1
|
Xu A, Liu Y, Wang B, Zhang Q, Ma Y, Xue Y, Wang Z, Sun Q, Sun Y, Bian L. Ceramide synthase 6 induces mitochondrial dysfunction and apoptosis in hemin-treated neurons by impairing mitophagy through interacting with sequestosome 1. Free Radic Biol Med 2025; 227:282-295. [PMID: 39643132 DOI: 10.1016/j.freeradbiomed.2024.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/28/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Intracerebral hemorrhage (ICH) is a severe subtype of stroke linked to high morbidity and mortality rates. However, the underlying mechanisms of neuronal injury post-ICH remain poorly understood. In this study, we investigated sphingolipid metabolism alterations in neurons using lipidomics and explored the regulatory mechanisms involved. Western blot and live-cell imaging were applied to detect mitochondrial quality and mitophagy level. We found a significant upregulation of ceramide synthase 6 (CERS6)-related C16 ceramide biosynthesis after hemin treatment. Knockdown of CERS6 notably ameliorated mitochondrial dysfunction and reduced neuronal apoptosis. Additionally, impaired neuronal mitophagy was observed after hemin treatment, which was restored by CERS6 knockdown. Mechanistically, CERS6 impaired mitophagy by interacting with sequestosome 1, leading to mitochondrial dysfunction and neuronal apoptosis. Our study explored the relationship between ceramide metabolism and mitophagy in neurons, revealing the pro-apoptotic role of CERS6 while providing a potential therapeutic target for patients with ICH.
Collapse
Affiliation(s)
- Aoqian Xu
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yikui Liu
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Baofeng Wang
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qixiang Zhang
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuxiao Ma
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuxiao Xue
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhuohang Wang
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingfang Sun
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuhao Sun
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Liuguan Bian
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Wu Z, Mo S, Huang Z, Zheng B. Identification of Diagnostically Relevant Biomarkers in Patients with Coronary Artery Disease by Comprehensive Analysis. J Inflamm Res 2024; 17:10495-10513. [PMID: 39654862 PMCID: PMC11627109 DOI: 10.2147/jir.s494438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/28/2024] [Indexed: 12/12/2024] Open
Abstract
Background Peripheral biomarkers are becoming an important method by which to monitor the progression of coronary artery disease (CAD). Not only are they minimally invasive and early detection, but they can also be used for classification and diagnosis of disease as well as prognostic assessment. Currently, this approach is still in the exploratory stage. The purpose of this research is to determine the diagnostic value and therapeutic potential of the endoplasmic reticulum stress (ERS) genes in CAD. Methods The clinical information and RNA sequence data were obtained from the GEO database and subsequently subjected to a series of optimization and visualization processes using various analytical techniques, including WGCNA, LASSO, SVM-RFE feature selection, random forest (RF), and XGBoost, as well as R software and Cytoscape. Finally, immunofluorescence was used to validate the analysis. Results We identify 6 key ERS differentially expressed genes (ERS-DEGs) (UFL1, HSPA1A, ERLIN1, LRRK2, ERN1, SERINC3) for constructing diagnostic models. They showed qualified diagnostic ability as biomarkers of CAD within training dataset (AUC = 0.803) and validation dataset (AUC = 0.776 and 0.797). Association analyses showed that peripheral immune cells, immune checkpoint genes and Human Leukocyte Antigen (HLA) genes had characteristic distributions in CAD and were closely related to specific ERS genes. Meanwhile, we found that HSPA1A may involve the MAPK signaling pathway in CAD. Conclusion We constructed an efficient diagnostic model based on 6 key ERS-DEGs and explored their regulatory networks and effects on the CAD immune microenvironment. UFL1, HSPA1A, ERLIN1, LRRK2, ERN1, SERINC3 are expected to be biomarkers for CAD.
Collapse
Affiliation(s)
- Zimin Wu
- Department of Cardiovascular Surgery Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, People’s Republic of China
| | - Sisi Mo
- Department of Medical Research, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, People’s Republic of China
| | - Zuyuan Huang
- Department of Cardiovascular Surgery Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, People’s Republic of China
| | - Baoshi Zheng
- Department of Cardiovascular Surgery Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, People’s Republic of China
| |
Collapse
|
3
|
Di Rienzo M, Romagnoli A, Refolo G, Vescovo T, Ciccosanti F, Zuchegna C, Lozzi F, Occhigrossi L, Piacentini M, Fimia GM. Role of AMBRA1 in mitophagy regulation: emerging evidence in aging-related diseases. Autophagy 2024; 20:2602-2615. [PMID: 39113560 PMCID: PMC11587829 DOI: 10.1080/15548627.2024.2389474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/25/2024] [Accepted: 08/02/2024] [Indexed: 09/03/2024] Open
Abstract
Aging is a gradual and irreversible physiological process that significantly increases the risks of developing a variety of pathologies, including neurodegenerative, cardiovascular, metabolic, musculoskeletal, and immune system diseases. Mitochondria are the energy-producing organelles, and their proper functioning is crucial for overall cellular health. Over time, mitochondrial function declines causing an increased release of harmful reactive oxygen species (ROS) and DNA, which leads to oxidative stress, inflammation and cellular damage, common features associated with various age-related pathologies. The impairment of mitophagy, the selective removal of damaged or dysfunctional mitochondria by autophagy, is relevant to the development and progression of age-related diseases. The molecular mechanisms that regulates mitophagy levels in aging remain largely uncharacterized. AMBRA1 is an intrinsically disordered scaffold protein with a unique property of regulating the activity of both proliferation and autophagy core machineries. While the role of AMBRA1 during embryonic development and neoplastic transformation has been extensively investigated, its functions in post-mitotic cells of adult tissues have been limited due to the embryonic lethality caused by AMBRA1 deficiency. Recently, a key role of AMBRA1 in selectively regulating mitophagy in post-mitotic cells has emerged. Here we summarize and discuss these results with the aim of providing a comprehensive view of the mitochondrial roles of AMBRA1, and how defective activity of AMBRA1 has been functionally linked to mitophagy alterations observed in age-related degenerative disorders, including muscular dystrophy/sarcopenia, Parkinson diseases, Alzheimer diseases and age-related macular degeneration.Abbreviations: AD: Alzheimer disease; AMD: age-related macular degeneration; AMBRA1: autophagy and beclin 1 regulator 1; APOE4: apolipoprotein E4; ATAD3A: ATPase family AAA domain containing 3A; ATG: autophagy related; BCL2: BCL2 apoptosis regulator; BH3: BCL2-homology-3; BNIP3L/NIX: BCL2 interacting protein 3 like; CDK: cyclin dependent kinase; CHUK/IKKα: component of inhibitor of nuclear factor kappa B kinase complex; CRL2: CUL2-RING ubiquitin ligase; DDB1: damage specific DNA binding protein 1; ER: endoplasmic reticulum; FOXO: forkhead box O; FUNDC1: FUN14 domain containing 1; GBA/β-glucocerebrosidase: glucosylceramidase beta; HUWE1: HECT, UBA and WWE domain containing E3 ubiquitin protein ligase 1; IDR: intrinsically disordered region; LIR: LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAVS: mitochondrial antiviral signaling protein; MCL1: MCL1 apoptosis regulator, BCL2 family member; MFN2: mitofusin 2; MTOR: mechanistic target of rapamycin kinase; MSA: multiple system atrophy; MYC: MYC proto-oncogene, bHLH transcription factor; NUMA1: nuclear mitotic apparatus protein 1; OMM; mitochondria outer membrane; PD: Parkinson disease; PHB2: prohibitin 2; PINK1: PTEN induced kinase 1; PIK3C3/VPS34: phosphatidylinositol 3-kinase catalytic subunit type 3; PTK2/FAK: protein tyrosine kinase 2; ROS: reactive oxygen species; RPE: retinal pigment epithelium; SAD: sporadic AD; SOCS3: suppressor of cytokine signaling 3; SRC, SRC proto-oncogene, non-receptor tyrosine kinase; STAT3: signal transducer and activator of transcription 3; STING1: stimulator of interferon response cGAMP interactor 1; SQSTM1/p62: sequestosome 1; TBK1: TANK binding kinase 1; TGFB/TGFβ: transforming growth factor beta; TOMM: translocase of outer mitochondrial membrane; TRAF6: TNF receptor associated factor 6; TRIM32: tripartite motif containing 32; ULK1: unc-51 like autophagy activating kinase 1.
Collapse
Affiliation(s)
- Martina Di Rienzo
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS ‘L. Spallanzani’, Rome, Italy
| | - Alessandra Romagnoli
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS ‘L. Spallanzani’, Rome, Italy
| | - Giulia Refolo
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS ‘L. Spallanzani’, Rome, Italy
| | - Tiziana Vescovo
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS ‘L. Spallanzani’, Rome, Italy
| | - Fabiola Ciccosanti
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS ‘L. Spallanzani’, Rome, Italy
| | - Candida Zuchegna
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS ‘L. Spallanzani’, Rome, Italy
| | - Francesca Lozzi
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS ‘L. Spallanzani’, Rome, Italy
| | - Luca Occhigrossi
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS ‘L. Spallanzani’, Rome, Italy
- Department of Molecular Medicine, University of Rome “La Sapienza”, Rome, Italy
| | - Mauro Piacentini
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS ‘L. Spallanzani’, Rome, Italy
- Department of Biology, University of Rome ‘Tor Vergata’, Rome, Italy
| | - Gian Maria Fimia
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS ‘L. Spallanzani’, Rome, Italy
- Department of Molecular Medicine, University of Rome “La Sapienza”, Rome, Italy
| |
Collapse
|
4
|
Nie J, Ma S, Wu L, Li Y, Cao J, Li M, Mei P, Cooper PR, Li A, Pei D. SEC31a-ATG9a Interaction Mediates the Recruitment of COPII Vesicles for Autophagosome Formation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405127. [PMID: 39361436 PMCID: PMC11600210 DOI: 10.1002/advs.202405127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/28/2024] [Indexed: 10/05/2024]
Abstract
Autophagy plays an important role in determining stem-cell differentiation. During the osteogenic differentiation of mesenchymal stem cells (MSCs), autophagosome formation is upregulated but the reason is unknown. A long-standing quest in the autophagy field is to find the membrane origin of autophagosomes. In this study, cytoplasmic coat protein complex II (COPII) vesicles, endoplasmic reticulum-derived vesicles responsible for the transport of storage proteins to the Golgi, are demonstrated to be a critical source of osteoblastic autophagosomal membrane. A significant correlation between the number of COPII vesicle and the autophagy level is identified in the rat bone tissues. Disruption of COPII vesicles restrained osteogenesis and decreased the number and size of autophagosomes. SEC31a (an outer coat protein of COPII vesicle) is found to be vital to regulate COPII vesicle-dependent autophagosome formation via interacting with ATG9a of autophagosomal seed vesicles. The interference of Sec31a inhibited autophagosome formation and osteogenesis in vitro and in vivo. These results identified a novel mechanism of autophagosome formation in osteogenic differentiation of stem cells and identified SEC31a as a critical protein that mediates the interplay between COPII and ATG9a vesicles. These findings broaden the understanding of the regulatory mechanism in the osteogenic differentiation of MSCs.
Collapse
Affiliation(s)
- Jiaming Nie
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine ResearchCollege of StomatologyXi'an Jiaotong UniversityXi'anShaanxi710004China
| | - Shaoyang Ma
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine ResearchCollege of StomatologyXi'an Jiaotong UniversityXi'anShaanxi710004China
| | - Linyue Wu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine ResearchCollege of StomatologyXi'an Jiaotong UniversityXi'anShaanxi710004China
| | - Ye Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine ResearchCollege of StomatologyXi'an Jiaotong UniversityXi'anShaanxi710004China
| | - Jiao Cao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine ResearchCollege of StomatologyXi'an Jiaotong UniversityXi'anShaanxi710004China
| | - Meng Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine ResearchCollege of StomatologyXi'an Jiaotong UniversityXi'anShaanxi710004China
| | - Peter Mei
- Department of Oral SciencesFaculty of DentistryUniversity of OtagoDunedin9016New Zealand
| | - Paul R. Cooper
- Department of Oral SciencesFaculty of DentistryUniversity of OtagoDunedin9016New Zealand
| | - Ang Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine ResearchCollege of StomatologyXi'an Jiaotong UniversityXi'anShaanxi710004China
| | - Dandan Pei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine ResearchCollege of StomatologyXi'an Jiaotong UniversityXi'anShaanxi710004China
| |
Collapse
|
5
|
Jarocki M, Turek K, Saczko J, Tarek M, Kulbacka J. Lipids associated with autophagy: mechanisms and therapeutic targets. Cell Death Discov 2024; 10:460. [PMID: 39477959 PMCID: PMC11525783 DOI: 10.1038/s41420-024-02224-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/02/2024] Open
Abstract
Autophagy is a molecular process essential for maintaining cellular homeostasis, with its impairment or dysregulation linked to the progression of various diseases in mammals. Specific lipids, including phosphoinositides, sphingolipids, and oxysterols, play pivotal roles in inducing and regulating autophagy, highlighting their significance in this intricate process. This review focuses on the critical involvement of these lipids in autophagy and lipophagy, providing a comprehensive overview of the current understanding of their functions. Moreover, we delve into how abnormalities in autophagy, influenced by these lipids, contribute to the pathogenesis of various diseases. These include age-related conditions such as cardiovascular diseases, neurodegenerative disorders, type 2 diabetes, and certain cancers, as well as inflammatory and liver diseases, skeletal muscle pathologies and age-related macular degeneration (AMD). This review aims to highlight function of lipids and their potential as therapeutic targets in treating diverse human pathologies by elucidating the specific roles of phosphoinositides, sphingolipids, and oxysterols in autophagy.
