1
|
Sukseree S, Gruber R, Tschachler E, Eckhart L. Letter to the Editor, "Autophagy Plays a Crucial Role in Ameloblast Differentiation". J Dent Res 2024; 103:452. [PMID: 37968790 DOI: 10.1177/00220345231210462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023] Open
Affiliation(s)
- S Sukseree
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - R Gruber
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - E Tschachler
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - L Eckhart
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
2
|
Iwaya C, Iwata J. Response to Letter, "Autophagy Plays a Crucial Role in Ameloblast Differentiation". J Dent Res 2024; 103:453. [PMID: 38380491 DOI: 10.1177/00220345241231770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024] Open
Affiliation(s)
- C Iwaya
- Department of Diagnostic & Biomedical Sciences, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX, USA
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX, USA
| | - J Iwata
- Department of Diagnostic & Biomedical Sciences, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX, USA
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX, USA
- Pediatric Research Center, The University of Texas Health Science Center at Houston, School of Medicine, Houston, TX, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
3
|
Ida-Yonemochi H, Otsu K, Irié T, Ohazama A, Harada H, Ohshima H. Loss of Autophagy Disrupts Stemness of Ameloblast-Lineage Cells in Aging. J Dent Res 2024; 103:156-166. [PMID: 38058147 DOI: 10.1177/00220345231209931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023] Open
Abstract
Autophagy is one of the intracellular degradation pathways and maintains cellular homeostasis, regulating the stress response, cell proliferation, and signal transduction. To elucidate the role of autophagy in the maintenance of dental epithelial stem cells and the subsequent enamel formation, we analyzed autophagy-deficient mice in epithelial cells (Atg7f/f;KRT14-Cre mice), focusing on the influence of aging and stress environments. We also performed in vitro cell and organ culture experiments with an autophagy inhibitor. In young Atg7f/f;KRT14-Cre mice, morphological change was not obvious in maxillary incisors, except for the remarkable cell death in the stratum intermedium of the transitional stage. However, under stress conditions of hyperglycemia, the incisor color changed to white in diabetes Atg7f/f;KRT14-Cre mice. Regarding dental epithelial stem cells, the shape of the apical bud region of the incisor became irregular with age, and odontoma was formed in aged Atg7f/f;KRT14-Cre mice. In addition, the shape of apical bud culture cells of Atg7f/f;KRT14-Cre mice became irregular and enlarged atypically, with epigenetic changes during culture, suggesting that autophagy deficiency may induce tumorigenesis in dental epithelial cells. The epigenetic change and upregulation of p21 expression were induced by autophagy inhibition in vivo and in vitro. These findings suggest that autophagy is important for the regulation of stem cell maintenance, proliferation, and differentiation of ameloblast-lineage cells, and an autophagy disorder may induce tumorigenesis in odontogenic epithelial cells.
Collapse
Affiliation(s)
- H Ida-Yonemochi
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata, Japan
| | - K Otsu
- Division of Developmental Biology & Regenerative Medicine, Department of Anatomy, Iwate Medical University, Yahaba-cho, Shiwa-gun, Iwate, Japan
| | - T Irié
- Division of Anatomical and Cellular Pathology, Department of Pathology, Iwate Medical University, Yahaba-cho, Shiwa-gun, Iwate, Japan
| | - A Ohazama
- Division of Oral Anatomy, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Chuo-ku, Niigata, Japan
| | - H Harada
- Division of Developmental Biology & Regenerative Medicine, Department of Anatomy, Iwate Medical University, Yahaba-cho, Shiwa-gun, Iwate, Japan
| | - H Ohshima
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata, Japan
| |
Collapse
|
4
|
Bo Y, Mu L, Yang Z, Li W, Jin M. Research progress on ferroptosis in gliomas (Review). Oncol Lett 2024; 27:36. [PMID: 38108075 PMCID: PMC10722542 DOI: 10.3892/ol.2023.14169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 10/24/2023] [Indexed: 12/19/2023] Open
Abstract
Glioma is the most prevalent type of brain tumor characterized by a poor 5-year survival rate and a high mortality rate. Malignant gliomas are commonly treated by surgery, chemotherapy and radiotherapy. However, due to toxicity and resistance to chemoradiotherapy, these treatments can be ineffective. Anxiety and depression are highly prevalent in patients with glioma, adversely affecting disease prognosis and posing societal concerns. Ferroptosis is a type of non-apoptotic, iron-dependent cell death characterized by the accumulation of lethal reactive oxygen species produced by iron metabolism, and it serves a key role in numerous diseases. Regulation of iron phagocytosis may serve as a therapeutic strategy for the development of novel glioma treatments. The present review discusses the mechanisms underlying the occurrence and regulation of ferroptosis, its role in the genesis and evolution of gliomas, and its association with glioma-related anxiety and depression. By exploring potential targets for glioma treatment, the present review provides a theoretical basis for the development of novel therapeutic strategies against glioma.
