1
|
Liu J, Wang Y, Zeng L, Yu C, Kang R, Klionsky DJ, Jiang J, Tang D. Extracellular NCOA4 is a mediator of septic death by activating the AGER-NFKB pathway. Autophagy 2024; 20:2616-2631. [PMID: 38916095 PMCID: PMC11587848 DOI: 10.1080/15548627.2024.2372215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024] Open
Abstract
Sepsis, a life-threatening condition resulting from a dysregulated response to pathogen infection, poses a significant challenge in clinical management. Here, we report a novel role for the autophagy receptor NCOA4 in the pathogenesis of sepsis. Activated macrophages and monocytes secrete NCOA4, which acts as a mediator of septic death in mice. Mechanistically, lipopolysaccharide, a major component of the outer membrane of Gram-negative bacteria, induces NCOA4 secretion through autophagy-dependent lysosomal exocytosis mediated by ATG5 and MCOLN1. Moreover, bacterial infection with E. coli or S. enterica leads to passive release of NCOA4 during GSDMD-mediated pyroptosis. Upon release, extracellular NCOA4 triggers the activation of the proinflammatory transcription factor NFKB/NF-κB by promoting the degradation of NFKBIA/IκB molecules. This process is dependent on the pattern recognition receptor AGER, rather than TLR4. In vivo studies employing endotoxemia and polymicrobial sepsis mouse models reveal that a monoclonal neutralizing antibody targeting NCOA4 or AGER delays animal death, protects against organ damage, and attenuates systemic inflammation. Furthermore, elevated plasma NCOA4 levels in septic patients, particularly in non-survivors, correlate positively with the sequential organ failure assessment score and concentrations of lactate and proinflammatory mediators, such as TNF, IL1B, IL6, and HMGB1. These findings demonstrate a previously unrecognized role of extracellular NCOA4 in inflammation, suggesting it as a potential therapeutic target for severe infectious diseases. Abbreviation: BMDMs: bone marrow-derived macrophages; BUN: blood urea nitrogen; CLP: cecal ligation and puncture; ELISA: enzyme-linked immunosorbent assay; LPS: lipopolysaccharide; NO: nitric oxide; SOFA: sequential organ failure assessment.
Collapse
Affiliation(s)
- Jiao Liu
- DAMP Laboratory, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yichun Wang
- DAMP Laboratory, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Critical Care Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ling Zeng
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Chongqing, China
| | - Chunhua Yu
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Daniel J. Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Jianxin Jiang
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Chongqing, China
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
2
|
Lin H, Ma C, Zhuang X, Liu S, Liu D, Zhang M, Lu Y, Zhou G, Zhang C, Wang T, Zhang Z, Lv L, Zhang D, Ruan XZ, Xu Y, Chai R, Yu X, Sun JP, Chu B. Sensing steroid hormone 17α-hydroxypregnenolone by GPR56 enables protection from ferroptosis-induced liver injury. Cell Metab 2024; 36:2402-2418.e10. [PMID: 39389061 DOI: 10.1016/j.cmet.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 07/09/2024] [Accepted: 09/11/2024] [Indexed: 10/12/2024]
Abstract
G protein-coupled receptors (GPCRs) mediate most cellular responses to hormones, neurotransmitters, and environmental stimulants. However, whether GPCRs participate in tissue homeostasis through ferroptosis remains unclear. Here we identify that GPR56/ADGRG1 renders cells resistant to ferroptosis and deficiency of GPR56 exacerbates ferroptosis-mediated liver injury induced by doxorubicin (DOX) or ischemia-reperfusion (IR). Mechanistically, GPR56 decreases the abundance of phospholipids containing free polyunsaturated fatty acids (PUFAs) by promoting endocytosis-lysosomal degradation of CD36. By screening a panel of steroid hormones, we identified that 17α-hydroxypregnenolone (17-OH PREG) acts as an agonist of GPR56 to antagonize ferroptosis and efficiently attenuates liver injury before or after insult. Moreover, disease-associated GPR56 mutants were unresponsive to 17-OH PREG activation and insufficient to defend against ferroptosis. Together, our findings uncover that 17-OH PREG-GPR56 axis-mediated signal transduction works as a new anti-ferroptotic pathway to maintain liver homeostasis, providing novel insights into the potential therapy for liver injury.
