genetic overlap. In up to 97% of ALS cases and ~50% of FTLD cases, the primary pathological protein observed in affected tissues is TDP-43, which is hyperphosphorylated, ubiquitinated and cleaved. The TDP-43 is observed in aggregates that are abnormally located in the cytoplasm. The pathogenicity of TDP-43 cytoplasmic aggregates may be linked with both a loss of nuclear function and a gain of toxic functions. The cellular processes involved in ALS and FTLD disease pathogenesis include changes to RNA splicing, abnormal stress granules, mitochondrial dysfunction, impairments to axonal transport and autophagy, abnormal neuromuscular junctions, endoplasmic reticulum stress and the subsequent induction of the unfolded protein response. Here, we review and discuss the evidence for alterations to these processes that have been reported in cellular and animal models of TDP-43 proteinopathy.
Collapse
Affiliation(s)
- Alistair Wood
- School of Molecular Science, University of Western Australia, Nedlands 6009, Australia;
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Health Research Building, Discovery Way, Murdoch 6150, Australia; (Y.G.); (N.P.)
| | - Yuval Gurfinkel
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Health Research Building, Discovery Way, Murdoch 6150, Australia; (Y.G.); (N.P.)
- Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Nedlands 6009, Australia;
| | - Nicole Polain
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Health Research Building, Discovery Way, Murdoch 6150, Australia; (Y.G.); (N.P.)
| | - Wesley Lamont
- Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Nedlands 6009, Australia;
| | - Sarah Lyn Rea
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Health Research Building, Discovery Way, Murdoch 6150, Australia; (Y.G.); (N.P.)
- Hub for Immersive Visualisation and eResearch, Curtin University, Bentley 6102, Australia
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands 6009, Australia
| |
Collapse
|
27
|
Le Guerroué F, Youle RJ. Ubiquitin signaling in neurodegenerative diseases: an autophagy and proteasome perspective. Cell Death Differ 2020; 28:439-454. [PMID: 33208890 DOI: 10.1038/s41418-020-00667-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 12/13/2022] Open
Abstract
Ubiquitin signaling is a sequence of events driving the fate of a protein based on the type of ubiquitin modifications attached. In the case of neurodegenerative diseases, ubiquitin signaling is mainly associated with degradation signals to process aberrant proteins, which form aggregates often fatal for the brain cells. This signaling is often perturbed by the aggregates themselves and leads to the accumulation of toxic aggregates and inclusion bodies that are deleterious due to a toxic gain of function. Decrease in quality control pathways is often seen with age and is a critical onset for the development of neurodegeneration. Many aggregates are now thought to propagate in a prion-like manner, where mutated proteins acting like seeds are transitioning from cell to cell, converting normal proteins to toxic aggregates. Modulation of ubiquitin signaling, by stimulating ubiquitin ligase activation, is a potential therapeutic strategy to treat patients with neurodegeneration diseases.
Collapse
Affiliation(s)
- François Le Guerroué
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Richard J Youle
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
28
|
Lee S, Kwon Y, Kim S, Jo M, Jeon YM, Cheon M, Lee S, Kim SR, Kim K, Kim HJ. The Role of HDAC6 in TDP-43-Induced Neurotoxicity and UPS Impairment. Front Cell Dev Biol 2020; 8:581942. [PMID: 33282865 PMCID: PMC7705063 DOI: 10.3389/fcell.2020.581942] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/30/2020] [Indexed: 12/23/2022] Open
Abstract
Transactive response DNA-binding protein 43 (TDP-43)-induced neurotoxicity is currently well recognized as a contributor to the pathology of amyotrophic lateral sclerosis (ALS), and the deposition of TDP-43 has been linked to other neurodegenerative diseases, such as frontotemporal lobar degeneration (FTLD) and Alzheimer’s disease (AD). Recent studies also suggest that TDP-43-induced neurotoxicity is associated with ubiquitin-proteasome system (UPS) impairment. Histone deacetylase 6 (HDAC6) is a well-known cytosolic deacetylase enzyme that suppresses the toxicity of UPS impairment. However, the role of HDAC6 in TDP-43-induced neurodegeneration is largely unknown. In this study, we found that HDAC6 overexpression decreased the levels of insoluble and cytosolic TDP-43 protein in TDP-43-overexpressing N2a cells. In addition, TDP-43 overexpression upregulated HDAC6 protein and mRNA levels, and knockdown of Hdac6 elevated the total protein level of TDP-43. We further found that HDAC6 modulates TDP-43-induced UPS impairment via the autophagy-lysosome pathway (ALP). We also showed that TDP-43 promoted a short lifespan in flies and that the accumulation of ubiquitin aggregates and climbing defects were significantly rescued by overexpression of HDAC6 in flies. Taken together, these findings suggest that HDAC6 overexpression can mitigate neuronal toxicity caused by TDP-43-induced UPS impairment, which may represent a novel therapeutic approach for ALS.