Collapse
Affiliation(s)
- Yujie Bo
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Luyan Mu
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Zhao Yang
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Wenhao Li
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Ming Jin
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
5
|
Surbek M, Sukseree S, Eckhart L. Iron Metabolism of the Skin: Recycling versus Release. Metabolites 2023; 13:1005. [PMID: 37755285 PMCID: PMC10534741 DOI: 10.3390/metabo13091005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/28/2023] Open
Abstract
The skin protects the body against exogenous stressors. Its function is partially achieved by the permanent regeneration of the epidermis, which requires high metabolic activity and the shedding of superficial cells, leading to the loss of metabolites. Iron is involved in a plethora of important epidermal processes, including cellular respiration and detoxification of xenobiotics. Likewise, microorganisms on the surface of the skin depend on iron, which is supplied by the turnover of epithelial cells. Here, we review the metabolism of iron in the skin with a particular focus on the fate of iron in epidermal keratinocytes. The iron metabolism of the epidermis is controlled by genes that are differentially expressed in the inner and outer layers of the epidermis, establishing a system that supports the recycling of iron and counteracts the release of iron from the skin surface. Heme oxygenase-1 (HMOX1), ferroportin (SLC40A1) and hephaestin-like 1 (HEPHL1) are constitutively expressed in terminally differentiated keratinocytes and allow the recycling of iron from heme prior to the cornification of keratinocytes. We discuss the evidence for changes in the epidermal iron metabolism in diseases and explore promising topics of future studies of iron-dependent processes in the skin.
Collapse
Affiliation(s)
| | | | - Leopold Eckhart
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria; (M.S.); (S.S.)
| |
Collapse
|
6
|
Shah FA. High-resolution Raman spectroscopy reveals compositional differences between pigmented incisor enamel and unpigmented molar enamel in Rattus norvegicus. Sci Rep 2023; 13:12301. [PMID: 37516744 PMCID: PMC10387050 DOI: 10.1038/s41598-023-38792-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 07/14/2023] [Indexed: 07/31/2023] Open
Abstract
Dental enamel is a peculiar biological tissue devoid of any self-renewal capacity as opposed to bone. Thus, a thorough understanding of enamel composition is essential to develop novel strategies for dental enamel repair. While the mineral found in bone and dental enamel is generally viewed as the biologically-produced equivalent of hydroxy(l)apatite, the formation of these bioapatites is controlled by different organic matrix frameworks-mainly type-I collagen in bone and amelogenin in enamel. In lower vertebrates, such as rodents, two distinct types of enamel are produced. Iron-containing pigmented enamel protects the continuously growing incisor teeth while magnesium-rich unpigmented enamel covers the molar teeth. Using high-resolution Raman spectroscopy, scanning electron microscopy, and energy dispersive X-ray spectroscopy, this work explores the differences in acid phosphate (HPO42-), carbonate (CO32-), hydroxyl (OH-), iron, and magnesium content of pigmented incisor enamel and unpigmented molar enamel of Sprague Dawley rats. Bundles of hydroxy(l)apatite nanowires comprise the enamel prisms, where prisms in pigmented enamel are wider and longer than those in unpigmented molars. In contrast to magnesium-rich unpigmented enamel, higher mineral crystallinity, and higher HPO42- and OH- levels are hallmark features of iron-rich pigmented enamel. Furthermore, the apparent absence of iron oxides or oxy(hydroxides) indicates that iron is introduced into the apatite lattice at the expense of calcium, albeit in amounts that do not alter the Raman signatures of the PO43- internal modes. Compositional idiosyncrasies of iron-rich pigmented and nominally iron-free unpigmented enamel offer new insights into enamel biomineralisation supporting the notion that, in rodents, ameloblast function differs significantly between the incisors and the molars.
Collapse
Affiliation(s)
- Furqan A Shah
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
7
|
Chen H, Tang Y. Iron-loaded extracellular vesicles: angel or demon? Free Radic Res 2023; 57:61-68. [PMID: 36927327 DOI: 10.1080/10715762.2023.2191813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Extracellular vesicles (EVs) are identified as a non-classical way to mediate iron efflux except ferroportin. Interestingly, recent studies indicated that EVs pathway is a novel way involved in iron efflux. Mitochondria-derived vesicles (MDVs) are the potential mediator to load mitochondrial iron into EVs. Additionally, iron-replete cells resist excess iron-induced damage by secreting iron-loaded EVs, and the uptake of these EVs induces oxidative damage in the recipient cell. Importantly, iron-loaded EVs play a key role in aberrant iron distribution, which drives the progress of diseases like nonalcoholic fatty liver disease (NAFLD) and neurodegenerative diseases. Herein, we summarize extant research on intracellular iron export with an emphasis on EVs and put our eyes on the relationship between iron-loaded EVs with both parent and target cells. Iron-loaded EVs will be an important avenue for later research on their vital role in iron redistribution.
Collapse
Affiliation(s)
- Huimin Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhan Tang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Surbek M, Sukseree S, Sachslehner AP, Copic D, Golabi B, Nagelreiter IM, Tschachler E, Eckhart L. Heme Oxygenase-1 Is Upregulated during Differentiation of Keratinocytes but Its Expression Is Dispensable for Cornification of Murine Epidermis. J Dev Biol 2023; 11:12. [PMID: 36976101 PMCID: PMC10058925 DOI: 10.3390/jdb11010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/15/2023] Open
Abstract
The epidermal barrier of mammals is initially formed during embryonic development and continuously regenerated by the differentiation and cornification of keratinocytes in postnatal life. Cornification is associated with the breakdown of organelles and other cell components by mechanisms which are only incompletely understood. Here, we investigated whether heme oxygenase 1 (HO-1), which converts heme into biliverdin, ferrous iron and carbon monoxide, is required for normal cornification of epidermal keratinocytes. We show that HO-1 is transcriptionally upregulated during the terminal differentiation of human keratinocytes in vitro and in vivo. Immunohistochemistry demonstrated expression of HO-1 in the granular layer of the epidermis where keratinocytes undergo cornification. Next, we deleted the Hmox1 gene, which encodes HO-1, by crossing Hmox1-floxed and K14-Cre mice. The epidermis and isolated keratinocytes of the resulting Hmox1f/f K14-Cre mice lacked HO-1 expression. The genetic inactivation of HO-1 did not impair the expression of keratinocyte differentiation markers, loricrin and filaggrin. Likewise, the transglutaminase activity and formation of the stratum corneum were not altered in Hmox1f/f K14-Cre mice, suggesting that HO-1 is dispensable for epidermal cornification. The genetically modified mice generated in this study may be useful for future investigations of the potential roles of epidermal HO-1 in iron metabolism and responses to oxidative stress.