Collapse
Affiliation(s)
- Hui Lin
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, and New Cornerstone Science Laboratory, Shandong University, Jinan 250012, China; Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration, Jinan 250012, China
| | - Chuanshun Ma
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Xiao Zhuang
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Shuo Liu
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Dong Liu
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Mingxiang Zhang
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Yan Lu
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, and New Cornerstone Science Laboratory, Shandong University, Jinan 250012, China
| | - Guangjian Zhou
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, and New Cornerstone Science Laboratory, Shandong University, Jinan 250012, China
| | - Chao Zhang
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, and New Cornerstone Science Laboratory, Shandong University, Jinan 250012, China
| | - Tengwei Wang
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Zihao Zhang
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Lin Lv
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, and New Cornerstone Science Laboratory, Shandong University, Jinan 250012, China
| | - Daolai Zhang
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Xiong-Zhong Ruan
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Yunfei Xu
- Department of General Surgery, Qilu Hospital, Gheeloo College of Medicine, Shandong University, Jinan 250012, China.
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China; Department of Otolaryngology Head and Neck Surgery, Sichuan, Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610000, China.
| | - Xiao Yu
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China; Shandong Key Laboratory of Mental Disorders and Intelligent Control, Shandong University, Jinan 250012, China.
| | - Jin-Peng Sun
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, and New Cornerstone Science Laboratory, Shandong University, Jinan 250012, China; NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, and Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China.
| | - Bo Chu
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.
| |
Collapse
|
3
|
Shen L, Tao C, Zhu K, Cai L, Yang S, Jin J, Ren Y, Xiao Y, Zhang Y, Lai D, Tou J. Key platelet genes play important roles in predicting the prognosis of sepsis. Sci Rep 2024; 14:23530. [PMID: 39384856 PMCID: PMC11464784 DOI: 10.1038/s41598-024-74052-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/23/2024] [Indexed: 10/11/2024] Open
Abstract
Sepsis is a life-threatening organ malfunction induced by an imbalanced immunological reaction to infection in the host. Many studies have utilized traditional RNA sequencing (RNA-seq) data to identify important biological targets to predict sepsis prognosis. However, alterations in core cells and functional status cannot be effectively detected in sepsis patients. The goal of this study was to identify key cells through single-cell RNA-seq (scRNA-seq), and combine bulk RNA-seq data and multiple algorithm analysis to construct a stable prognostic model for sepsis. The scRNA-seq and bulk RNA-seq data from sepsis patients were collected from the Gene Expression Omnibus (GEO) database. The R package "Seurat" was used to process the scRNA-seq data. Cell communication was investigated using the R package "CellChat". The pseudo-time of the cells was calculated using the R package "monocle". The R package "limma" was used to identify differentially expressed genes (DEGs) between the sepsis group and the control group. Weighted gene correlation network analysis (WGCNA) was used to identify critical modules. Eight kinds of machine learning and 90 algorithm combinations were used to construct the prognostic model for sepsis. Quantitative real-time PCR (qRT‒PCR) was performed to determine the expression of key genes in the cecal ligation and puncture (CLP)-induced sepsis mouse model. The immunological status and related properties of DEGs were then investigated in the high- and low-risk groups delineated by the model. By combining the scRNA-seq data from nine samples, 13 clusters and 9 cell types were identified. CellChat analysis revealed that the number and strength of interactions between platelets and a variety of cells increased. We identified key platelet genes from the scRNA-seq data and combined these genes and the results of differential analysis and WGCNA of the bulk RNA-seq data. After univariate Cox regression analysis, we calculated the Cindex of the model constructed by the combination of 90 algorithms, and we finally determined the "CoxBoost + Lasso" combination. Multivariate Cox regression was used to construct the final prognostic model. The qRT-PCR results revealed significant differences in five key prognostic genes between the CLP and sham groups. The data was classified into high- and low-risk groups based on the model score. The high-risk group had a poorer survival rate and less immune infiltration. We identified the importance of platelets in sepsis patients through scRNA-seq, and established prognostic models with key genes that were identified via scRNA-seq combined with bulk RNA-seq analysis. The results of this model were closely associated with patient survival rates and immunological status and this model is useful for the prognostic management of sepsis.