Collapse
Affiliation(s)
- Michał Jarocki
- University Clinical Hospital, Wroclaw Medical University, Wroclaw, Poland
| | | | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Mounir Tarek
- Université de Lorraine, CNRS, LPCT, Nancy, France
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland.
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania.
| |
Collapse
|
6
|
Hua F, Bonzerato CG, Keller KR, Guo D, Luo J, Wojcikiewicz RJH. The erlin1/erlin2 complex binds to and stabilizes phosphatidylinositol 3-phosphate and regulates autophagy. Biochem Biophys Res Commun 2024; 731:150397. [PMID: 39018973 DOI: 10.1016/j.bbrc.2024.150397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 06/25/2024] [Accepted: 07/11/2024] [Indexed: 07/19/2024]
Abstract
The erlin1/erlin2 (E1/E2) complex is an endoplasmic reticulum membrane-located assemblage of the proteins erlin1 and erlin2. Here, we demonstrate direct and selective binding of phosphatidylinositol 3-phosphate (PI(3)P) to recombinant erlins and that disruption or deletion of the E1/E2 complex reduces HeLa cell PI(3)P levels by ∼50 %. This reduction correlated with a decrease in autophagic flux, with no effect on the endocytic pathway, and was not due to reduced VPS34 kinase activity, which is critical for maintaining steady-state PI(3)P levels. Pharmacological inhibition of VPS34 and suppression of PI(3)P levels caused a similar reduction in autophagic flux. Overall, these data indicate that by binding to PI(3)P, the E1/E2 complex plays an important role in maintaining the steady-state levels of PI(3)P and, thus, sustains some key PI(3)P-dependent processes, e.g., autophagy.
Collapse
Affiliation(s)
- Fanghui Hua
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Caden G Bonzerato
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Katherine R Keller
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Dandan Guo
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Juntao Luo
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | | |
Collapse
|
7
|
Kim K, Kim DG, Kim YJ. RhoBTB3 Functions as a Novel Regulator of Autophagy by Suppressing AMBRA1 Stability. Cells 2024; 13:1659. [PMID: 39404422 PMCID: PMC11475653 DOI: 10.3390/cells13191659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024] Open
Abstract
Autophagy is essential for cell survival and cellular homeostasis under various stress conditions. Therefore, autophagy dysfunction is associated with the pathogenesis of various human diseases. We explored the regulatory role of RhoBTB3 in autophagy and its interaction with activating molecules in AMBRA1. RhoBTB3 deficiency was found to induce autophagy, while its overexpression inhibited autophagy induction. Through immunoprecipitation and mass spectrometry, AMBRA1 was identified as a substrate of RhoBTB3. The study revealed that RhoBTB3 regulates AMBRA1 stability by influencing its protein levels without affecting its mRNA levels. RhoBTB3 induced the ubiquitination of AMBRA1, leading to proteasome-mediated degradation, with the ubiquitination occurring at K45 on AMBRA1 through a K27-linked ubiquitin chain. The knockdown of AMBRA1 blocked RhoBTB3 knockdown-induced autophagy, indicating the dependency of autophagy on AMBRA1. Thus, RhoBTB3 negatively regulates autophagy by mediating AMBRA1 ubiquitination and degradation, suggesting RhoBTB3 as a potential therapeutic target for autophagy-related diseases.
Collapse
Affiliation(s)
| | | | - Youn-Jae Kim
- Targeted Therapy Branch, Division of Rare and Refractory Cancer, Research Institute, National Cancer Center, Goyang 10408, Republic of Korea
| |
Collapse
|
8
|
Guo M, Liu R, Zhang F, Qu J, Yang Y, Li X. A new perspective on liver diseases: Focusing on the mitochondria-associated endoplasmic reticulum membranes. Pharmacol Res 2024; 208:107409. [PMID: 39284429 DOI: 10.1016/j.phrs.2024.107409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/29/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024]
Abstract
The pathogenesis of liver diseases is multifaceted and intricate, posing a persistent global public health challenge with limited therapeutic options. Therefore, further research into liver diseases is imperative for better comprehension and advancement in treatment strategies. Numerous studies have confirmed the endoplasmic reticulum (ER) and mitochondria as key organelles driving liver diseases. Notably, the mitochondrial-associated ER membranes (MAMs) establish a physical and functional connection between the ER and mitochondria, highlighting the importance of inter-organelle communication in maintaining their functional homeostasis. This review delves into the intricate architecture and regulative mechanism of the integrated MAM that facilitate the physiological transfer of signals and substances between organelles. Additionally, we also provide a detailed overview regarding the varied pathogenic roles of malfunctioning MAM in liver diseases, focusing on its involvement in the progression of ER stress and mitochondrial dysfunction, the regulation of mitochondrial dynamics and Ca2+ transfer, as well as the disruption of lipid and glucose homeostasis. Furthermore, the current challenges and prospects associated with MAM in liver disease research are thoroughly discussed. In conclusion, elucidating the specific structure and function of MAM in different liver diseases may pave the way for novel therapeutic strategies.
Collapse
Affiliation(s)
- Mengyu Guo
- School of Life Sciences, Beijing University of Chinese Medicine, 100029, China
| | - Runping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 100029, China
| | - Fukun Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, 100029, China
| | - Jiaorong Qu
- School of Life Sciences, Beijing University of Chinese Medicine, 100029, China
| | - Yun Yang
- School of Life Sciences, Beijing University of Chinese Medicine, 100029, China
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, 100029, China.
| |
Collapse
|
9
|
Manganelli V, Dini L, Tacconi S, Dinarelli S, Capozzi A, Riitano G, Recalchi S, Caglar TR, Fratini F, Misasi R, Sorice M, Garofalo T. Autophagy Promotes Enrichment of Raft Components within Extracellular Vesicles Secreted by Human 2FTGH Cells. Int J Mol Sci 2024; 25:6175. [PMID: 38892363 PMCID: PMC11172899 DOI: 10.3390/ijms25116175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/21/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Autophagy plays a key role in removing protein aggregates and damaged organelles. In addition to its conventional degradative functions, autophagy machinery contributes to the release of cytosolic proteins through an unconventional secretion pathway. In this research, we analyzed autophagy-induced extracellular vesicles (EVs) in HT1080-derived human fibrosarcoma 2FTGH cells using transmission electron microscopy and atomic force microscopy (AFM). We preliminary observed that autophagy induces the formation of a subset of large heterogeneous intracellular vesicular structures. Moreover, AFM showed that autophagy triggering led to a more visible smooth cell surface with a reduced amount of plasma membrane protrusions. Next, we characterized EVs secreted by cells following autophagy induction, demonstrating that cells release both plasma membrane-derived microvesicles and exosomes. A self-forming iodixanol gradient was performed for cell subfractionation. Western blot analysis showed that endogenous LC3-II co-fractionated with CD63 and CD81. Then, we analyzed whether raft components are enriched within EV cargoes following autophagy triggering. We observed that the raft marker GD3 and ER marker ERLIN1 co-fractionated with LC3-II; dual staining by immunogold electron microscopy and coimmunoprecipitation revealed GD3-LC3-II association, indicating that autophagy promotes enrichment of raft components within EVs. Introducing a new brick in the crosstalk between autophagy and the endolysosomal system may have important implications for the knowledge of pathogenic mechanisms, suggesting alternative raft target therapies in diseases in which the generation of EV is active.
Collapse
Affiliation(s)
- Valeria Manganelli
- Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (V.M.); (A.C.); (G.R.); (S.R.); (T.R.C.); (R.M.); (T.G.)
| | - Luciana Dini
- Department of Biology and Biotechnology C. Darwin, “Sapienza” University of Rome, 00185 Rome, Italy;
| | - Stefano Tacconi
- CarMeN Laboratory, INSERM 1060-INRAE 1397, Department of Human Nutrition, Lyon Sud Hospital, University of Lyon, 69310 Lyon, France;
| | - Simone Dinarelli
- Institute for the Structure of Matter (ISM), National Research Council (CNR), Via del Fosso del Cavaliere 100, 00133 Rome, Italy;
| | - Antonella Capozzi
- Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (V.M.); (A.C.); (G.R.); (S.R.); (T.R.C.); (R.M.); (T.G.)
| | - Gloria Riitano
- Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (V.M.); (A.C.); (G.R.); (S.R.); (T.R.C.); (R.M.); (T.G.)
| | - Serena Recalchi
- Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (V.M.); (A.C.); (G.R.); (S.R.); (T.R.C.); (R.M.); (T.G.)
| | - Tuba Rana Caglar
- Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (V.M.); (A.C.); (G.R.); (S.R.); (T.R.C.); (R.M.); (T.G.)
| | - Federica Fratini
- Proteomics Core Facility, Istituto Superiore di Sanità (ISS), 00161 Rome, Italy;
| | - Roberta Misasi
- Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (V.M.); (A.C.); (G.R.); (S.R.); (T.R.C.); (R.M.); (T.G.)
| | - Maurizio Sorice
- Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (V.M.); (A.C.); (G.R.); (S.R.); (T.R.C.); (R.M.); (T.G.)
| | - Tina Garofalo
- Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (V.M.); (A.C.); (G.R.); (S.R.); (T.R.C.); (R.M.); (T.G.)
| |
Collapse
|
10
|
Zung N, Aravindan N, Boshnakovska A, Valenti R, Preminger N, Jonas F, Yaakov G, Willoughby MM, Homberg B, Keller J, Kupervaser M, Dezorella N, Dadosh T, Wolf SG, Itkin M, Malitsky S, Brandis A, Barkai N, Fernández-Busnadiego R, Reddi AR, Rehling P, Rapaport D, Schuldiner M. The molecular mechanism of on-demand sterol biosynthesis at organelle contact sites. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.09.593285. [PMID: 38766039 PMCID: PMC11100823 DOI: 10.1101/2024.05.09.593285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Contact-sites are specialized zones of proximity between two organelles, essential for organelle communication and coordination. The formation of contacts between the Endoplasmic Reticulum (ER), and other organelles, relies on a unique membrane environment enriched in sterols. However, how these sterol-rich domains are formed and maintained had not been understood. We found that the yeast membrane protein Yet3, the homolog of human BAP31, is localized to multiple ER contact sites. We show that Yet3 interacts with all the enzymes of the post-squalene ergosterol biosynthesis pathway and recruits them to create sterol-rich domains. Increasing sterol levels at ER contacts causes its depletion from the plasma membrane leading to a compensatory reaction and altered cell metabolism. Our data shows that Yet3 provides on-demand sterols at contacts thus shaping organellar structure and function. A molecular understanding of this protein's functions gives new insights into the role of BAP31 in development and pathology.
Collapse
Affiliation(s)
- Naama Zung
- Department of Molecular Genetics, Weizmann Institute of Science, Israel
| | - Nitya Aravindan
- Interfaculty Institute of Biochemistry, University of Tuebingen, Germany
| | - Angela Boshnakovska
- Department of Cellular Biochemistry, University Medical Center Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Translational Neuroinflammation and Automated Microscopy, Germany
- Max Planck Institute for Multidisciplinary Sciences, D-37077, Germany
| | - Rosario Valenti
- Department of Molecular Genetics, Weizmann Institute of Science, Israel
| | - Noga Preminger
- Department of Molecular Genetics, Weizmann Institute of Science, Israel
| | - Felix Jonas
- Department of Molecular Genetics, Weizmann Institute of Science, Israel
| | - Gilad Yaakov
- Department of Molecular Genetics, Weizmann Institute of Science, Israel
| | - Mathilda M Willoughby
- School of Chemistry and Biochemistry, Georgia Institute of Technology, USA
- Biochemistry and Molecular Biology Department, University of Nebraska Medical Center, USA
| | - Bettina Homberg
- Department of Cellular Biochemistry, University Medical Center Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Translational Neuroinflammation and Automated Microscopy, Germany
- Max Planck Institute for Multidisciplinary Sciences, D-37077, Germany
| | - Jenny Keller
- University Medical Center Göttingen, Institute for Neuropathology, 37077, Germany
- Collaborative Research Center 1190 "Compartmental Gates and Contact Sites in Cells", University of Göttingen, Germany
| | - Meital Kupervaser
- The De Botton Protein Profiling institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Israel
| | - Nili Dezorella
- Electron Microscopy Unit, Chemical Research Support, Weizmann Institute of Science, Israel
| | - Tali Dadosh
- Electron Microscopy Unit, Chemical Research Support, Weizmann Institute of Science, Israel
| | - Sharon G Wolf
- Electron Microscopy Unit, Chemical Research Support, Weizmann Institute of Science, Israel
| | - Maxim Itkin
- Life Sciences Core Facilities, Weizmann Institute of Science, Israel
| | - Sergey Malitsky
- Life Sciences Core Facilities, Weizmann Institute of Science, Israel
| | - Alexander Brandis
- Life Sciences Core Facilities, Weizmann Institute of Science, Israel
| | - Naama Barkai
- Department of Molecular Genetics, Weizmann Institute of Science, Israel
| | - Rubén Fernández-Busnadiego
- University Medical Center Göttingen, Institute for Neuropathology, 37077, Germany
- Collaborative Research Center 1190 "Compartmental Gates and Contact Sites in Cells", University of Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37077, Germany
- Faculty of Physics, University of Göttingen, 37077, Germany
| | - Amit R Reddi
- School of Chemistry and Biochemistry, Georgia Institute of Technology, USA
| | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Center Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Translational Neuroinflammation and Automated Microscopy, Germany
- Max Planck Institute for Multidisciplinary Sciences, D-37077, Germany
| | - Doron Rapaport
- Interfaculty Institute of Biochemistry, University of Tuebingen, Germany
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Israel
| |
Collapse
|
11
|
Lee J, Pye N, Ellis L, Vos KD, Mortiboys H. Evidence of mitochondrial dysfunction in ALS and methods for measuring in model systems. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 176:269-325. [PMID: 38802177 DOI: 10.1016/bs.irn.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Metabolic dysfunction is a hallmark of multiple amyotrophic lateral sclerosis (ALS) models with a majority of ALS patients exhibiting hypermetabolism. The central sites of metabolism in the cell are mitochondria, capable of utilising a multitude of cellular substrates in an array of ATP-generating reactions. With reactive oxygen species (ROS) production occurring during some of these reactions, mitochondria can contribute considerably to oxidative stress. Mitochondria are also very dynamic organelles, interacting with other organelles, undergoing fusion/fission in response to changing metabolic states and being turned over by the cell regularly. Disruptions to many of these mitochondrial functions and processes have been reported in ALS models, largely indicating compromised mitochondrial function, increased ROS production by mitochondria, disrupted interactions with the endoplasmic reticulum and reduced turnover. This chapter summarises methods routinely used to assess mitochondria in ALS models and the alterations that have been reported in these models.