Collapse
Affiliation(s)
- Marta Surbek
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | - Supawadee Sukseree
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | | | - Dragan Copic
- Clinical Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, 1090 Vienna, Austria
| | - Bahar Golabi
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | | | - Erwin Tschachler
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | - Leopold Eckhart
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
9
|
Zhao L, Wang H, Liu S, Xi T, Wang L, Li Y, Chen L, Jianping R, Liang KX. Inhibition of autophagy reduces the rate of fluoride-induced LS8 apoptosis via regulating ATG5 and ATG7. J Biochem Mol Toxicol 2023; 37:e23280. [PMID: 36536498 DOI: 10.1002/jbt.23280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 10/27/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022]
Abstract
Excessive fluoride affects ameloblast differentiation and tooth development. The fate of fluorinated ameloblasts is determined by multiple signaling pathways in response to a range of stimuli. Both autophagy and apoptosis are involved in the regulation of dental fluorosis as well as in protein synthesis and enamel mineralization. Emerging evidence suggests that autophagy and apoptosis are interconnected and that their interaction greatly influences cell death. However, the effect of autophagy on apoptosis in fluoride-treated ameloblasts is unclear. Here, we employed an in vitro cellular model of fluorosis in mouse ameloblast-like LS8 cells and induced autophagy using sodium fluoride (NaF). Our findings suggest that NaF treatment induces autophagy in LS8 cells, and ATG5 and ATG7 are important molecules involved in this process. We also showed that NaF treatment reduced cell viability in Atg5/7 siRNA and autophagy inhibitor-treated LS8 cells. More importantly, NaF-induced apoptosis can be reversed by inhibiting early stage of autophagy. In conclusion, our study shows that autophagy is closely related to dental fluorosis, and inhibition of autophagy, especially ATG5/7, reduces fluoride-induced cell death and apoptosis.
Collapse
Affiliation(s)
- Lin Zhao
- Ningxia Key Laboratory of Cranio-maxillofacial Deformities, College of Stomatology, Ningxia Medical University, Yinchuan, China
| | - Han Wang
- Ningxia Key Laboratory of Cranio-maxillofacial Deformities, College of Stomatology, Ningxia Medical University, Yinchuan, China
| | - Sijia Liu
- Ningxia Key Laboratory of Cranio-maxillofacial Deformities, College of Stomatology, Ningxia Medical University, Yinchuan, China
| | - Tao Xi
- Ningxia Key Laboratory of Cranio-maxillofacial Deformities, College of Stomatology, Ningxia Medical University, Yinchuan, China
| | - Liyuan Wang
- Ningxia Key Laboratory of Cranio-maxillofacial Deformities, College of Stomatology, Ningxia Medical University, Yinchuan, China
- Stomatological Hospital of the General Hospital of Ningxia Medical University, Yinchuan, China
| | - Yang Li
- Ningxia Key Laboratory of Cranio-maxillofacial Deformities, College of Stomatology, Ningxia Medical University, Yinchuan, China
| | - Lu Chen
- Department of Preventive Dentistry, Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Stomatology Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Ruan Jianping
- Department of Preventive Dentistry, Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Stomatology Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Kristina Xiao Liang
- Neuro-SysMed, Center of Excellence for Clinical Research in Neurological Diseases, Department of Neurology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|
10
|
Barrientos-Riosalido A, Real M, Bertran L, Aguilar C, Martínez S, Parada D, Vives M, Sabench F, Riesco D, Castillo DD, Richart C, Auguet T. Increased Hepatic ATG7 mRNA and ATG7 Protein Expression in Nonalcoholic Steatohepatitis Associated with Obesity. Int J Mol Sci 2023; 24:ijms24021324. [PMID: 36674839 PMCID: PMC9867349 DOI: 10.3390/ijms24021324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
The autophagy gene ATG7 has been shown to be essential for the induction of autophagy, a process that used to be suppressed in nonalcoholic fatty liver disease (NAFLD). However, the specific role of ATG7 in NAFLD remains unclear. The aim of this study was to analyze hepatic ATG7 mRNA and ATG7 protein expression regarding obesity-associated NAFLD. Patients included women classified into normal weight (NW, n = 6) and morbid obesity (MO, n = 72). The second group was subclassified into normal liver (NL, n = 11), simple steatosis (SS, n= 29), and nonalcoholic steatohepatitis (NASH, n = 32). mRNA expression was analyzed by RT-qPCR and protein expression was evaluated by Western blotting. Our results showed that NASH patients presented higher ATG7 mRNA and ATG7 protein levels. ATG7 mRNA expression was increased in NASH compared with SS, while ATG7 protein abundance was enhanced in NASH compared with NL. ATG7 mRNA correlated negatively with the expression of some hepatic lipid metabolism-related genes and positively with endocannabinoid receptors, adiponectin hepatic expression, and omentin levels. These results suggest that ATG7-mediated autophagy may play an important role in the pathogenesis of NAFLD, especially in NASH, perhaps playing a possible protective role. However, this is a preliminary study that needs to be further studied.