Collapse
Affiliation(s)
- Shinrye Lee
- Dementia Research Group, Korea Brain Research Institute, Daegu, South Korea
| | - Younghwi Kwon
- Dementia Research Group, Korea Brain Research Institute, Daegu, South Korea.,Department of Brain and Cognitive Sciences, DGIST, Daegu, South Korea
| | - Seyeon Kim
- Dementia Research Group, Korea Brain Research Institute, Daegu, South Korea.,Department of Brain and Cognitive Sciences, DGIST, Daegu, South Korea
| | - Myungjin Jo
- Dementia Research Group, Korea Brain Research Institute, Daegu, South Korea
| | - Yu-Mi Jeon
- Dementia Research Group, Korea Brain Research Institute, Daegu, South Korea
| | - Mookyung Cheon
- Dementia Research Group, Korea Brain Research Institute, Daegu, South Korea
| | - Seongsoo Lee
- Gwangju Center, Korea Basic Science Institute (KBSI), Gwangju, South Korea
| | - Sang Ryong Kim
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Institute of Life Science and Biotechnology, Kyungpook National University, Daegu, South Korea.,Brain Science and Engineering Institute, Kyungpook National University, Daegu, South Korea
| | - Kiyoung Kim
- Department of Medical Biotechnology, Soonchunhyang University, Asan, South Korea
| | - Hyung-Jun Kim
- Dementia Research Group, Korea Brain Research Institute, Daegu, South Korea
| |
Collapse
|
29
|
Lee S, Kim S, Kang HY, Lim HR, Kwon Y, Jo M, Jeon YM, Kim SR, Kim K, Ha CM, Lee S, Kim HJ. The overexpression of TDP-43 in astrocytes causes neurodegeneration via a PTP1B-mediated inflammatory response. J Neuroinflammation 2020; 17:299. [PMID: 33054766 PMCID: PMC7556969 DOI: 10.1186/s12974-020-01963-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 09/23/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Cytoplasmic inclusions of transactive response DNA binding protein of 43 kDa (TDP-43) in neurons and astrocytes are a feature of some neurodegenerative diseases, such as frontotemporal lobar degeneration with TDP-43 (FTLD-TDP) and amyotrophic lateral sclerosis (ALS). However, the role of TDP-43 in astrocyte pathology remains largely unknown. METHODS To investigate whether TDP-43 overexpression in primary astrocytes could induce inflammation, we transfected primary astrocytes with plasmids encoding Gfp or TDP-43-Gfp. The inflammatory response and upregulation of PTP1B in transfected cells were examined using quantitative RT-PCR and immunoblot analysis. Neurotoxicity was analysed in a transwell coculture system of primary cortical neurons with astrocytes and cultured neurons treated with astrocyte-conditioned medium (ACM). We also examined the lifespan, performed climbing assays and analysed immunohistochemical data in pan-glial TDP-43-expressing flies in the presence or absence of a Ptp61f RNAi transgene. RESULTS PTP1B inhibition suppressed TDP-43-induced secretion of inflammatory cytokines (interleukin 1 beta (IL-1β), interleukin 6 (IL-6) and tumour necrosis factor alpha (TNF-α)) in primary astrocytes. Using a neuron-astrocyte coculture system and astrocyte-conditioned media treatment, we demonstrated that PTP1B inhibition attenuated neuronal death and mitochondrial dysfunction caused by overexpression of TDP-43 in astrocytes. In addition, neuromuscular junction (NMJ) defects, a shortened lifespan, inflammation and climbing defects caused by pan-glial overexpression of TDP-43 were significantly rescued by downregulation of ptp61f (the Drosophila homologue of PTP1B) in flies. CONCLUSIONS These results indicate that PTP1B inhibition mitigates the neuronal toxicity caused by TDP-43-induced inflammation in mammalian astrocytes and Drosophila glial cells.