Collapse
Affiliation(s)
- James Lee
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom
| | - Natalie Pye
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom
| | - Laura Ellis
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom
| | - Kurt De Vos
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom
| | - Heather Mortiboys
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
12
|
Wang Y, Yang J. ER-organelle contacts: A signaling hub for neurological diseases. Pharmacol Res 2024; 203:107149. [PMID: 38518830 DOI: 10.1016/j.phrs.2024.107149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/07/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Neuronal health is closely linked to the homeostasis of intracellular organelles, and organelle dysfunction affects the pathological progression of neurological diseases. In contrast to isolated cellular compartments, a growing number of studies have found that organelles are largely interdependent structures capable of communicating through membrane contact sites (MCSs). MCSs have been identified as key pathways mediating inter-organelle communication crosstalk in neurons, and their alterations have been linked to neurological disease pathology. The endoplasmic reticulum (ER) is a membrane-bound organelle capable of forming an extensive network of pools and tubules with important physiological functions within neurons. There are multiple MCSs between the ER and other organelles and the plasma membrane (PM), which regulate a variety of cellular processes. In this review, we focus on ER-organelle MCSs and their role in a variety of neurological diseases. We compared the biological effects between different tethering proteins and the effects of their respective disease counterparts. We also discuss how altered ER-organelle contacts may affect disease pathogenesis. Therefore, understanding the molecular mechanisms of ER-organelle MCSs in neuronal homeostasis will lay the foundation for the development of new therapies targeting ER-organelle contacts.
Collapse
Affiliation(s)
- Yunli Wang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, PR China; Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Jinghua Yang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, PR China; Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, PR China.
| |
Collapse
|
13
|
He Y, He T, Li H, Chen W, Zhong B, Wu Y, Chen R, Hu Y, Ma H, Wu B, Hu W, Han Z. Deciphering mitochondrial dysfunction: Pathophysiological mechanisms in vascular cognitive impairment. Biomed Pharmacother 2024; 174:116428. [PMID: 38599056 DOI: 10.1016/j.biopha.2024.116428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/26/2024] [Accepted: 03/08/2024] [Indexed: 04/12/2024] Open
Abstract
Vascular cognitive impairment (VCI) encompasses a range of cognitive deficits arising from vascular pathology. The pathophysiological mechanisms underlying VCI remain incompletely understood; however, chronic cerebral hypoperfusion (CCH) is widely acknowledged as a principal pathological contributor. Mitochondria, crucial for cellular energy production and intracellular signaling, can lead to numerous neurological impairments when dysfunctional. Recent evidence indicates that mitochondrial dysfunction-marked by oxidative stress, disturbed calcium homeostasis, compromised mitophagy, and anomalies in mitochondrial dynamics-plays a pivotal role in VCI pathogenesis. This review offers a detailed examination of the latest insights into mitochondrial dysfunction within the VCI context, focusing on both the origins and consequences of compromised mitochondrial health. It aims to lay a robust scientific groundwork for guiding the development and refinement of mitochondrial-targeted interventions for VCI.
Collapse
Affiliation(s)
- Yuyao He
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Tiantian He
- Sichuan Academy of Chinese Medicine Sciences, China
| | - Hongpei Li
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Wei Chen
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Biying Zhong
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Yue Wu
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Runming Chen
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Yuli Hu
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Huaping Ma
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Bin Wu
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Wenyue Hu
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China.
| | - Zhenyun Han
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China.
| |
Collapse
|
14
|
Kulkarni PG, Mohire VM, Waghmare PP, Banerjee T. Interplay of mitochondria-associated membrane proteins and autophagy: Implications in neurodegeneration. Mitochondrion 2024; 76:101874. [PMID: 38514017 DOI: 10.1016/j.mito.2024.101874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 03/23/2024]
Abstract
Since the discovery of membrane contact sites between ER and mitochondria called mitochondria-associated membranes (MAMs), several pieces of evidence identified their role in the regulation of different cellular processes such as Ca2+ signalling, mitochondrial transport, and dynamics, ER stress, inflammation, glucose homeostasis, and autophagy. The integrity of these membranes was found to be essential for the maintenance of these cellular functions. Accumulating pieces of evidence suggest that MAMs serve as a platform for autophagosome formation. However, the alteration within MAMs structure is associated with the progression of neurodegenerative diseases. Dysregulated autophagy is a hallmark of neurodegeneration. Here, in this review, we highlight the present knowledge on MAMs, their structural composition, and their roles in different cellular functions. We also discuss the association of MAMs proteins with impaired autophagy and their involvement in the progression of neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease.
Collapse
Affiliation(s)
- Prakash G Kulkarni
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune 411007 India
| | - Vaibhavi M Mohire
- Molecular Neuroscience Research Centre, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y Patil Vidyapeeth, Survey No 87/88, Mumbai Bangalore Express Highway, Tathawade, Pune 411 033 India
| | - Pranjal P Waghmare
- Molecular Neuroscience Research Centre, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y Patil Vidyapeeth, Survey No 87/88, Mumbai Bangalore Express Highway, Tathawade, Pune 411 033 India
| | - Tanushree Banerjee
- Molecular Neuroscience Research Centre, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y Patil Vidyapeeth, Survey No 87/88, Mumbai Bangalore Express Highway, Tathawade, Pune 411 033 India; Infosys Ltd., SEZ unit VI, Plot No. 1, Rajiv Gandhi Infotech Park, Hinjawadi Phase I, Pune, Maharashtra 411057, India.
| |
Collapse
|
15
|
Zhao X, Ma R, Abulikemu A, Qi Y, Liu X, Wang J, Xu K, Guo C, Li Y. Proteomics revealed composition- and size-related regulators for hepatic impairments induced by silica nanoparticles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:170584. [PMID: 38309355 DOI: 10.1016/j.scitotenv.2024.170584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
Along with the growing production and application of silica nanoparticles (SiNPs), increased human exposure and ensuing safety evaluation have progressively attracted concern. Accumulative data evidenced the hepatic injuries upon SiNPs inhalation. Still, the understanding of the hepatic outcomes resulting from SiNPs exposure, and underlying mechanisms are incompletely elucidated. Here, SiNPs of two sizes (60 nm and 300 nm) were applied to investigate their composition- and size-related impacts on livers of ApoE-/- mice via intratracheal instillation. Histopathological and biochemical analysis indicated SiNPs promoted inflammation, lipid deposition and fibrosis in the hepatic tissue, accompanied by increased ALT, AST, TC and TG. Oxidative stress was activated upon SiNPs stimuli, as evidenced by the increased hepatic ROS, MDA and declined GSH/GSSG. Of note, these alterations were more dramatic in SiNPs with a smaller size (SiNPs-60) but the same dosage. LC-MS/MS-based quantitative proteomics unveiled changes in mice liver protein profiles, and filtered out particle composition- or size-related molecules. Interestingly, altered lipid metabolism and oxidative damage served as two critical biological processes. In accordance with correlation analysis and liver disease-targeting prediction, a final of 10 differentially expressed proteins (DEPs) were selected as key potential targets attributable to composition- (4 molecules) and size-related (6 molecules) liver impairments upon SiNPs stimuli. Overall, our study provided strong laboratory evidence for a comprehensive understanding of the harmful biological effects of SiNPs, which was crucial for toxicological evaluation to ensure nanosafety.
Collapse
Affiliation(s)
- Xinying Zhao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Ru Ma
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Alimire Abulikemu
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Yi Qi
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Xiaoying Liu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Ji Wang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Kun Xu
- School of Medicine, Hunan Normal University, Changsha, Hunan 410013, China
| | - Caixia Guo
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China.
| | - Yanbo Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
16
|
Mlinac-Jerkovic K, Kalanj-Bognar S, Heffer M, Blažetić S. Methodological Pitfalls of Investigating Lipid Rafts in the Brain: What Are We Still Missing? Biomolecules 2024; 14:156. [PMID: 38397393 PMCID: PMC10886647 DOI: 10.3390/biom14020156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/21/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
The purpose of this review is to succinctly examine the methodologies used in lipid raft research in the brain and to highlight the drawbacks of some investigative approaches. Lipid rafts are biochemically and biophysically different from the bulk membrane. A specific lipid environment within membrane domains provides a harbor for distinct raftophilic proteins, all of which in concert create a specialized platform orchestrating various cellular processes. Studying lipid rafts has proved to be arduous due to their elusive nature, mobility, and constant dynamic reorganization to meet the cellular needs. Studying neuronal lipid rafts is particularly cumbersome due to the immensely complex regional molecular architecture of the central nervous system. Biochemical fractionation, performed with or without detergents, is still the most widely used method to isolate lipid rafts. However, the differences in solubilization when various detergents are used has exposed a dire need to find more reliable methods to study particular rafts. Biochemical methods need to be complemented with other approaches such as live-cell microscopy, imaging mass spectrometry, and the development of specific non-invasive fluorescent probes to obtain a more complete image of raft dynamics and to study the spatio-temporal expression of rafts in live cells.
Collapse
Affiliation(s)
| | | | - Marija Heffer
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Senka Blažetić
- Department of Biology, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| |
Collapse
|
17
|
Chen R, Zou J, Zhong X, Li J, Kang R, Tang D. HMGB1 in the interplay between autophagy and apoptosis in cancer. Cancer Lett 2024; 581:216494. [PMID: 38007142 DOI: 10.1016/j.canlet.2023.216494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/25/2023] [Accepted: 11/08/2023] [Indexed: 11/27/2023]
Abstract
Lysosome-mediated autophagy and caspase-dependent apoptosis are dynamic processes that maintain cellular homeostasis, ensuring cell health and functionality. The intricate interplay and reciprocal regulation between autophagy and apoptosis are implicated in various human diseases, including cancer. High-mobility group box 1 (HMGB1), a nonhistone chromosomal protein, plays a pivotal role in coordinating autophagy and apoptosis levels during tumor initiation, progression, and therapy. The regulation of autophagy machinery and the apoptosis pathway by HMGB1 is influenced by various factors, including the protein's subcellular localization, oxidative state, and interactions with binding partners. In this narrative review, we provide a comprehensive overview of the structure and function of HMGB1, with a specific focus on the interplay between autophagic degradation and apoptotic death in tumorigenesis and cancer therapy. Gaining a comprehensive understanding of the significance of HMGB1 as a biomarker and its potential as a therapeutic target in tumor diseases is crucial for advancing our knowledge of cell survival and cell death.