Collapse
Affiliation(s)
- Andrea Barrientos-Riosalido
- Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada (URV), Departament de Medicina i Cirurgia, Universitat Rovira i Virgili (URV), Institut d’Investigació Sanitària Pere Virgili (IISPV), 43007 Tarragona, Spain
| | - Monica Real
- Servei Medicina Interna, Hospital Universitari Joan XXIII Tarragona, Mallafré Guasch, 4, 43007 Tarragona, Spain
| | - Laia Bertran
- Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada (URV), Departament de Medicina i Cirurgia, Universitat Rovira i Virgili (URV), Institut d’Investigació Sanitària Pere Virgili (IISPV), 43007 Tarragona, Spain
| | - Carmen Aguilar
- Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada (URV), Departament de Medicina i Cirurgia, Universitat Rovira i Virgili (URV), Institut d’Investigació Sanitària Pere Virgili (IISPV), 43007 Tarragona, Spain
| | - Salomé Martínez
- Servei Anatomia Patològica, Hospital Universitari Joan XXIII Tarragona, Mallafré Guasch, 4, 43007 Tarragona, Spain
| | - David Parada
- Servei Anatomia Patològica, Hospital Universitari Sant Joan de Reus, Avinguda Doctor Josep Laporte, 2, 43204 Reus, Spain
| | - Margarita Vives
- Servei de Cirurgia, Hospital Sant Joan de Reus, Departament de Medicina i Cirurgia, URV, IISPV, Avinguda Doctor Josep Laporte, 2, 43204 Reus, Spain
| | - Fàtima Sabench
- Servei de Cirurgia, Hospital Sant Joan de Reus, Departament de Medicina i Cirurgia, URV, IISPV, Avinguda Doctor Josep Laporte, 2, 43204 Reus, Spain
| | - David Riesco
- Servei Medicina Interna, Hospital Universitari Joan XXIII Tarragona, Mallafré Guasch, 4, 43007 Tarragona, Spain
| | - Daniel Del Castillo
- Servei de Cirurgia, Hospital Sant Joan de Reus, Departament de Medicina i Cirurgia, URV, IISPV, Avinguda Doctor Josep Laporte, 2, 43204 Reus, Spain
| | - Cristóbal Richart
- Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada (URV), Departament de Medicina i Cirurgia, Universitat Rovira i Virgili (URV), Institut d’Investigació Sanitària Pere Virgili (IISPV), 43007 Tarragona, Spain
| | - Teresa Auguet
- Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada (URV), Departament de Medicina i Cirurgia, Universitat Rovira i Virgili (URV), Institut d’Investigació Sanitària Pere Virgili (IISPV), 43007 Tarragona, Spain
- Servei Medicina Interna, Hospital Universitari Joan XXIII Tarragona, Mallafré Guasch, 4, 43007 Tarragona, Spain
- Correspondence: ; Tel.: +34-977-29-58-33
| |
Collapse
|
11
|
Anti-Gnawing, Thermo-Mechanical and Rheological Properties of Polyvinyl Chloride: Effect of Capsicum Oleoresin and Denatonium Benzoate. JOURNAL OF COMPOSITES SCIENCE 2021. [DOI: 10.3390/jcs6010008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Anti-rodent polymer composites were prepared using non-toxic substances denatonium benzoate (DB) and capsicum oleroresin (CO) mixed with polyvinyl chloride (PVC) matrix. DB is mixed in zinc stearate (ZnSt) called DB/ZnSt, and CO, providing burning sensation, is impregnated in mesoporous silica named SiCO. There are three sets of sample: Blank, composites Set I and Set II. Set I consists of DB/ZnSt at concentration of 1.96 wt% and SiCO at concentration of 12.16 wt%, 14.47 wt%, 18.75 wt% and 23.53 wt%. Set II comprises SiCO at the same amount of Set I. The anti-rodent composites studied are anti-gnawing, surface morphology, thermo-mechanical and rheological properties. Anti-rodent testing is analyzed by one-way blocked analysis of variance (ANOVA) and compared with Tukey test with a 95% level of significance, presenting good anti-gnawing efficiency. The best rat-proof sample is II.4, consisting of SiCO 23.53 wt%, which presents percentage of weight loss from gnawing at 1.68% compared to weight loss of neat PVC at 59.74%. The addition of SiCO at concentration ranging from 12.16 to 23.53 wt% reduces tensile strength around 25–50%, elongation at break strength around 2–23%, shear storage modulus (G′) around 30%, shear loss modulus (G″) shear viscosity (η) and glass transition (Tg) around 43% compared to Blank. The increase in SiCO concentration slightly improves the thermal stability of PVC composites around 3%, but the addition of DB/ZnSt at 1.96 wt% slightly reduces those properties.
Collapse
|
12
|
Ye W, Bian D, Mao T, Dai M, Feng P, Zhu Q, Ren Y, Li F, Gu Z, Li B. Cloning and functional analysis of autophagy-related gene 7 in Bombyx mori, silkworm. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 107:e21827. [PMID: 34173258 DOI: 10.1002/arch.21827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
Silkworm (Bombyx mori) is an important economic insect and an attractive model system. A series of autophagy-related genes (Atgs) are involved in the autophagic process, and these Atgs have been proved to play important roles in the development. Atg7 stands at the hub of two ubiquitin-like systems involving Atg8 and Atg12 in the autophagic vesicle. In the present study, we cloned and characterized a BmAtg7 gene in Bombyx mori. The open reading frame (ORF) of BmAtg7 was 1908 bp in length, and it encoded a polypeptide of 635 amino acids. BmAtg7 was highly expressed in the posterior silk gland, fatbody, and epidermis. The expression profile of BmAtg7 in the fatbody showed an increasing tendency from day 1 of the 5th instar to the prepupal stage. After chlorantraniliprole (CAP) exposure, the transcriptional level of BmAtg7 was continuously decreased. After depletion of BmAtg7 by RNAi, the expressions of BmAtg7, BmAtg8, and BmEcr were all downregulated, while the expression of BmJHBP2 was upregulated. However, depletion of BmAtg7 did not prevent the metamorphosis of silkworm from larvae to pupae, while the occurrence of such process was delayed. After the 20-hydroxyecdysone (20E) treatment, the expression characteristics of these four genes (BmAtg7, BmAtg8, BmEcr and BmJHBP2) were contrary to the results after depletion of BmAtg7. Our results suggested that although CAP exposure could significantly inhibit the expression of BmAtg7 continuously, the changes of BmAtg7 was not the key factor in CAP-induced metamorphosis defects.