Collapse
Affiliation(s)
- Shinrye Lee
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu, 41062, South Korea
| | - Seyeon Kim
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu, 41062, South Korea
- Department of Brain & Cognitive Sciences, DGIST, Daegu, 42988, South Korea
| | - Ha-Young Kang
- Gwangju Center, Korea Basic Science Institute (KBSI), Gwangju, 61886, South Korea
| | - Hye Ryeong Lim
- Research Division and Brain Research Core Facilities, Korea Brain Research Institute (KBRI), Daegu, 41062, South Korea
| | - Younghwi Kwon
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu, 41062, South Korea
- Department of Brain & Cognitive Sciences, DGIST, Daegu, 42988, South Korea
| | - Myungjin Jo
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu, 41062, South Korea
| | - Yu-Mi Jeon
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu, 41062, South Korea
| | - Sang Ryong Kim
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Institute of Life Science & Biotechnology, Kyungpook National University, Daegu, 41566, South Korea
- Brain Science and Engineering Institute, Kyungpook National University, Daegu, 41944, South Korea
| | - Kiyoung Kim
- Department of Medical Biotechnology, Soonchunhyang University, Asan, 31538, South Korea
| | - Chang Man Ha
- Research Division and Brain Research Core Facilities, Korea Brain Research Institute (KBRI), Daegu, 41062, South Korea
| | - Seongsoo Lee
- Gwangju Center, Korea Basic Science Institute (KBSI), Gwangju, 61886, South Korea.
| | - Hyung-Jun Kim
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu, 41062, South Korea.
| |
Collapse
|
30
|
Emanuele S, Lauricella M, D’Anneo A, Carlisi D, De Blasio A, Di Liberto D, Giuliano M. p62: Friend or Foe? Evidences for OncoJanus and NeuroJanus Roles. Int J Mol Sci 2020; 21:ijms21145029. [PMID: 32708719 PMCID: PMC7404084 DOI: 10.3390/ijms21145029] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023] Open
Abstract
p62 is a versatile protein involved in the delicate balance between cell death and survival, which is fundamental for cell fate decision in the context of both cancer and neurodegenerative diseases. As an autophagy adaptor, p62 recognizes polyubiquitin chains and interacts with LC3, thereby targeting the selected cargo to the autophagosome with consequent autophagic degradation. Beside this function, p62 behaves as an interactive hub in multiple signalling including those mediated by Nrf2, NF-κB, caspase-8, and mTORC1. The protein is thus crucial for the control of oxidative stress, inflammation and cell survival, apoptosis, and metabolic reprogramming, respectively. As a multifunctional protein, p62 falls into the category of those factors that can exert opposite roles in the cells. Chronic p62 accumulation was found in many types of tumors as well as in stress granules present in different forms of neurodegenerative diseases. However, the protein seems to have a Janus behaviour since it may also serve protective functions against tumorigenesis or neurodegeneration. This review describes the diversified roles of p62 through its multiple domains and interactors and specifically focuses on its oncoJanus and neuroJanus roles.
Collapse
Affiliation(s)
- Sonia Emanuele
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, Via del Vespro 129, 90127 Palermo, Italy; (M.L.); (D.C.); (D.D.L.)
- Correspondence:
| | - Marianna Lauricella
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, Via del Vespro 129, 90127 Palermo, Italy; (M.L.); (D.C.); (D.D.L.)
| | - Antonella D’Anneo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Laboratory of Biochemistry, University of Palermo, Via del Vespro 129, 90127 Palermo, Italy; (A.D.); (A.D.B.); (M.G.)
| | - Daniela Carlisi
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, Via del Vespro 129, 90127 Palermo, Italy; (M.L.); (D.C.); (D.D.L.)
| | - Anna De Blasio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Laboratory of Biochemistry, University of Palermo, Via del Vespro 129, 90127 Palermo, Italy; (A.D.); (A.D.B.); (M.G.)
| | - Diana Di Liberto
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, Via del Vespro 129, 90127 Palermo, Italy; (M.L.); (D.C.); (D.D.L.)
| | - Michela Giuliano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Laboratory of Biochemistry, University of Palermo, Via del Vespro 129, 90127 Palermo, Italy; (A.D.); (A.D.B.); (M.G.)