Collapse
Affiliation(s)
- Ruochan Chen
- Department of Infectious Diseases, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Ju Zou
- Department of Infectious Diseases, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Xiao Zhong
- Department of Infectious Diseases, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Jie Li
- Department of Infectious Diseases, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
18
|
Awuah WA, Tan JK, Shkodina AD, Ferreira T, Adebusoye FT, Mazzoleni A, Wellington J, David L, Chilcott E, Huang H, Abdul-Rahman T, Shet V, Atallah O, Kalmanovich J, Jiffry R, Madhu DE, Sikora K, Kmyta O, Delva MY. Hereditary spastic paraplegia: Novel insights into the pathogenesis and management. SAGE Open Med 2023; 12:20503121231221941. [PMID: 38162912 PMCID: PMC10757446 DOI: 10.1177/20503121231221941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024] Open
Abstract
Hereditary spastic paraplegia is a genetically heterogeneous neurodegenerative disorder characterised primarily by muscle stiffness in the lower limbs. Neurodegenerative disorders are conditions that result from cellular and metabolic abnormalities, many of which have strong genetic ties. While ageing is a known contributor to these changes, certain neurodegenerative disorders can manifest early in life, progressively affecting a person's quality of life. Hereditary spastic paraplegia is one such condition that can appear in individuals of any age. In hereditary spastic paraplegia, a distinctive feature is the degeneration of long nerve fibres in the corticospinal tract of the lower limbs. This degeneration is linked to various cellular and metabolic processes, including mitochondrial dysfunction, remodelling of the endoplasmic reticulum membrane, autophagy, abnormal myelination processes and alterations in lipid metabolism. Additionally, hereditary spastic paraplegia affects processes like endosome membrane trafficking, oxidative stress and mitochondrial DNA polymorphisms. Disease-causing genetic loci and associated genes influence the progression and severity of hereditary spastic paraplegia, potentially affecting various cellular and metabolic functions. Although hereditary spastic paraplegia does not reduce a person's lifespan, it significantly impairs their quality of life as they age, particularly with more severe symptoms. Regrettably, there are currently no treatments available to halt or reverse the pathological progression of hereditary spastic paraplegia. This review aims to explore the metabolic mechanisms underlying the pathophysiology of hereditary spastic paraplegia, emphasising the interactions of various genes identified in recent network studies. By comprehending these associations, targeted molecular therapies that address these biochemical processes can be developed to enhance treatment strategies for hereditary spastic paraplegia and guide clinical practice effectively.
Collapse
Affiliation(s)
| | | | - Anastasiia D Shkodina
- Department of Neurological Diseases, Poltava State Medical University, Poltava, Ukraine
| | - Tomas Ferreira
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | | | - Adele Mazzoleni
- Barts and the London School of Medicine and Dentistry, London, UK
| | - Jack Wellington
- Cardiff University School of Medicine, Cardiff University, Wales, UK
| | - Lian David
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Ellie Chilcott
- Cardiff University School of Medicine, Cardiff University, Wales, UK
| | - Helen Huang
- Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | | | - Vallabh Shet
- Faculty of Medicine, Bangalore Medical College and Research Institute, Karnataka, India
| | - Oday Atallah
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | | | - Riaz Jiffry
- Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | | | | | | | - Mykhailo Yu Delva
- Department of Neurological Diseases, Poltava State Medical University, Poltava, Ukraine
| |
Collapse
|
19
|
Wang Z, Wang X, Ma Y, Cong P, Wang X, Song Y, Xu J, Xue C. Astaxanthin alleviates ganglioside metabolism disorder in the cortex of Alzheimer's disease mice. Food Funct 2023; 14:10362-10374. [PMID: 37929718 DOI: 10.1039/d3fo03223j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
The present study analyzed the amelioration effect and mechanism of two kinds of astaxanthin (AST), including free-AST (F-AST) and docosahexaenoic acid-acylated AST monoester (AST-DHA), on ganglioside (GLS) metabolism in the cortex of APP/PS1 mice using the LC-MS strategy in combination with molecular biology. Water maze and immunohistochemical experiments demonstrated that AST significantly improved the cognitive level of APP/PS1 mice and reduced Aβ deposition in the cortex. After the dietary intake of AST, the composition and level of 84 GLS molecular species in the mouse cortex were determined using the LC-MS strategy. The results showed that the total GLS was reduced, most complex GLS was decreased, and simple GLS (GM3 and GM1a) was increased in the APP/PS1 mouse cortex. Notably, F-AST mainly regulated complex GLS (p < 0.001), whereas AST-DHA primarily reacted with simple GLS (p < 0.001). OAc-GQ1a(38:1), OAc-GQ1a(36:1), GD1a(36:1), and GM3(38:1) decreased 3.73, 2.31, and 2.29-fold and increased 3.54-fold, respectively, and were identified as potential AD biomarkers in the cortices of APP/PS1 mice. Additionally, the AST diet significantly upregulated the mRNA expression of GLS synthesizing genes (st3gal5, st8sia1, b3galt4, st3fal2, and soat) and siae (p < 0.05) and down-regulated that of the GLS catabolizing gene hexa (p < 0.01). In conclusion, improving GLS homeostasis in the AD mouse cortex might be a critical pathway to explain the AD-preventing effect of AST.
Collapse
Affiliation(s)
- Zhigao Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266003, China.
| | - Xiaoxu Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266003, China.
| | - Yingxu Ma
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266003, China.
| | - Peixu Cong
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266003, China.
| | - Xincen Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266003, China.
| | - Yu Song
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266003, China.
| | - Jie Xu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266003, China.
| | - Changhu Xue
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266003, China.
- Qingdao Marine Science and Technology Center, Qingdao, Shandong Province 266235, China
| |
Collapse
|
20
|
Xu X, Sun B, Zhao C. Poly (ADP-Ribose) polymerase 1 and parthanatos in neurological diseases: From pathogenesis to therapeutic opportunities. Neurobiol Dis 2023; 187:106314. [PMID: 37783233 DOI: 10.1016/j.nbd.2023.106314] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023] Open
Abstract
Poly (ADP-ribose) polymerase-1 (PARP-1) is the most extensively studied member of the PARP superfamily, with its primary function being the facilitation of DNA damage repair processes. Parthanatos is a type of regulated cell death cascade initiated by PARP-1 hyperactivation, which involves multiple subroutines, including the accumulation of ADP-ribose polymers (PAR), binding of PAR and apoptosis-inducing factor (AIF), release of AIF from the mitochondria, the translocation of the AIF/macrophage migration inhibitory factor (MIF) complex, and massive MIF-mediated DNA fragmentation. Over the past few decades, the role of PARP-1 in central nervous system health and disease has received increasing attention. In this review, we discuss the biological functions of PARP-1 in neural cell proliferation and differentiation, memory formation, brain ageing, and epigenetic regulation. We then elaborate on the involvement of PARP-1 and PARP-1-dependant parthanatos in various neuropathological processes, such as oxidative stress, neuroinflammation, mitochondrial dysfunction, excitotoxicity, autophagy damage, and endoplasmic reticulum (ER) stress. Additional highlight contains PARP-1's implications in the initiation, progression, and therapeutic opportunities for different neurological illnesses, including neurodegenerative diseases, stroke, autism spectrum disorder (ASD), multiple sclerosis (MS), epilepsy, and neuropathic pain (NP). Finally, emerging insights into the repurposing of PARP inhibitors for the management of neurological diseases are provided. This review aims to summarize the exciting advancements in the critical role of PARP-1 in neurological disorders, which may open new avenues for therapeutic options targeting PARP-1 or parthanatos.
Collapse
Affiliation(s)
- Xiaoxue Xu
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China; Key Laboratory of Neurological Disease Big Data of Liaoning Province, Shenyang, China.
| | - Bowen Sun
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China; Key Laboratory of Neurological Disease Big Data of Liaoning Province, Shenyang, China
| | - Chuansheng Zhao
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China; Key Laboratory of Neurological Disease Big Data of Liaoning Province, Shenyang, China.
| |
Collapse
|
21
|
Rühmkorf A, Harbauer AB. Role of Mitochondria-ER Contact Sites in Mitophagy. Biomolecules 2023; 13:1198. [PMID: 37627263 PMCID: PMC10452924 DOI: 10.3390/biom13081198] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
Mitochondria are often referred to as the "powerhouse" of the cell. However, this organelle has many more functions than simply satisfying the cells' metabolic needs. Mitochondria are involved in calcium homeostasis and lipid metabolism, and they also regulate apoptotic processes. Many of these functions require contact with the ER, which is mediated by several tether proteins located on the respective organellar surfaces, enabling the formation of mitochondria-ER contact sites (MERCS). Upon damage, mitochondria produce reactive oxygen species (ROS) that can harm the surrounding cell. To circumvent toxicity and to maintain a functional pool of healthy organelles, damaged and excess mitochondria can be targeted for degradation via mitophagy, a form of selective autophagy. Defects in mitochondria-ER tethers and the accumulation of damaged mitochondria are found in several neurodegenerative diseases, including Parkinson's disease and amyotrophic lateral sclerosis, which argues that the interplay between the two organelles is vital for neuronal health. This review provides an overview of the different mechanisms of mitochondrial quality control that are implicated with the different mitochondria-ER tether proteins, and also provides a novel perspective on how MERCS are involved in mediating mitophagy upon mitochondrial damage.
Collapse
Affiliation(s)
- Alina Rühmkorf
- TUM Medical Graduate Center, Technical University of Munich, 81675 Munich, Germany
- Max Planck Institute for Biological Intelligence, 82152 Planegg-Martinsried, Germany
| | - Angelika Bettina Harbauer
- Max Planck Institute for Biological Intelligence, 82152 Planegg-Martinsried, Germany
- Institute of Neuronal Cell Biology, Technical University of Munich, 80802 Munich, Germany
- Munich Cluster for Systems Neurology, 81377 Munich, Germany
| |
Collapse
|
22
|
Manganelli V, Misasi R, Riitano G, Capozzi A, Mattei V, Caglar TR, Ialongo D, Madia VN, Messore A, Costi R, Di Santo R, Sorice M, Garofalo T. Role of a Novel Heparanase Inhibitor on the Balance between Apoptosis and Autophagy in U87 Human Glioblastoma Cells. Cells 2023; 12:1891. [PMID: 37508554 PMCID: PMC10378526 DOI: 10.3390/cells12141891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/07/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Heparanase (HPSE) is an endo-β-glucuronidase that cleaves heparan sulfate side chains, leading to the disassembly of the extracellular matrix, facilitating cell invasion and metastasis dissemination. In this research, we investigated the role of a new HPSE inhibitor, RDS 3337, in the regulation of the autophagic process and the balance between apoptosis and autophagy in U87 glioblastoma cells. METHODS After treatment with RDS 3337, cell lysates were analyzed for autophagy and apoptosis-related proteins by Western blot. RESULTS We observed, firstly, that LC3II expression increased in U87 cells incubated with RDS 3337, together with a significant increase of p62/SQSTM1 levels, indicating that RDS 3337 could act through the inhibition of autophagic-lysosomal flux of LC3-II, thereby leading to accumulation of lipidated LC3-II form. Conversely, the suppression of autophagic flux could activate apoptosis mechanisms, as revealed by the activation of caspase 3, the increased level of cleaved Parp1, and DNA fragmentation. CONCLUSIONS These findings support the notion that HPSE promotes autophagy, providing evidence that RDS 3337 blocks autophagic flux. It indicates a role for HPSE inhibitors in the balance between apoptosis and autophagy in U87 human glioblastoma cells, suggesting a potential role for this new class of compounds in the control of tumor growth progression.
Collapse
Affiliation(s)
- Valeria Manganelli
- Department of Experimental Medicine, "Sapienza" University, 00161 Rome, Italy
| | - Roberta Misasi
- Department of Experimental Medicine, "Sapienza" University, 00161 Rome, Italy
| | - Gloria Riitano
- Department of Experimental Medicine, "Sapienza" University, 00161 Rome, Italy
| | - Antonella Capozzi
- Department of Experimental Medicine, "Sapienza" University, 00161 Rome, Italy
| | - Vincenzo Mattei
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, 02100 Rieti, Italy
| | - Tuba Rana Caglar
- Department of Experimental Medicine, "Sapienza" University, 00161 Rome, Italy
| | - Davide Ialongo
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" University of Rome, 00185 Rome, Italy
| | - Valentina Noemi Madia
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" University of Rome, 00185 Rome, Italy
| | - Antonella Messore
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" University of Rome, 00185 Rome, Italy
| | - Roberta Costi
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" University of Rome, 00185 Rome, Italy
| | - Roberto Di Santo
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" University of Rome, 00185 Rome, Italy
| | - Maurizio Sorice
- Department of Experimental Medicine, "Sapienza" University, 00161 Rome, Italy
| | - Tina Garofalo
- Department of Experimental Medicine, "Sapienza" University, 00161 Rome, Italy
| |
Collapse
|
23
|
Zeng L, Zheng W, Liu X, Zhou Y, Jin X, Xiao Y, Bai Y, Pan Y, Zhang J, Shao C. SDC1-TGM2-FLOT1-BHMT complex determines radiosensitivity of glioblastoma by influencing the fusion of autophagosomes with lysosomes. Theranostics 2023; 13:3725-3743. [PMID: 37441590 PMCID: PMC10334832 DOI: 10.7150/thno.81999] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 06/07/2023] [Indexed: 07/15/2023] Open
Abstract
Rationale: Glioblastoma (GBM) is the most common and malignant primary brain tumor in adults. Radiotherapy has long been an important treatment for GBM. Despite recent advances in tumor radiotherapy, the prognosis of GBM remains poor due to radioresistance. Autophagy has been reported as a basic factor to prolong the survival of tumor under radiation stress, but the molecular mechanism of how autophagy contributes to GBM radioresistance was still lacking. Methods: We established radioresistant GBM cells and identified their protein profiles by Tandem mass tag (TMT) quantitative proteomic analysis, then chose the radioresistant genes based on the TMT analysis of GBM cells and differentially expressed genes (DEGs) analysis of GEO database. Colony formation, flow cytometry, qPCR, western blotting, mRFP-GFP-LC3, transmission electron microscopy, immunofluorescence, and co-IP assays were conducted to investigate the regulation mechanisms among these new-found molecules. Results: Syndecan 1 (SDC1) and Transglutaminase 2 (TGM2) were both overexpressed in the radioresistant GBM cells and tissues, contributing to the dismal prognosis of radiotherapy. Mechanically, after irradiation, SDC1 carried TGM2 from cell membrane into cytoplasm, and transported to lysosomes by binding to flotillin 1 (FLOT1), then TGM2 recognized the betaine homocysteine methyltransferase (BHMT) on autophagosomes to coordinate the encounter between autophagosomes and lysosomes. Conclusions: The SDC1-TGM2-FLOT1-BHMT copolymer, a novel member of the protein complexes involved in the fusion of lysosomes and autophagosomes, maintained the autophagic flux in the irradiated tumor cells and ultimately enhanced radioresistance of GBM, which provides new insights of the molecular mechanism and therapeutic targets of radioresistant GBM.