Collapse
Affiliation(s)
- Wentao Ye
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Dandan Bian
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Tingting Mao
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Minli Dai
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Piao Feng
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Qingyu Zhu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Yuying Ren
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Fanchi Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Zhiya Gu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Bing Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, China
- Sericulture Institute, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
13
|
Fan L, Ou YJ, Zhu YX, Liang YD, Zhou Y, Wang YN. Lif Deficiency Leads to Iron Transportation Dysfunction in Ameloblasts. J Dent Res 2021; 101:63-72. [PMID: 34034544 DOI: 10.1177/00220345211011986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Leukemia inhibitory factor (LIF), a member of the interleukin 6 family of cytokines, is involved in skeletal metabolism, blastocyst implantation, and stem cell pluripotency maintenance. However, the role of LIF in tooth development needs to be elucidated. The aim of the present study was to investigate the effect of Lif deficiency on tooth development and to elucidate the functions of Lif during tooth development and the underlying mechanisms. First, it was found that the incisors of Lif-knockout mice had a much whiter color than those of wild-type mice. Although there were no structural abnormalities or defective mineralization according to scanning electronic microscopy and computed tomography analysis, 3-dimensional images showed that the length of incisors was shorter in Lif-/- mice. Microhardness and acid resistance assays showed that the hardness and acid resistance of the enamel surface of Lif-/- mice were decreased compared to those of wild-type mice. In Lif-/- mice, whose general iron status was comparable to that of the control mice, the iron content of the incisors was significantly reduced, as confirmed by energy-dispersive X-ray spectroscopy (EDS) and Prussian blue staining. Histological staining showed that the cell length of maturation-stage ameloblasts was shorter in Lif-/- mice. Likewise, decreased expression of Tfrc and Slc40a1, both of which are crucial proteins for iron transportation, was observed in Lif-/- mice and Lif-knockdown ameloblast lineage cell lines, according to quantitative reverse transcription polymerase chain reaction, immunohistochemistry, and Western blot. Moreover, the upregulation of Tfrc and Slc40a1 induced by Lif stimulation was blocked by Stattic, a signal transducer and activator of transcription 3 (Stat3) signaling inhibitor. These results suggest that Lif deficiency inhibits iron transportation in the maturation-stage ameloblasts, and Lif modulates expression of Tfrc and Slc40a1 through the Stat3 signaling pathway during enamel development.
Collapse
Affiliation(s)
- L Fan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Y J Ou
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Y X Zhu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Y D Liang
- Yantian Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Y Zhou
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Prosthodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Y N Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Prosthodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
14
|
Sukseree S, Bakiri L, Palomo-Irigoyen M, Uluçkan Ö, Petzelbauer P, Wagner EF. Sequestosome 1/p62 enhances chronic skin inflammation. J Allergy Clin Immunol 2021; 147:2386-2393.e4. [PMID: 33675820 DOI: 10.1016/j.jaci.2021.02.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND The molecular control of inflammation and epidermal thickening in skin lesions of patients with atopic dermatitis (AD) is not known. Sequestosome 1/p62 is a multifunctional adapter protein implicated in the control of key regulators of cellular homeostasis, such as proinflammatory and mechanistic target of rapamycin signaling. OBJECTIVE We sought to determine whether p62 plays a role in the cutaneous and systemic manifestations of an AD-like mouse model. METHODS AD-like skin lesions were induced by deletion of JunB/AP-1, specifically in epidermal keratinocytes (JunBΔep). The contribution of p62 to pathological changes was determined by inactivation of p62 in JunBΔepp62-/- double knockout mice. RESULTS Expression of p62 was elevated in skin lesions of JunBΔep mice, resembling upregulation of p62 in AD and psoriasis. When p62 was inactivated, JunBΔep-associated defects in the differentiation of keratinocytes, epidermal thickening, skin infiltration by mast cells and neutrophils, and the development of macroscopic skin lesions were significantly reduced. p62 inactivation had little effect on circulating cytokines, but decreased serum IgE. Signaling through mechanistic target of rapamycin and natural factor kappa B was increased in JunBΔep but not in JunBΔepp62-/- double knockout skin, indicating an important role of p62 in enhancing these signaling pathways in the skin during AD-like inflammation. CONCLUSIONS Our results provide the first in vivo evidence for a proinflammatory role of p62 in skin and suggest that p62-dependent signaling pathways may be promising therapeutic targets to ameliorate the skin manifestations of AD and possibly psoriasis.