| |
Collapse
|
31
|
Hu S, Shao Z, Zhang C, Chen L, Mamun AA, Zhao N, Cai J, Lou Z, Wang X, Chen J. Chemerin facilitates intervertebral disc degeneration via TLR4 and CMKLR1 and activation of NF-kB signaling pathway. Aging (Albany NY) 2020; 12:11732-11753. [PMID: 32526705 PMCID: PMC7343479 DOI: 10.18632/aging.103339] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 05/18/2020] [Indexed: 12/25/2022]
Abstract
Now days, obesity is a major risk factor for intervertebral disc degeneration (IDD). However, adipokine, such as chemerin is a novel cytokine, which is secreted by adipose tissue, and are thought to be played major roles in various degenerative diseases. Obese individuals are known to have high concentration of serum chemerin. Our purpose was to study whether chemerin acts as a biochemical relationship between obesity, and IDD. In this study, we found that the expression level of chemerin was significantly increased in the human degenerated nucleus pulposus (NP) tissues, and had higher level in the obese people than the normal people. Chemerin significantly increased the inflammatory mediator level, contributing to ECM degradation in nucleus pulposus cells (NPCs). Furthermore, chemerin overexpression aggravates the puncture-induced IVDD progression in rats, while knockdown CMKLR1 reverses IVDD progression. Chemerin activates the NF-kB signaling pathway via its receptors CMKLR1, and TLR4 to release inflammatory mediators, which cause matrix degradation, and cell aging. These findings generally provide novel evidence supporting the causative role of obesity in IDD, which is essentially important to literally develop novel preventative or generally therapeutic treatment in the disc degenerative disorders.
Collapse
Affiliation(s)
- Sunli Hu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Zhenxuan Shao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Chenxi Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Liang Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Abdullah Al Mamun
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Ning Zhao
- The First School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jinfeng Cai
- The First School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Zhiling Lou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jiaoxiang Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| |
Collapse
|
32
|
Limanaqi F, Biagioni F, Gambardella S, Familiari P, Frati A, Fornai F. Promiscuous Roles of Autophagy and Proteasome in Neurodegenerative Proteinopathies. Int J Mol Sci 2020; 21:E3028. [PMID: 32344772 PMCID: PMC7215558 DOI: 10.3390/ijms21083028] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 12/12/2022] Open
Abstract
Alterations in autophagy and the ubiquitin proteasome system (UPS) are commonly implicated in protein aggregation and toxicity which manifest in a number of neurological disorders. In fact, both UPS and autophagy alterations are bound to the aggregation, spreading and toxicity of the so-called prionoid proteins, including alpha synuclein (α-syn), amyloid-beta (Aβ), tau, huntingtin, superoxide dismutase-1 (SOD-1), TAR-DNA-binding protein of 43 kDa (TDP-43) and fused in sarcoma (FUS). Recent biochemical and morphological studies add to this scenario, focusing on the coordinated, either synergistic or compensatory, interplay that occurs between autophagy and the UPS. In fact, a number of biochemical pathways such as mammalian target of rapamycin (mTOR), transcription factor EB (TFEB), Bcl2-associated athanogene 1/3 (BAG3/1) and glycogen synthase kinase beta (GSk3β), which are widely explored as potential targets in neurodegenerative proteinopathies, operate at the crossroad between autophagy and UPS. These biochemical steps are key in orchestrating the specificity and magnitude of the two degradation systems for effective protein homeostasis, while intermingling with intracellular secretory/trafficking and inflammatory pathways. The findings discussed in the present manuscript are supposed to add novel viewpoints which may further enrich our insight on the complex interactions occurring between cell-clearing systems, protein misfolding and propagation. Discovering novel mechanisms enabling a cross-talk between the UPS and autophagy is expected to provide novel potential molecular targets in proteinopathies.
Collapse
Affiliation(s)
- Fiona Limanaqi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy;
| | - Francesca Biagioni
- I.R.C.C.S. Neuromed, Via Atinense 18, 86077 Pozzilli, Italy; (F.B.); (S.G.); (A.F.)
| | - Stefano Gambardella
- I.R.C.C.S. Neuromed, Via Atinense 18, 86077 Pozzilli, Italy; (F.B.); (S.G.); (A.F.)
| | - Pietro Familiari
- Department of Human Neurosciences, Division of Neurosurgery, Sapienza University of Rome, 00185 Roma, Italy;
| | - Alessandro Frati
- I.R.C.C.S. Neuromed, Via Atinense 18, 86077 Pozzilli, Italy; (F.B.); (S.G.); (A.F.)
| | - Francesco Fornai
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy;
- I.R.C.C.S. Neuromed, Via Atinense 18, 86077 Pozzilli, Italy; (F.B.); (S.G.); (A.F.)
| |
Collapse
|