Collapse
Affiliation(s)
- Liang Zeng
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Wang Zheng
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Xinglong Liu
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yuchuan Zhou
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiaoya Jin
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yuqi Xiao
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yang Bai
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yan Pan
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jianghong Zhang
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Chunlin Shao
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
24
|
Jiang RQ, Li QQ, Sheng R. Mitochondria associated ER membrane and cerebral ischemia: molecular mechanisms and therapeutic strategies. Pharmacol Res 2023; 191:106761. [PMID: 37028777 DOI: 10.1016/j.phrs.2023.106761] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 04/04/2023] [Indexed: 04/09/2023]
Abstract
Endoplasmic reticulum (ER) and mitochondria are two important organelles that are highly dynamic in mammalian cells. The physical connection between them is mitochondria associated ER membranes (MAM). In recent years, studies on endoplasmic reticulum and mitochondria have shifted from independent division to association and comparison, especially MAM has gradually become a research hotspot. MAM connects the two organelles, not only to maintain their independent structure and function, but also to promote metabolism and signal transduction between them. This paper reviews the morphological structure and protein localization of MAM, and briefly analyzes the functions of MAM in regulating Ca2+ transport, lipid synthesis, mitochondrial fusion and fission, endoplasmic reticulum stress and oxidative stress, autophagy and inflammation. Since ER stress and mitochondrial dysfunction are important pathological events in neurological diseases including ischemic stroke, MAM is likely to play an important role in cerebral ischemia by regulating the signaling of the two organelles and the crosstalk of the two pathological events.
Collapse
Affiliation(s)
- Rui-Qi Jiang
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China
| | - Qi-Qi Li
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China
| | - Rui Sheng
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China.
| |
Collapse
|
25
|
Key genes expressed in mitochondria‑endoplasmic reticulum contact sites in cancer (Review). Oncol Rep 2023; 49:77. [PMID: 36866764 PMCID: PMC10018458 DOI: 10.3892/or.2023.8514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 12/06/2022] [Indexed: 03/04/2023] Open
Abstract
Cell fate is critically affected by mitochondrial activity, from ATP production to metabolism, Ca2+ homeostasis and signaling. These actions are regulated by proteins expressed in mitochondria (Mt)‑endoplasmic reticulum contact sites (MERCSs). The literature supports the fact that disruption to the physiology of the Mt and/or MERCSs can be due to alterations in the Ca2+ influx/efflux, which further regulates autophagy and apoptosis activity. The current review presents the findings of numerous studies with regard to the involvement of proteins positioned in MERCSs and how they express anti‑ and pro‑apoptotic properties by adjusting Ca2+ across membranes. The review also explores the involvement of mitochondrial proteins as hot spots in cancer development, cell death and/or survival, and the method via which they can potentially be targeted as a therapeutic option.
Collapse
|
26
|
A Perspective on the Link between Mitochondria-Associated Membranes (MAMs) and Lipid Droplets Metabolism in Neurodegenerative Diseases. BIOLOGY 2023; 12:biology12030414. [PMID: 36979106 PMCID: PMC10045954 DOI: 10.3390/biology12030414] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
Mitochondria interact with the endoplasmic reticulum (ER) through contacts called mitochondria-associated membranes (MAMs), which control several processes, such as the ER stress response, mitochondrial and ER dynamics, inflammation, apoptosis, and autophagy. MAMs represent an important platform for transport of non-vesicular phospholipids and cholesterol. Therefore, this region is highly enriched in proteins involved in lipid metabolism, including the enzymes that catalyze esterification of cholesterol into cholesteryl esters (CE) and synthesis of triacylglycerols (TAG) from fatty acids (FAs), which are then stored in lipid droplets (LDs). LDs, through contact with other organelles, prevent the toxic consequences of accumulation of unesterified (free) lipids, including lipotoxicity and oxidative stress, and serve as lipid reservoirs that can be used under multiple metabolic and physiological conditions. The LDs break down by autophagy releases of stored lipids for energy production and synthesis of membrane components and other macromolecules. Pathological lipid deposition and autophagy disruption have both been reported to occur in several neurodegenerative diseases, supporting that lipid metabolism alterations are major players in neurodegeneration. In this review, we discuss the current understanding of MAMs structure and function, focusing on their roles in lipid metabolism and the importance of autophagy in LDs metabolism, as well as the changes that occur in neurogenerative diseases.
Collapse
|
27
|
Kulkarni PG, Mohire VM, Bhaisa PK, Joshi MM, Puranik CM, Waghmare PP, Banerjee T. Mitofusin-2: Functional switch between mitochondrial function and neurodegeneration. Mitochondrion 2023; 69:116-129. [PMID: 36764501 DOI: 10.1016/j.mito.2023.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 01/07/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023]
Abstract
Mitochondria are highly dynamic organelles known to play role in the regulation of several cellular biological processes. However, their dynamics such as number, shape, and biological functions are regulated by mitochondrial fusion and fission process. The balance between the fusion and fission process is most important for the maintenance of mitochondrial structure as well as cellular functions. The alterations within mitochondrial dynamic processes were found to be associated with the progression of neurodegenerative diseases. In recent years, mitofusin-2 (Mfn2), a GTPase has emerged as a multifunctional protein which not only is found to regulate the mitochondrial fusion-fission process but also known to regulate several cellular functions such as mitochondrial metabolism, cellular biogenesis, signalling, and apoptosis via maintaining the ER-mitochondria contact sites. In this review, we summarize the current knowledge of the structural and functional properties of the Mfn2, its transcriptional regulation and their roles in several cellular functions with a focus on current advances in the pathogenesis of neurodegenerative diseases.
Collapse
Affiliation(s)
- Prakash G Kulkarni
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune 411007, India
| | - Vaibhavi M Mohire
- Molecular Neuroscience Research Centre, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth Survey No 87/88, Mumbai Bangalore Express Highway, Tathawade, Pune 411 033, India
| | - Pooja K Bhaisa
- Molecular Neuroscience Research Centre, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth Survey No 87/88, Mumbai Bangalore Express Highway, Tathawade, Pune 411 033, India
| | - Mrudula M Joshi
- Molecular Neuroscience Research Centre, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth Survey No 87/88, Mumbai Bangalore Express Highway, Tathawade, Pune 411 033, India
| | - Chitranshi M Puranik
- Molecular Neuroscience Research Centre, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth Survey No 87/88, Mumbai Bangalore Express Highway, Tathawade, Pune 411 033, India
| | - Pranjal P Waghmare
- Molecular Neuroscience Research Centre, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth Survey No 87/88, Mumbai Bangalore Express Highway, Tathawade, Pune 411 033, India
| | - Tanushree Banerjee
- Molecular Neuroscience Research Centre, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth Survey No 87/88, Mumbai Bangalore Express Highway, Tathawade, Pune 411 033, India; Infosys Ltd., SEZ unit VI, Plot No. 1, Rajiv Gandhi Infotech Park, Hinjawadi Phase I, Pune, Maharashtra 411057, India.
| |
Collapse
|
28
|
Capozzi A, Manganelli V, Riitano G, Caissutti D, Longo A, Garofalo T, Sorice M, Misasi R. Advances in the Pathophysiology of Thrombosis in Antiphospholipid Syndrome: Molecular Mechanisms and Signaling through Lipid Rafts. J Clin Med 2023; 12:jcm12030891. [PMID: 36769539 PMCID: PMC9917860 DOI: 10.3390/jcm12030891] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
The pathological features of antiphospholipid syndrome (APS) are related to the activity of circulating antiphospholipid antibodies (aPLs) associated with vascular thrombosis and obstetric complications. Indeed, aPLs are not only disease markers, but also play a determining pathogenetic role in APS and exert their effects through the activation of cells and coagulation factors and inflammatory mediators for the materialization of the thromboinflammatory pathogenetic mechanism. Cellular activation in APS necessarily involves the interaction of aPLs with target receptors on the cell membrane, capable of triggering the signal transduction pathway(s). This interaction occurs at specific microdomains of the cell plasma membrane called lipid rafts. In this review, we focus on the key role of lipid rafts as signaling platforms in the pathogenesis of APS, and propose this pathogenetic step as a strategic target of new therapies in order to improve classical anti-thrombotic approaches with "new" immunomodulatory drugs.
Collapse
|
29
|
Yang Y, Wu J, Lu W, Dai Y, Zhang Y, Sun X. Mitochondria-associated endoplasmic reticulum membranes dysfunction contributes to PARP-1-dependent cell death under oxidative stress in retinal precursor cells. J Biochem Mol Toxicol 2023; 37:e23303. [PMID: 36639873 DOI: 10.1002/jbt.23303] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/20/2022] [Accepted: 01/05/2023] [Indexed: 01/15/2023]
Abstract
Persistent poly (ADP-ribose) polymerase 1 (PARP-1) activation has proven detrimental and can lead to PARP-1-dependent cell death. Mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs) serve as essential hubs for many biological pathways, such as autophagy and mitochondria fission and fusion. This study aimed to alleviate the effects of hydrogen peroxide (H2 O2 )-induced persistent PARP-1 activation and MAM dysregulation by the usage of a PARP-1 inhibitor. Results showed that receptor-interacting protein kinase (RIPK) 1 inhibitor (necrostatin-1) and PARP-1 inhibitor (olaparib) protected retinal precursor cells from H2 O2 -induced death, while a pan-caspase inhibitor (Z-VAD-FMK) failed to protect R28 cells. Olaparib also alleviated H2 O2 -induced MAM dysregulation, as evidenced by decreased VDAC1/ITPR3 interactions and reduced mitochondrial membrane potential collapse. Additionally, olaparib also inhibited H2 O2 -induced autophagy. Inhibiting autophagic flux increased MAM signaling under both normal and oxidative conditions. Furthermore, H2 O2 treatment caused a reduction in the protein level of mitofusin-2 (MFN2) in a dose- and time-dependent manner. Mfn2 knockdown was found to further magnify MAM dysregulation and mitochondrial dysfunction under normal and oxidative conditions. Mfn2 overexpression surprisingly enhanced H2 O2 -induced MAM signaling and failed to rescue H2 O2 -induced mitochondrial dysfunction. These results indicate that MAMs probably serve as a membrane source for oxidative stress-associated autophagy. MAM dysregulation also contributed to H2 O2 -induced PARP-1-dependent cell death. However, more studies are required to decipher the link between the modulation of Mfn2 expression, changes in MAM integrity, and alterations in mitochondrial performances.
Collapse
Affiliation(s)
- Yuting Yang
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jihong Wu
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, China
| | - Wei Lu
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yiqin Dai
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Youjia Zhang
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xinghuai Sun
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
30
|
Vasques J, de Jesus Gonçalves R, da Silva-Junior A, Martins R, Gubert F, Mendez-Otero R. Gangliosides in nervous system development, regeneration, and pathologies. Neural Regen Res 2023. [PMID: 35799513 PMCID: PMC9241395 DOI: 10.4103/1673-5374.343890] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
31
|
Alizadeh Pahlavani H, Laher I, Knechtle B, Zouhal H. Exercise and mitochondrial mechanisms in patients with sarcopenia. Front Physiol 2022; 13:1040381. [PMID: 36561214 PMCID: PMC9767441 DOI: 10.3389/fphys.2022.1040381] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Sarcopenia is a severe loss of muscle mass and functional decline during aging that can lead to reduced quality of life, limited patient independence, and increased risk of falls. The causes of sarcopenia include inactivity, oxidant production, reduction of antioxidant defense, disruption of mitochondrial activity, disruption of mitophagy, and change in mitochondrial biogenesis. There is evidence that mitochondrial dysfunction is an important cause of sarcopenia. Oxidative stress and reduction of antioxidant defenses in mitochondria form a vicious cycle that leads to the intensification of mitochondrial separation, suppression of mitochondrial fusion/fission, inhibition of electron transport chain, reduction of ATP production, an increase of mitochondrial DNA damage, and mitochondrial biogenesis disorder. On the other hand, exercise adds to the healthy mitochondrial network by increasing markers of mitochondrial fusion and fission, and transforms defective mitochondria into efficient mitochondria. Sarcopenia also leads to a decrease in mitochondrial dynamics, mitophagy markers, and mitochondrial network efficiency by increasing the level of ROS and apoptosis. In contrast, exercise increases mitochondrial biogenesis by activating genes affected by PGC1-ɑ (such as CaMK, AMPK, MAPKs) and altering cellular calcium, ATP-AMP ratio, and cellular stress. Activation of PGC1-ɑ also regulates transcription factors (such as TFAM, MEFs, and NRFs) and leads to the formation of new mitochondrial networks. Hence, moderate-intensity exercise can be used as a non-invasive treatment for sarcopenia by activating pathways that regulate the mitochondrial network in skeletal muscle.