Collapse
Affiliation(s)
- Supawadee Sukseree
- Genes and Disease Laboratory, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Latifa Bakiri
- Genes and Disease Laboratory, Department of Laboratory Medicine (KILM), Medical University of Vienna, Vienna, Austria
| | - Marta Palomo-Irigoyen
- Genes and Disease Laboratory, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Özge Uluçkan
- Genes Development and Disease group, CNIO, Madrid, Spain
| | - Peter Petzelbauer
- Skin & Endothelium Research Division, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Erwin F Wagner
- Genes and Disease Laboratory, Department of Dermatology, Medical University of Vienna, Vienna, Austria; Genes and Disease Laboratory, Department of Laboratory Medicine (KILM), Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
15
|
Zhang Y, Kong Y, Ma Y, Ni S, Wikerholmen T, Xi K, Zhao F, Zhao Z, Wang J, Huang B, Chen A, Yao Z, Han M, Feng Z, Hu Y, Thorsen F, Wang J, Li X. Loss of COPZ1 induces NCOA4 mediated autophagy and ferroptosis in glioblastoma cell lines. Oncogene 2021; 40:1425-1439. [PMID: 33420375 PMCID: PMC7906905 DOI: 10.1038/s41388-020-01622-3] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 11/25/2020] [Accepted: 12/11/2020] [Indexed: 01/29/2023]
Abstract
Dysregulated iron metabolism is a hallmark of many cancers, including glioblastoma (GBM). However, its role in tumor progression remains unclear. Herein, we identified coatomer protein complex subunit zeta 1 (COPZ1) as a therapeutic target candidate which significantly dysregulated iron metabolism in GBM cells. Overexpression of COPZ1 was associated with increasing tumor grade and poor prognosis in glioma patients based on analysis of expression data from the publicly available database The Cancer Genome Atlas (P < 0.001). Protein levels of COPZ1 were significantly increased in GBM compared to non-neoplastic brain tissue samples in immunohistochemistry and western blot analysis. SiRNA knockdown of COPZ1 suppressed proliferation of U87MG, U251 and P3#GBM in vitro. Stable expression of a COPZ1 shRNA construct in U87MG inhibited tumor growth in vivo by ~60% relative to controls at day 21 after implantation (P < 0.001). Kaplan-Meier analysis of the survival data demonstrated that the overall survival of tumor bearing animals increased from 20.8 days (control) to 27.8 days (knockdown, P < 0.05). COPZ1 knockdown also led to the increase in nuclear receptor coactivator 4 (NCOA4), resulting in the degradation of ferritin, and a subsequent increase in the intracellular levels of ferrous iron and ultimately ferroptosis. These data demonstrate that COPZ1 is a critical mediator in iron metabolism. The COPZ1/NCOA4/FTH1 axis is therefore a novel therapeutic target for the treatment of human GBM.
Collapse
Affiliation(s)
- Yulin Zhang
- grid.27255.370000 0004 1761 1174Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Shandong 107 Wenhua Xi Road, Jinan, 250012 P.R. China ,Shandong Key Laboratory of Brain Function Remodeling, Shandong 107 Wenhua Xi Road, Jinan, 250012 P.R. China ,grid.7914.b0000 0004 1936 7443Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Yang Kong
- grid.27255.370000 0004 1761 1174Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Shandong 107 Wenhua Xi Road, Jinan, 250012 P.R. China ,Shandong Key Laboratory of Brain Function Remodeling, Shandong 107 Wenhua Xi Road, Jinan, 250012 P.R. China ,grid.7914.b0000 0004 1936 7443Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Yuan Ma
- grid.27255.370000 0004 1761 1174Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Shandong 107 Wenhua Xi Road, Jinan, 250012 P.R. China ,Shandong Key Laboratory of Brain Function Remodeling, Shandong 107 Wenhua Xi Road, Jinan, 250012 P.R. China
| | - Shilei Ni
- grid.27255.370000 0004 1761 1174Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Shandong 107 Wenhua Xi Road, Jinan, 250012 P.R. China ,Shandong Key Laboratory of Brain Function Remodeling, Shandong 107 Wenhua Xi Road, Jinan, 250012 P.R. China
| | - Tobias Wikerholmen
- grid.7914.b0000 0004 1936 7443Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Kaiyan Xi
- grid.27255.370000 0004 1761 1174Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Shandong 107 Wenhua Xi Road, Jinan, 250012 P.R. China ,Shandong Key Laboratory of Brain Function Remodeling, Shandong 107 Wenhua Xi Road, Jinan, 250012 P.R. China
| | - Feihu Zhao
- grid.27255.370000 0004 1761 1174Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Shandong 107 Wenhua Xi Road, Jinan, 250012 P.R. China ,Shandong Key Laboratory of Brain Function Remodeling, Shandong 107 Wenhua Xi Road, Jinan, 250012 P.R. China
| | - Zhimin Zhao
- grid.27255.370000 0004 1761 1174Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Shandong 107 Wenhua Xi Road, Jinan, 250012 P.R. China ,Shandong Key Laboratory of Brain Function Remodeling, Shandong 107 Wenhua Xi Road, Jinan, 250012 P.R. China
| | - Junpeng Wang
- grid.27255.370000 0004 1761 1174Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Shandong 107 Wenhua Xi Road, Jinan, 250012 P.R. China ,Shandong Key Laboratory of Brain Function Remodeling, Shandong 107 Wenhua Xi Road, Jinan, 250012 P.R. China
| | - Bin Huang
- grid.27255.370000 0004 1761 1174Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Shandong 107 Wenhua Xi Road, Jinan, 250012 P.R. China ,Shandong Key Laboratory of Brain Function Remodeling, Shandong 107 Wenhua Xi Road, Jinan, 250012 P.R. China
| | - Anjing Chen
- grid.27255.370000 0004 1761 1174Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Shandong 107 Wenhua Xi Road, Jinan, 250012 P.R. China ,Shandong Key Laboratory of Brain Function Remodeling, Shandong 107 Wenhua Xi Road, Jinan, 250012 P.R. China
| | - Zhong Yao
- grid.27255.370000 0004 1761 1174Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Shandong 107 Wenhua Xi Road, Jinan, 250012 P.R. China ,Shandong Key Laboratory of Brain Function Remodeling, Shandong 107 Wenhua Xi Road, Jinan, 250012 P.R. China
| | - Mingzhi Han
- grid.7914.b0000 0004 1936 7443Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Zichao Feng
- grid.27255.370000 0004 1761 1174Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Shandong 107 Wenhua Xi Road, Jinan, 250012 P.R. China ,Shandong Key Laboratory of Brain Function Remodeling, Shandong 107 Wenhua Xi Road, Jinan, 250012 P.R. China
| | - Yaotian Hu
- grid.27255.370000 0004 1761 1174Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Shandong 107 Wenhua Xi Road, Jinan, 250012 P.R. China ,Shandong Key Laboratory of Brain Function Remodeling, Shandong 107 Wenhua Xi Road, Jinan, 250012 P.R. China
| | - Frits Thorsen
- grid.27255.370000 0004 1761 1174Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Shandong 107 Wenhua Xi Road, Jinan, 250012 P.R. China ,grid.7914.b0000 0004 1936 7443Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway ,grid.7914.b0000 0004 1936 7443Molecular Imaging Center, Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Jian Wang
- grid.27255.370000 0004 1761 1174Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Shandong 107 Wenhua Xi Road, Jinan, 250012 P.R. China ,Shandong Key Laboratory of Brain Function Remodeling, Shandong 107 Wenhua Xi Road, Jinan, 250012 P.R. China ,grid.7914.b0000 0004 1936 7443Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Xingang Li
- grid.27255.370000 0004 1761 1174Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Shandong 107 Wenhua Xi Road, Jinan, 250012 P.R. China ,Shandong Key Laboratory of Brain Function Remodeling, Shandong 107 Wenhua Xi Road, Jinan, 250012 P.R. China
| |
Collapse
|
16
|
Li Y, Lin M, Wang K, Zhan Y, Gu W, Gao G, Huang Y, Chen Y, Huang T, Wang J. A module of multifactor-mediated dysfunction guides the molecular typing of coronary heart disease. Mol Genet Genomic Med 2020; 8:e1415. [PMID: 32743916 PMCID: PMC7549572 DOI: 10.1002/mgg3.1415] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/08/2020] [Accepted: 06/15/2020] [Indexed: 12/20/2022] Open
Abstract
Background Coronary atherosclerotic heart disease (CHD) is the most common cardiovascular disease and has become a leading cause of death globally. Various molecular typing methods are available for the diagnosis and treatment of tumors. However, molecular typing results are not routinely used for CHD. Methods and Results Aiming to uncover the underlying molecular features of different types of CHD, we screened the differentially expressed genes (DEGs) associated with CHD based on the Gene Expression Omnibus (GEO) data and expanded those with the NCBI‐gene and OMIM databases to finally obtain 2021 DEGs. The weighted gene co‐expression analysis (WGCNA) was performed on the candidate genes, and six distinctive WGCNA modules were identified, two of which were associated with CHD. Moreover, DEGs were mined as key genes for co‐expression based on the module network relationship. Furthermore, the differentially expressed miRNAs in CHD and interactions in the database were mined in the GEO data set to build a multifactor regulatory network of key genes for co‐expression. Based on the network, the CHD samples were further classified into five clusters and we defined FTH1, HCAR3, RGS2, S100A9, and TYROBP as the top genes of the five subgroups. Finally, the mRNA levels of FTH1, S100A9, and TYROBP were found to be significantly increased, while the expression of HCAR3 was decreased in the blood of CHD patients. We did not detect measurable levels of RGS2. Conclusion The screened core clusters of genes may be a target for the diagnosis and treatment of CHD as a molecular typing module.
Collapse
Affiliation(s)
- Yuewei Li
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province, Guangdong, China
| | - Maohuan Lin
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province, Guangdong, China
| | - Kangjie Wang
- Division of Vascular Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - YaQing Zhan
- Department of Anesthesiology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenli Gu
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province, Guangdong, China
| | - Guanghao Gao
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province, Guangdong, China
| | - Yuna Huang
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province, Guangdong, China
| | - Yangxin Chen
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province, Guangdong, China
| | - Tucheng Huang
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province, Guangdong, China
| | - Jingfeng Wang
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province, Guangdong, China
| |
Collapse
|
17
|
Magrin GL, Strauss FJ, Benfatti CAM, Maia LC, Gruber R. Effects of Short-Chain Fatty Acids on Human Oral Epithelial Cells and the Potential Impact on Periodontal Disease: A Systematic Review of In Vitro Studies. Int J Mol Sci 2020; 21:ijms21144895. [PMID: 32664466 PMCID: PMC7402343 DOI: 10.3390/ijms21144895] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 12/22/2022] Open
Abstract
Short-chain fatty acids (SCFA), bacterial metabolites released from dental biofilm, are supposed to target the oral epithelium. There is, however, no consensus on how SCFA affect the oral epithelial cells. The objective of the present study was to systematically review the available in vitro evidence of the impact of SCFA on human oral epithelial cells in the context of periodontal disease. A comprehensive electronic search using five databases along with a grey literature search was performed. In vitro studies that evaluated the effects of SCFA on human oral epithelial cells were eligible for inclusion. Risk of bias was assessed by the University of Bristol's tool for assessing risk of bias in cell culture studies. Certainty in cumulative evidence was evaluated using GRADE criteria (grading of recommendations assessment, development, and evaluation). Of 3591 records identified, 10 were eligible for inclusion. A meta-analysis was not possible due to the heterogeneity between the studies. The risk of bias across the studies was considered "serious" due to the presence of methodological biases. Despite these limitations, this review showed that SCFA negatively affect the viability of oral epithelial cells by activating a series of cellular events that includes apoptosis, autophagy, and pyroptosis. SCFA impair the integrity and presumably the transmigration of leucocytes through the epithelial layer by changing junctional and adhesion protein expression, respectively. SCFA also affect the expression of chemokines and cytokines in oral epithelial cells. Future research needs to identify the underlying signaling cascades and to translate the in vitro findings into preclinical models.