Collapse
Affiliation(s)
- Hamed Alizadeh Pahlavani
- Department of Physical Education, Farhangian University, Tehran, Iran,*Correspondence: Beat Knechtle, ; Hamed Alizadeh Pahlavani, ; Hassane Zouhal,
| | - Ismail Laher
- Department of Anesthesiology, Pharmacology, and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Beat Knechtle
- Institute of Primary Care, University of Zurich, Zurich, Switzerland,Medbase St Gallen Am Vadianplatz, St. Gallen, Switzerland,*Correspondence: Beat Knechtle, ; Hamed Alizadeh Pahlavani, ; Hassane Zouhal,
| | - Hassane Zouhal
- Movement Sport, Health and Sciences Laboratory (M2S) UFR-STAPS, University of Rennes 2-ENS Cachan, Charles Tillon, France,Institut International des Sciences Du Sport (2IS), Irodouer, France,*Correspondence: Beat Knechtle, ; Hamed Alizadeh Pahlavani, ; Hassane Zouhal,
| |
Collapse
|
32
|
Zwilling E, Reggiori F. Membrane Contact Sites in Autophagy. Cells 2022; 11:3813. [PMID: 36497073 PMCID: PMC9735501 DOI: 10.3390/cells11233813] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
Eukaryotes utilize different communication strategies to coordinate processes between different cellular compartments either indirectly, through vesicular transport, or directly, via membrane contact sites (MCSs). MCSs have been implicated in lipid metabolism, calcium signaling and the regulation of organelle biogenesis in various cell types. Several studies have shown that MCSs play a crucial role in the regulation of macroautophagy, an intracellular catabolic transport route that is characterized by the delivery of cargoes (proteins, protein complexes or aggregates, organelles and pathogens) to yeast and plant vacuoles or mammalian lysosomes, for their degradation and recycling into basic metabolites. Macroautophagy is characterized by the de novo formation of double-membrane vesicles called autophagosomes, and their biogenesis requires an enormous amount of lipids. MCSs appear to have a central role in this supply, as well as in the organization of the autophagy-related (ATG) machinery. In this review, we will summarize the evidence for the participation of specific MCSs in autophagosome formation, with a focus on the budding yeast and mammalian systems.
Collapse
Affiliation(s)
- Emma Zwilling
- Department of Biomedicine, Aarhus University, Ole Worms Allé 4, 8000C Aarhus, Denmark
| | - Fulvio Reggiori
- Department of Biomedicine, Aarhus University, Ole Worms Allé 4, 8000C Aarhus, Denmark
- Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Høegh-Guldbergs Gade 6B, 8000C Aarhus, Denmark
| |
Collapse
|
33
|
Jiang T, Wang Q, Lv J, Lin L. Mitochondria-endoplasmic reticulum contacts in sepsis-induced myocardial dysfunction. Front Cell Dev Biol 2022; 10:1036225. [PMID: 36506093 PMCID: PMC9730255 DOI: 10.3389/fcell.2022.1036225] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 11/14/2022] [Indexed: 11/25/2022] Open
Abstract
Mitochondrial and endoplasmic reticulum (ER) are important intracellular organelles. The sites that mitochondrial and ER are closely related in structure and function are called Mitochondria-ER contacts (MERCs). MERCs are involved in a variety of biological processes, including calcium signaling, lipid synthesis and transport, autophagy, mitochondrial dynamics, ER stress, and inflammation. Sepsis-induced myocardial dysfunction (SIMD) is a vital organ damage caused by sepsis, which is closely associated with mitochondrial and ER dysfunction. Growing evidence strongly supports the role of MERCs in the pathogenesis of SIMD. In this review, we summarize the biological functions of MERCs and the roles of MERCs proteins in SIMD.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiagao Lv
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,*Correspondence: Jiagao Lv, ; Li Lin, ,
| | - Li Lin
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,*Correspondence: Jiagao Lv, ; Li Lin, ,
| |
Collapse
|
34
|
Means RE, Katz SG. Balancing life and death: BCL-2 family members at diverse ER-mitochondrial contact sites. FEBS J 2022; 289:7075-7112. [PMID: 34668625 DOI: 10.1111/febs.16241] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/11/2021] [Accepted: 10/19/2021] [Indexed: 01/13/2023]
Abstract
The outer mitochondrial membrane is a busy place. One essential activity for cellular survival is the regulation of membrane integrity by the BCL-2 family of proteins. Another critical facet of the outer mitochondrial membrane is its close approximation with the endoplasmic reticulum. These mitochondrial-associated membranes (MAMs) occupy a significant fraction of the mitochondrial surface and serve as key signaling hubs for multiple cellular processes. Each of these pathways may be considered as forming their own specialized MAM subtype. Interestingly, like membrane permeabilization, most of these pathways play critical roles in regulating cellular survival and death. Recently, the pro-apoptotic BCL-2 family member BOK has been found within MAMs where it plays important roles in their structure and function. This has led to a greater appreciation that multiple BCL-2 family proteins, which are known to participate in numerous functions throughout the cell, also have roles within MAMs. In this review, we evaluate several MAM subsets, their role in cellular homeostasis, and the contribution of BCL-2 family members to their functions.
Collapse
Affiliation(s)
- Robert E Means
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Samuel G Katz
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
35
|
Sha YL, Liu Y, Yang JX, Wang YY, Gong BC, Jin Y, Qu TY, Xia FT, Han L, Zhao Q. B3GALT4 remodels the tumor microenvironment through GD2-mediated lipid raft formation and the c-met/AKT/mTOR/IRF-1 axis in neuroblastoma. J Exp Clin Cancer Res 2022; 41:314. [PMID: 36284313 PMCID: PMC9594894 DOI: 10.1186/s13046-022-02523-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND Beta-1,3-galactosyltransferase-4 (B3GALT4) plays a critical regulatory role in tumor biology. However, the role of B3GALT4 in modulating the tumor microenvironment (TME) of neuroblastoma (NB) remains unknown. METHODS Public datasets and clinical NB samples were collected to evaluate the expression and clinical significance of GD2 and B3GALT4 in NB patients. CCK-8, colony formation, and transwell assays and experiments in tumor-bearing mouse models were conducted to investigate the function of B3GALT4. Flow cytometry, ELISA, immunohistochemistry, immunofluorescence, western blotting, and chemotaxis assays were conducted to ascertain the immunomodulatory mechanism of B3GALT4. The combined therapeutic effect of the lipid raft inhibitor MβCD and anti-GD2 mAb was validated in a murine model of NB. RESULTS GD2 was overexpressed in NB tissues and high expression of GD2 was associated with poor prognosis in NB patients. B3GALT4 was downregulated in NB tissues, and low expression of B3GALT4 indicated poor prognosis in NB patients. Silencing B3GALT4 significantly enhanced tumor progression both in vitro and in vivo. Meanwhile, the overexpression of B3GALT4 increased the recruitment of CD8+ T lymphocytes via the chemokines CXCL9 and CXCL10. Additionally, B3GALT4 regulated NB-cell GD2 expression and lipid raft formation. Mechanistically, B3GALT4 regulated the expression of CXCL9 and CXCL10 via the c-Met signaling in the lipid rafts and the downstream AKT/mTOR/IRF-1 pathway. The lipid raft inhibitor, MβCD, attenuated B3GALT4 deficiency-induced tumor progression and immune evasion. Last, MβCD combined with anti-GD2 mAb treatment significantly enhanced the antitumor effect and the infiltration of CD8+ T cells. CONCLUSIONS Upregulation of B3GALT4 promotes the secretion of CXCL9 and CXCL10 to recruit CD8+ T lymphocytes via the GD2-mediated lipid rafts and the c-Met/AKT/mTOR/IRF-1 pathway. Moreover, lipid raft inhibitors may enhance the efficacy of anti-GD2 immunotherapy for NB.
Collapse
Affiliation(s)
- Yong-Liang Sha
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yun Liu
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Jia-Xing Yang
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yang-Yang Wang
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Bao-Cheng Gong
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yan Jin
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Tong-Yuan Qu
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Fan-Tong Xia
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Lei Han
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China.
| | - Qiang Zhao
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China.
| |
Collapse
|
36
|
Li X, Lyu Y, Li J, Wang X. AMBRA1 and its role as a target for anticancer therapy. Front Oncol 2022; 12:946086. [PMID: 36237336 PMCID: PMC9551033 DOI: 10.3389/fonc.2022.946086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
The activating molecule in Beclin1-regulated autophagy protein 1 (AMBRA1) is an intrinsically disordered protein that regulates the survival and death of cancer cells by modulating autophagy. Although the roles of autophagy in cancer are controversial and context-dependent, inhibition of autophagy under some circumstances can be a useful strategy for cancer therapy. As AMBRA1 is a pivotal autophagy-associated protein, targeting AMBRA1 similarly may be an underlying strategy for cancer therapy. Emerging evidence indicates that AMBRA1 can also inhibit cancer formation, maintenance, and progression by regulating c-MYC and cyclins, which are frequently deregulated in human cancer cells. Therefore, AMBRA1 is at the crossroad of autophagy, tumorigenesis, proliferation, and cell cycle. In this review, we focus on discussing the mechanisms of AMBRA1 in autophagy, mitophagy, and apoptosis, and particularly the roles of AMBRA1 in tumorigenesis and targeted therapy.
Collapse
Affiliation(s)
- Xiang Li
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Joint International Laboratory of Glioma Metabolism and Microenvironment Research, Henan Provincial Department of Science and Technology, Zhengzhou, China
| | - Yuan Lyu
- Henan Joint International Laboratory of Glioma Metabolism and Microenvironment Research, Henan Provincial Department of Science and Technology, Zhengzhou, China
- Medical Research Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Junqi Li
- Henan Joint International Laboratory of Glioma Metabolism and Microenvironment Research, Henan Provincial Department of Science and Technology, Zhengzhou, China
- Medical Research Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Xinjun Wang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Joint International Laboratory of Glioma Metabolism and Microenvironment Research, Henan Provincial Department of Science and Technology, Zhengzhou, China
- Department of Neurosurgery, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Xinjun Wang,
| |
Collapse
|
37
|
Liu X, Hussain R, Mehmood K, Tang Z, Zhang H, Li Y. Mitochondrial-Endoplasmic Reticulum Communication-Mediated Oxidative Stress and Autophagy. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6459585. [PMID: 36164446 PMCID: PMC9509228 DOI: 10.1155/2022/6459585] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/18/2022] [Accepted: 08/22/2022] [Indexed: 12/03/2022]
Abstract
Oxidative stress is an imbalance between free radicals and the antioxidant system causing overgeneration of free radicals (oxygen-containing molecules) ultimately leading to oxidative damage in terms of lipid peroxidation, protein denaturation, and DNA mutation. Oxidative stress can activate autophagy to alleviate oxidative damage and maintain normal physiological activities of cells by degrading damaged organelles or local cytoplasm. When oxidative stress is not eliminated by autophagy, it activates the apoptosis cascade. This review provides a brief summary of mitochondrial-endoplasmic reticulum communication-mediated oxidative stress and autophagy. Mitochondria and endoplasmic reticulum being important organelles in cells are directly or indirectly connected to each other through mitochondria-associated endoplasmic reticulum membranes and jointly regulate oxidative stress and autophagy. The reactive oxygen species (ROS) produced by the mitochondrial respiratory chain are the main inducers of oxidative stress. Damaged mitochondria can be effectively cleared by the process of mitophagy mediated by PINK1/parkin pathway, Nix/BNIP3 pathways, and FUNDC1 pathway, avoiding excessive ROS production. However, the mechanism of mitochondrial-endoplasmic reticulum communication in the regulation of oxidative stress and autophagy is rarely known. For this reason, this review explores the mutual connection of mitochondria and endoplasmic reticulum in mediating oxidative stress and autophagy through ROS and Ca2+ and aims to provide part of the theoretical basis for alleviating oxidative stress through autophagy mediated by mitochondrial-endoplasmic reticulum communication.
Collapse
Affiliation(s)
- Xiaoqing Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Riaz Hussain
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Khalid Mehmood
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
38
|
Yang Y, Wu J, Lu W, Dai Y, Zhang Y, Sun X. Olaparib, a PARP-1 inhibitor, protects retinal cells from ocular hypertension-associated oxidative damage. Front Cell Dev Biol 2022; 10:925835. [PMID: 36092711 PMCID: PMC9459396 DOI: 10.3389/fcell.2022.925835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/20/2022] [Indexed: 11/23/2022] Open
Abstract
Glaucoma is the most common cause of irreversible blindness worldwide. Elevated intraocular pressure (IOP) and relative hypoxia in the retina stimulate the production of reactive oxygen species (ROS), which, in turn, puts the retina and optic nerve under chronic oxidative stress. Emerging evidence has shown that oxidative stress can trigger PARP-1 overactivation, mitochondrial-associated endoplasmic reticulum membrane (MAM) dysregulation, and NLRP3 activation. Oxidative damage can trigger inflammasome activation, and NLRP3 is the only inflammasome associated with MAM dysregulation. In addition, multiple transcription factors are located on the MAM. This study aimed to investigate the protective effects and underlying mechanisms of a PARP-1 inhibitor (olaparib) against chronic ocular hypertension-associated retinal cell damage. We also mimicked hypoxic stimulation of a retinal precursor cell line by exposing the cells to 0.2% O2in vitro. We discovered that chronic ocular hypertension (COH) induces oxidative damage and MAM dysregulation in the retinal ganglion cells (RGCs). The protein levels of cleaved-PARP and NLRP3 were upregulated in the retinas of the COH rats. Olaparib, a PARP-1 inhibitor, alleviated COH-induced RGC loss, retinal morphological alterations, and photopic negative response amplitude reduction. Olaparib also relieved hypoxic stimulation-induced loss of cell viability and MAM dysregulation. Additionally, some indicators of mitochondrial performance, such as reactive oxygen species accumulation, mitochondrial Ca2+ influx, and mitochondrial membrane potential collapse, decreased after olaparib treatment. Olaparib attenuated the hypoxia-induced upregulation of NLRP3 protein levels as well as the phosphorylation of ERK1/2 and histone H2A.X. These results suggest that olaparib protects RGCs from chronic intraocular pressure elevation in vivo and alleviates the abnormal MAM dysregulation and mitochondrial dysfunction caused by hypoxia in vitro. This protection may be achieved by inhibiting PARP-1 overactivation, NLRP3 upregulation, and phosphorylation of ERK1/2.
Collapse
Affiliation(s)
- Yuting Yang
- Department of Ophthalmology and Visual Science, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jihong Wu
- Department of Ophthalmology and Visual Science, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Wei Lu
- Department of Ophthalmology and Visual Science, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yiqin Dai
- Department of Ophthalmology and Visual Science, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Youjia Zhang
- Department of Ophthalmology and Visual Science, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xinghuai Sun
- Department of Ophthalmology and Visual Science, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
- *Correspondence: Xinghuai Sun,
| |
Collapse
|
39
|
Mitochondria-Associated Endoplasmic Reticulum Membranes: Inextricably Linked with Autophagy Process. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7086807. [PMID: 36052160 PMCID: PMC9427242 DOI: 10.1155/2022/7086807] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/08/2022] [Indexed: 01/18/2023]
Abstract
Mitochondria-associated membranes (MAMs), physical connection sites between the endoplasmic reticulum (ER) and the outer mitochondrial membrane (OMM), are involved in numerous cellular processes, such as calcium ion transport, lipid metabolism, autophagy, ER stress, mitochondria morphology, and apoptosis. Autophagy is a highly conserved intracellular process in which cellular contents are delivered by double-membrane vesicles, called autophagosomes, to the lysosomes for destruction and recycling. Autophagy, typically triggered by stress, eliminates damaged or redundant protein molecules and organelles to maintain regular cellular activity. Dysfunction of MAMs or autophagy is intimately associated with various diseases, including aging, cardiovascular, infections, cancer, multiple toxic agents, and some genetic disorders. Increasing evidence has shown that MAMs play a significant role in autophagy development and maturation. In our study, we concentrated on two opposing functions of MAMs in autophagy: facilitating the formation of autophagosomes and inhibiting autophagy. We recognized the link between MAMs and autophagy in the occurrence and progression of the diseases and therefore collated and summarized the existing intrinsic molecular mechanisms. Furthermore, we draw attention to several crucial data and open issues in the area that may be helpful for further study.
Collapse
|
40
|
Chen H, Zhang J, Sun X, Wang Y, Qian Y. Mitophagy-mediated molecular subtypes depict the hallmarks of the tumour metabolism and guide precision chemotherapy in pancreatic adenocarcinoma. Front Cell Dev Biol 2022; 10:901207. [PMID: 35938160 PMCID: PMC9353335 DOI: 10.3389/fcell.2022.901207] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/30/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Mitophagy is closely related to cancer initiation and progression. However, heterogeneity with reference to mitophagy remains unexplored in pancreatic adenocarcinoma (PAAD). Materials and methods: We used Reactome database to download the mitophagy-related, glycolysis-related and cholesterol biosynthesis-related signaling pathways. Unsupervised clustering using the “ConsensusClusterPlus” R package was performed to identify molecular subtypes related to mitophagy and metabolism. Prognosis-related mitophagy regulators were identified by univariate Cox regression analysis. Receiver operating characteristics (ROC) and Kaplan-Meier (K-M) survival analyses were used to assess the diagnostic and prognostic role of the hub genes and prognosis risk model. Weighted gene co-expression network analysis (WGCNA) was utilized for screening the mitophagy subtype-related hub genes. Metascape was utilized to carry out functional enrichment analysis. The “glmnet” R package was utilised for LASSO, and the “e1071” R package was utilised for SVM. Chemotherapeutic drug sensitivity was estimated using the R package “pRRophetic” and Genomics of Drug Sensitivity in Cancer (GDSC) database. The nomogram was established by the “rms” R package. Results: Three distinct mitophagy subtypes (low, high and intermediate) of PAAD were identified based on the landscape of mitophagy regulators. The high mitophagy subtype had the worst prognosis, highest mRNA expression-based stemness index scores and most hypoxic environment compared to the other subtypes. Additionally, glycolysis and cholesterol biosynthesis were significantly elevated. Three mitophagy subtype-specific gene signatures (CAST, CCDC6, and ERLIN1) were extracted using WGCNA and machine learning. Moreover, PAAD tumours were insensitive to Erlotinib, Sunitinib and Imatinib in the high mitophagy subtype and high CAST, CCDC6, and ERLIN1 expressed subtypes. Furthermore, CAST, CCDC6, and ERLIN1 affected immune cell infiltration (M1 and CD8Tcm), resulting in the altered prognosis of patients with PAAD. A nomogram was constructed to screen patients with the low mitophagy subtype, which showed a higher sensitivity to chemotherapeutic agents. Conclusion: Based on various bioinformatics tools and databases, the PAAD heterogeneity regarding mitophagy was systematically examined. Three different PAAD subtypes having different outcomes, metabolism patterns and chemosensitivity were observed. Moreover, three novel biomarkers that are closely associated with mitophagy and have the potential to guide individualised treatment regimens in PAAD were obtained.
Collapse
Affiliation(s)
- Hao Chen
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Emergency Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jianlin Zhang
- Department of Emergency Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xuehu Sun
- Department of Emergency Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yao Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Yeben Qian, ; Yao Wang,
| | - Yeben Qian
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Yeben Qian, ; Yao Wang,
| |
Collapse
|
41
|
Lv Y, Cheng L, Peng F. Compositions and Functions of Mitochondria-Associated Endoplasmic Reticulum Membranes and Their Contribution to Cardioprotection by Exercise Preconditioning. Front Physiol 2022; 13:910452. [PMID: 35733995 PMCID: PMC9207531 DOI: 10.3389/fphys.2022.910452] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
Mitochondria-associated endoplasmic reticulum membranes (MAMs) are important components of intracellular signaling and contribute to the regulation of intracellular Ca2+/lipid homeostasis, mitochondrial dynamics, autophagy/mitophagy, apoptosis, and inflammation. Multiple studies have shown that proteins located on MAMs mediate cardioprotection. Exercise preconditioning (EP) has been shown to protect the myocardium from adverse stimuli, but these mechanisms are still being explored. Recently, a growing body of evidence points to MAMs, suggesting that exercise or EP may be involved in cardioprotection by modulating proteins on MAMs and subsequently affecting MAMs. In this review, we summarize the latest findings on MAMs, analyzing the structure and function of MAMs and the role of MAM-related proteins in cardioprotection. We focused on the possible mechanisms by which exercise or EP can modulate the involvement of MAMs in cardioprotection. We found that EP may affect MAMs by regulating changes in MFN2, MFN1, AMPK, FUNDC1, BECN1, VDAC1, GRP75, IP3R, CYPD, GSK3β, AKT, NLRP3, GRP78, and LC3, thus playing a cardioprotective role. We also provided direction for future studies that may be of interest so that more in-depth studies can be conducted to elucidate the relationship between EP and cardioprotection.
Collapse
|
42
|
He J, Liu D, Zhao L, Zhou D, Rong J, Zhang L, Xia Z. Myocardial ischemia/reperfusion injury: Mechanisms of injury and implications for management (Review). Exp Ther Med 2022; 23:430. [PMID: 35607376 PMCID: PMC9121204 DOI: 10.3892/etm.2022.11357] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/13/2022] [Indexed: 01/18/2023] Open
Abstract
Myocardial infarction is one of the primary causes of mortality in patients with coronary heart disease worldwide. Early treatment of acute myocardial infarction restores blood supply of ischemic myocardium and decreases the mortality risk. However, when the interrupted myocardial blood supply is recovered within a certain period of time, it causes more serious damage to the original ischemic myocardium; this is known as myocardial ischemia/reperfusion injury (MIRI). The pathophysiological mechanisms leading to MIRI are associated with oxidative stress, intracellular calcium overload, energy metabolism disorder, apoptosis, endoplasmic reticulum stress, autophagy, pyroptosis, necroptosis and ferroptosis. These interplay with one another and directly or indirectly lead to aggravation of the effect. In the past, apoptosis and autophagy have attracted more attention but necroptosis and ferroptosis also serve key roles. However, the mechanism of MIRI has not been fully elucidated. The present study reviews the mechanisms underlying MIRI. Based on current understanding of the pathophysiological mechanisms of MIRI, the association between cell death-associated signaling pathways were elaborated, providing direction for investigation of novel targets in clinical treatment.
Collapse
Affiliation(s)
- Jianfeng He
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Danyong Liu
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Lixia Zhao
- Department of Anesthesiology, The Eighth Affiliated Hospital of Sun Yat‑Sen University, Shenzhen, Guangdong 518033, P.R. China
| | - Dongcheng Zhou
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Jianhui Rong
- Department of Internal Medicine, Shenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen, Guangdong 518057, P.R. China
| | - Liangqing Zhang
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Zhengyuan Xia
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| |
Collapse
|
43
|
Sorice M. Crosstalk of Autophagy and Apoptosis. Cells 2022; 11:cells11091479. [PMID: 35563785 PMCID: PMC9102887 DOI: 10.3390/cells11091479] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 01/04/2023] Open
Abstract
Autophagy and apoptosis represent two fundamental pathophysiological mechanisms of cell fate regulation. However, the signaling pathways of these processes are significantly interconnected through various mechanisms of crosstalk. Indeed, autophagy/apoptosis crosstalk is still an emerging field, in which an increasing number of molecules are involved, including, for example, PINK1 and ERLINs. On the other hand, this crosstalk involves signal transduction pathways which are strongly dependent on Ca2+. Interestingly, crosstalk between autophagy and apoptosis impacts several pathologies, including multiple rheumatic diseases. The purpose of this Special Issue is also to investigate the bioactive properties of drugs with antitumor activity, focusing particularly on the role of anthraquinone derivatives in the regulation of cell death and autophagy crosstalk. This Special Issue of Cells brings together the most recent advances in understanding the various aspects of crosstalk between autophagy and apoptosis and the interconnected signaling pathways, implying therapeutic perspectives for the utility of its modulation in an anti-cancer setting.
Collapse
Affiliation(s)
- Maurizio Sorice
- Department of Experimental Medicine, "Sapienza" University of Rome, 00161 Rome, Italy
| |
Collapse
|
44
|
Ren H, Wang Y, Guo Y, Wang M, Ma X, Li W, Guo Y, Li Y. Matrine impedes colorectal cancer proliferation and migration by downregulating endoplasmic reticulum lipid raft associated protein 1 expression. Bioengineered 2022; 13:9780-9791. [PMID: 35412433 PMCID: PMC9161898 DOI: 10.1080/21655979.2022.2060777] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Matrine exhibits anti-tumor effect on the proliferation and invasion of colorectal cancer (CRC) cells by reducing the activity of the p38 signaling pathway. However, these studies were limited because the underlying mechanism by which matrine inhibited CRC progression remained unclear. In this study, we provided for the first time that endoplasmic reticulum lipid raft associated protein 1 (Erlin1) is a novel target of matrine. Erlin1 was significantly upregulated in tumors and its knockdown suppressed the proliferation and migration of CRC cells, while its overexpression promoted CRC cell growth and migration. Furthermore, Erlin1 overexpression promoted inhibited apoptosis. Importantly, matrine treatment could reverse the oncogenic function of Erlin1 on CRC cell proliferation and migration. When Erlin1 was knocked down, matrine exhibited a more obvious anti-tumor effect in CRC cells. Partly due to this, matrine functions as an important anti-tumor drug and the results discovered here may clarify the mechanisms of matrine application for CRC treatment. CRC patients with low expression of Erlin1 might be more suitable for the treatment of matrine. This study could promote the application of matrine to be a promising therapeutic strategy for CRC patients.