Collapse
Affiliation(s)
- Gabriel Leonardo Magrin
- Department of Oral Biology, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria; (G.L.M.); (F.J.S.)
- Department of Dentistry, Center for Education and Research on Dental Implants, Federal University of Santa Catarina, Campus Reitor João David Ferreira Lima s/n, Florianopolis 88040-900, Brazil;
| | - Franz Josef Strauss
- Department of Oral Biology, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria; (G.L.M.); (F.J.S.)
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Av. Sergio Livingstone 943, Santiago 7500566, Chile
| | - Cesar Augusto Magalhães Benfatti
- Department of Dentistry, Center for Education and Research on Dental Implants, Federal University of Santa Catarina, Campus Reitor João David Ferreira Lima s/n, Florianopolis 88040-900, Brazil;
| | - Lucianne Cople Maia
- Department of Pediatric Dentistry and Orthodontics, Federal University of Rio de Janeiro, Rua Prof. Rodolpho Paulo Rocco 325, Rio de Janeiro 21941-617, Brazil;
| | - Reinhard Gruber
- Department of Oral Biology, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria; (G.L.M.); (F.J.S.)
- Correspondence:
| |
Collapse
|
18
|
Stojanović SD, Fuchs M, Fiedler J, Xiao K, Meinecke A, Just A, Pich A, Thum T, Kunz M. Comprehensive Bioinformatics Identifies Key microRNA Players in ATG7-Deficient Lung Fibroblasts. Int J Mol Sci 2020; 21:E4126. [PMID: 32527064 PMCID: PMC7312768 DOI: 10.3390/ijms21114126] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/02/2020] [Accepted: 06/05/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Deficient autophagy has been recently implicated as a driver of pulmonary fibrosis, yet bioinformatics approaches to study this cellular process are lacking. Autophagy-related 5 and 7 (ATG5/ATG7) are critical elements of macro-autophagy. However, an alternative ATG5/ATG7-independent macro-autophagy pathway was recently discovered, its regulation being unknown. Using a bioinformatics proteome profiling analysis of ATG7-deficient human fibroblasts, we aimed to identify key microRNA (miR) regulators in autophagy. METHOD We have generated ATG7-knockout MRC-5 fibroblasts and performed mass spectrometry to generate a large-scale proteomics dataset. We further quantified the interactions between various proteins combining bioinformatics molecular network reconstruction and functional enrichment analysis. The predicted key regulatory miRs were validated via quantitative polymerase chain reaction. RESULTS The functional enrichment analysis of the 26 deregulated proteins showed decreased cellular trafficking, increased mitophagy and senescence as the major overarching processes in ATG7-deficient lung fibroblasts. The 26 proteins reconstitute a protein interactome of 46 nodes and miR-regulated interactome of 834 nodes. The miR network shows three functional cluster modules around miR-16-5p, miR-17-5p and let-7a related to multiple deregulated proteins. Confirming these results in a biological setting, serially passaged wild-type and autophagy-deficient fibroblasts displayed senescence-dependent expression profiles of miR-16-5p and miR-17-5p. CONCLUSIONS We have developed a bioinformatics proteome profiling approach that successfully identifies biologically relevant miR regulators from a proteomics dataset of the ATG-7-deficient milieu in lung fibroblasts, and thus may be used to elucidate key molecular players in complex fibrotic pathological processes. The approach is not limited to a specific cell-type and disease, thus highlighting its high relevance in proteome and non-coding RNA research.
Collapse
Affiliation(s)
- Stevan D. Stojanović
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, 30625 Hannover, Germany; (S.D.S.); (J.F.); (K.X.); (A.M.); (A.J.)
| | - Maximilian Fuchs
- Chair of Medical Informatics, Friedrich-Alexander University of Erlangen-Nürnberg, 91058 Erlangen, Germany;
- Functional Genomics and Systems Biology Group, Department of Bioinformatics, University of Würzburg, Würzburg 97074, Germany
| | - Jan Fiedler
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, 30625 Hannover, Germany; (S.D.S.); (J.F.); (K.X.); (A.M.); (A.J.)
| | - Ke Xiao
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, 30625 Hannover, Germany; (S.D.S.); (J.F.); (K.X.); (A.M.); (A.J.)
| | - Anna Meinecke
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, 30625 Hannover, Germany; (S.D.S.); (J.F.); (K.X.); (A.M.); (A.J.)
| | - Annette Just
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, 30625 Hannover, Germany; (S.D.S.); (J.F.); (K.X.); (A.M.); (A.J.)
| | - Andreas Pich
- Institute of Toxicology and Core Unit Proteomics, Hannover Medical School, 30625 Hannover, Germany;
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, 30625 Hannover, Germany; (S.D.S.); (J.F.); (K.X.); (A.M.); (A.J.)
- REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Meik Kunz
- Chair of Medical Informatics, Friedrich-Alexander University of Erlangen-Nürnberg, 91058 Erlangen, Germany;
| |
Collapse
|