Collapse
Affiliation(s)
- Hongtao Ren
- Department of Radiotherapy, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yali Wang
- Department of Radiotherapy, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ya Guo
- Department of Radiotherapy, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Mincong Wang
- Department of Radiotherapy, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiulong Ma
- Department of Radiotherapy, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wen Li
- Department of Radiotherapy, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yuyan Guo
- Department of Radiotherapy, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yiming Li
- Department of General Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
45
|
Ultrastructural and proteomic profiling of mitochondria-associated endoplasmic reticulum membranes reveal aging signatures in striated muscle. Cell Death Dis 2022; 13:296. [PMID: 35368021 PMCID: PMC8976840 DOI: 10.1038/s41419-022-04746-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/02/2022] [Accepted: 03/18/2022] [Indexed: 02/07/2023]
Abstract
Aging is a major risk for developing cardiac and skeletal muscle dysfunction, yet the underlying mechanism remains elusive. Here we demonstrated that the mitochondria-associated endoplasmic reticulum membranes (MAMs) in the rat heart and skeletal muscle were disrupted during aging. Using quantitative morphological analysis, we showed that the mitochondria-endoplasmic reticulum contacts (MERCs) were reduced by half over the lifespan with an early onset of accelerated thickening in the clefts. The ultrastructural changes were further validated by proteomic profiling of the MAM fractions. A combination of subcellular fractionation and quantitative mass spectrometry identified 1306 MAM-enriched proteins in both heart and skeletal muscle, with a catalog of proteins dysregulated with aging. Functional mapping of the MAM proteome suggested several aging signatures to be closely associated with the ER-mitochondria crosstalk, including local metabolic rewiring, calcium homeostasis imbalance, and impaired organelle dynamics and autophagy. Moreover, we identified a subset of highly interconnected proteins in an ER-mitochondria organization network, which were consistently down-regulated with aging. These decreased proteins, including VDAC1, SAMM50, MTX1 and MIC60, were considered as potential contributors to the age-related MAM dysfunction. This study highlights the perturbation in MAM integrity during the striated muscle aging process, and provides a framework for understanding aging biology from the perspective of organelle interactions.
Collapse
|
46
|
Potential role of mitochondria-associated endoplasmic reticulum membrane proteins in diseases. Biochem Pharmacol 2022; 199:115011. [PMID: 35314166 DOI: 10.1016/j.bcp.2022.115011] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/26/2022] [Accepted: 03/15/2022] [Indexed: 02/08/2023]
Abstract
Mitochondria-associated endoplasmic reticulum membranes (MAMs) are dynamic membrane coupling regions formed by the coupling of the mitochondrial outer membrane and endoplasmic reticulum (ER). MAMs are involved in the mitochondrial dynamics, mitophagy, Ca2+ exchange, and ER stress. A large number of studies indicate that many proteins are involved in the formation of MAMs, including dynamic-related protein 1 (Drp1), DJ-1, PTEN-induced putative kinase 1 (PINK), α-synuclein (α-syn), sigma-1 receptor (S1R), mitofusin-2 (Mfn2), presenilin-1 (PS1), protein kinase R (PKR)-like ER kinase (PERK), Parkin, Cyclophilin D (CypD), glucose-related protein 75 (Grp75), FUN14 domain containing 1 (Fundc1), vesicle-associated membrane-protein-associated protein B (VAPB), phosphofurin acidic cluster sorting protein 2 (PACS-2), ER oxidoreductin 1 (Ero1), and receptor expression-enhancing protein 1 (REEP1). These proteins play an important role in the structure and functions of the MAMs. Abnormalities in these MAM proteins further contribute to the occurrence and development of related diseases, such as neurodegenerative diseases, non-alcoholicfattyliverdisease (NALFD), type 2 diabetes mellitus (T2DM), and diabetic kidney (DN). In this review, we introduce important proteins involved in the structure and the functions of the MAMs. Furthermore, we effectively summarize major insights about these proteins that are involved in the physiopathology of several diseases through the effect on MAMs.
Collapse
|
47
|
Zhao Y, Hu D, Wang R, Sun X, Ropelewski P, Hubler Z, Lundberg K, Wang Q, Adams DJ, Xu R, Qi X. ATAD3A oligomerization promotes neuropathology and cognitive deficits in Alzheimer's disease models. Nat Commun 2022; 13:1121. [PMID: 35236834 PMCID: PMC8891325 DOI: 10.1038/s41467-022-28769-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 02/11/2022] [Indexed: 12/12/2022] Open
Abstract
Predisposition to Alzheimer's disease (AD) may arise from lipid metabolism perturbation, however, the underlying mechanism remains elusive. Here, we identify ATPase family AAA-domain containing protein 3A (ATAD3A), a mitochondrial AAA-ATPase, as a molecular switch that links cholesterol metabolism impairment to AD phenotypes. In neuronal models of AD, the 5XFAD mouse model and post-mortem AD brains, ATAD3A is oligomerized and accumulated at the mitochondria-associated ER membranes (MAMs), where it induces cholesterol accumulation by inhibiting gene expression of CYP46A1, an enzyme governing brain cholesterol clearance. ATAD3A and CYP46A1 cooperate to promote APP processing and synaptic loss. Suppressing ATAD3A oligomerization by heterozygous ATAD3A knockout or pharmacological inhibition with DA1 restores neuronal CYP46A1 levels, normalizes brain cholesterol turnover and MAM integrity, suppresses APP processing and synaptic loss, and consequently reduces AD neuropathology and cognitive deficits in AD transgenic mice. These findings reveal a role for ATAD3A oligomerization in AD pathogenesis and suggest ATAD3A as a potential therapeutic target for AD.
Collapse
Affiliation(s)
- Yuanyuan Zhao
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Di Hu
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Rihua Wang
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Xiaoyan Sun
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Philip Ropelewski
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Zita Hubler
- Department of Genetics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Kathleen Lundberg
- Proteomics Center, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Quanqiu Wang
- Center for Artificial Intelligence in Drug Discovery, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Drew J Adams
- Department of Genetics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Rong Xu
- Center for Artificial Intelligence in Drug Discovery, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Xin Qi
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| |
Collapse
|
48
|
Overexpression of Neuroglobin Promotes Energy Metabolism and Autophagy Induction in Human Neuroblastoma SH-SY5Y Cells. Cells 2021; 10:cells10123394. [PMID: 34943907 PMCID: PMC8699457 DOI: 10.3390/cells10123394] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 01/18/2023] Open
Abstract
Neuroglobin (NGB) is an O2-binding globin mainly expressed in the central and peripheral nervous systems and cerebrospinal fluid. Previously, it was demonstrated that NGB overexpression protects cells from hypoxia-induced death. To investigate processes promoted by NGB overexpression, we used a cellular model of neuroblastoma stably overexpressing an NGB-FLAG construct. We used a proteomic approach to identify the specific profile following NGB overexpression. To evaluate the role of NGB overexpression in increasing energetic metabolism, we measured oxygen consumption rate (OCR) and the extracellular acidification rate through Seahorse XF technology. The effect on autophagy induction was evaluated by analyzing SQSTM1/p62 and LC3-II expression. Proteomic analysis revealed several differentially regulated proteins, involved in oxidative phosphorylation and integral mitochondrial proteins linked to energy metabolism. The analysis of mitochondrial metabolism demonstrated that NGB overexpression increases mitochondrial ATP production. Indeed, NGB overexpression enhances bioenergetic metabolism, increasing OCR and oxygen consumption. Analysis of autophagy induction revealed an increase of LC3-II together with a significant decrease of SQSTM1/p62, and NGB-LC3-II association during autophagosome formation. These results highlight the active participation of NGB in several cellular processes that can be upregulated in response to NGB overexpression, playing a role in the adaptive response to stress in neuroblastoma cells.
Collapse
|
49
|
Thomas A, Sumughan S, Dellacecca ER, Shivde RS, Lancki N, Mukhatayev Z, Vaca CC, Han F, Barse L, Henning SW, Zamora-Pineda J, Akhtar S, Gupta N, Zahid JO, Zack SR, Ramesh P, Jaishankar D, Lo AS, Moss J, Picken MM, Darling TN, Scholtens DM, Dilling DF, Junghans RP, Le Poole IC. Benign tumors in TSC are amenable to treatment by GD3 CAR T cells in mice. JCI Insight 2021; 6:e152014. [PMID: 34806651 PMCID: PMC8663788 DOI: 10.1172/jci.insight.152014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 10/14/2021] [Indexed: 11/23/2022] Open
Abstract
Mutations underlying disease in tuberous sclerosis complex (TSC) give rise to tumors with biallelic mutations in TSC1 or TSC2 and hyperactive mammalian target of rapamycin complex 1 (mTORC1). Benign tumors might exhibit de novo expression of immunogens, targetable by immunotherapy. As tumors may rely on ganglioside D3 (GD3) expression for mTORC1 activation and growth, we compared GD3 expression in tissues from patients with TSC and controls. GD3 was overexpressed in affected tissues from patients with TSC and also in aging Tsc2+/- mice. As GD3 overexpression was not accompanied by marked natural immune responses to the target molecule, we performed preclinical studies with GD3 chimeric antigen receptor (CAR) T cells. Polyfunctional CAR T cells were cytotoxic toward GD3-overexpressing targets. In mice challenged with Tsc2-/- tumor cells, CAR T cells substantially and durably reduced the tumor burden, correlating with increased T cell infiltration. We also treated aged Tsc2+/- heterozygous (>60 weeks) mice that carry spontaneous Tsc2-/- tumors with GD3 CAR or untransduced T cells and evaluated them at endpoint. Following CAR T cell treatment, the majority of mice were tumor free while all control animals carried tumors. The outcomes demonstrate a strong treatment effect and suggest that targeting GD3 can be successful in TSC.
Collapse
Affiliation(s)
- Ancy Thomas
- Department of Dermatology, Feinberg School of Medicine
- Robert H. Lurie Comprehensive Cancer Center
| | | | | | | | - Nicola Lancki
- Quantitative Data Sciences Core, Robert H. Lurie Comprehensive Cancer Center; and
| | | | | | - Fei Han
- Department of Dermatology, Feinberg School of Medicine
- Robert H. Lurie Comprehensive Cancer Center
| | - Levi Barse
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | | | - Jesus Zamora-Pineda
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University, Maywood, Illinois, USA
| | - Suhail Akhtar
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University, Maywood, Illinois, USA
| | - Nikhilesh Gupta
- Robert H. Lurie Comprehensive Cancer Center
- Illinois Mathematics and Science Academy, Aurora, Illinois, USA
| | - Jasmine O. Zahid
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University, Maywood, Illinois, USA
| | - Stephanie R. Zack
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University, Maywood, Illinois, USA
| | | | | | - Agnes S.Y. Lo
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Joel Moss
- Pulmonary Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Maria M. Picken
- Department of Pathology, Loyola University, Maywood, Illinois, USA
| | - Thomas N. Darling
- Department of Dermatology, School of Medicine, Uniformed Services University, Bethesda, Maryland, USA
| | - Denise M. Scholtens
- Quantitative Data Sciences Core, Robert H. Lurie Comprehensive Cancer Center; and
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Daniel F. Dilling
- Department of Medicine, Stritch School of Medicine, Loyola University, Maywood, Illinois, USA
| | - Richard P. Junghans
- Department of Hematology/Oncology, School of Medicine, Boston University, Boston, Massachusetts, USA
| | - I. Caroline Le Poole
- Department of Dermatology, Feinberg School of Medicine
- Robert H. Lurie Comprehensive Cancer Center
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
50
|
Role of ERLINs in the Control of Cell Fate through Lipid Rafts. Cells 2021; 10:cells10092408. [PMID: 34572057 PMCID: PMC8470593 DOI: 10.3390/cells10092408] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/27/2021] [Accepted: 09/09/2021] [Indexed: 12/14/2022] Open
Abstract
ER lipid raft-associated protein 1 (ERLIN1) and 2 (ERLIN2) are 40 kDa transmembrane glycoproteins belonging to the family of prohibitins, containing a PHB domain. They are generally localized in the endoplasmic reticulum (ER), where ERLIN1 forms a heteroligomeric complex with its closely related ERLIN2. Well-defined functions of ERLINS are promotion of ER-associated protein degradation, mediation of inositol 1,4,5-trisphosphate (IP3) receptors, processing and regulation of lipid metabolism. Until now, ERLINs have been exclusively considered protein markers of ER lipid raft-like microdomains. However, under pathophysiological conditions, they have been described within mitochondria-associated endoplasmic reticulum membranes (MAMs), tethering sites between ER and mitochondria, characterized by the presence of specialized raft-like subdomains enriched in cholesterol and gangliosides, which play a key role in the membrane scrambling and function. In this context, it is emerging that ER lipid raft-like microdomains proteins, i.e., ERLINs, may drive mitochondria-ER crosstalk under both physiological and pathological conditions by association with MAMs, regulating the two main processes underlined, survival and death. In this review, we describe the role of ERLINs in determining cell fate by controlling the “interchange” between apoptosis and autophagy pathways, considering that their alteration has a significant impact on the pathogenesis of several human diseases.
Collapse
|