Collapse
Affiliation(s)
- Leiting Shen
- Department of Neonatal Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Chang Tao
- Department of Urology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Kun Zhu
- Department of Pathology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Linghao Cai
- Department of Neonatal Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Sisi Yang
- Department of Neonatal Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jingyi Jin
- Department of Neonatal Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yichao Ren
- Department of Thoracic and Cardiovascular Surgery, Children's Hospital, School of Medicine, Zhejiang University, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yi Xiao
- Department of Neonatal Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yuebai Zhang
- Department of Neonatal Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Dengming Lai
- Department of Neonatal Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
| | - Jinfa Tou
- Department of Neonatal Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
| |
Collapse
|
4
|
Liu Z, Yuan X, Huang Y, Gu Z, Xue L, Xue S, Wang J. The Role of Interferon-Induced Proteins with Tetratricopeptide Repeats 1 and 2 in Sepsis-Induced Acute Liver Injury. Infect Drug Resist 2024; 17:2337-2349. [PMID: 38882652 PMCID: PMC11180434 DOI: 10.2147/idr.s459838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/07/2024] [Indexed: 06/18/2024] Open
Abstract
Background Sepsis refers to a life-threatening organ dysfunction which can be resulted from the infection-induced dysregulated host response. A large number of inflammatory cytokines are released to act on the liver, making the liver one of the common target organs for the development of multiple organ dysfunction syndrome (MODS) in patients with sepsis. Sepsis-induced acute liver injury (SALI) can aggravate systemic disease. As a result, it is of great clinical significance to comprehend the molecular biological mechanism of SALI and to identify the markers for evaluating SALI. Interferon-induced proteins with tetratricopeptide repeats 1 and 2 (IFIT1, IFIT2) have been recognized as the anti-inflammatory factors that are widely expressed in various organs. The present study was aimed at clarifying the roles of IFIT1 and IFIT2 in the development of SALI. Methods A two-sample Mendelian randomization (MR) analysis was employed. Summary statistics datas were obtained from GWAS for inflammatory factors [tumor necrosis factor (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6)], IFIT2, and sepsis as well as liver injury. Independent SNPs were selected as instrumental variables (IVs). Inverse variance weighted (IVW) in the MR analysis was adopted as the primary method for estimating the causal associations of inflammatory factors and IFIT2 with two diseases, and the associations of inflammatory factors with IFIT2. Additionally, weighted median method, MR-Egger and sensitivity analyses were applied in assessing the robustness of the results and ensure the result reliability. Subsequently, 119 healthy volunteers, 116 patients with sepsis and 116 SALI patients were recruited. The ELISA method was employed to quantify the expression levels of TNF-α, IL-1β, and IL-6. Additionally, qRT-PCR was conducted to measure the expression of IFIT1 and IFIT2. Furthermore, the correlations of IFIT1 and IFIT2 with inflammatory factors, alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were explored. Results As shown by the MR analysis, the genetically predisposed sepsis was significantly associated with the risk of IL-1β, with an odds ratio (OR) of 1.069 (95% confidence interval (CI), 1.015-1.127, p = 0.0119), and negatively associated with the risk of IL-6, with an OR of 0.880 (95% CI: 0.792-0.979, p= 0.0184). Meanwhile, there were positive causal effects of IL-6 (OR = 1.269, 95% CI: 1.032-1.561, p= 0.0238), IL-1β (OR = 1.106, 95% CI: 1.010-1.211, p = 0.0299) and IFIT2 (OR = 1.191, 95% CI: 1.045-1.359, p = 0.0090) on liver injury. Additionally, there was a positive causal effect of IFIT2 (OR = 1.164, 95% CI: 1.035-1.309, p= 0.0110) on IL-1β. Upon sensitivity analyses, there was weak evidence of such effects, indicating that the findings of this study were robust and reliable. Our results revealed the elevated levels of TNF-α, IL-1β, and IL-6 in the blood samples of sepsis and SALI patients (p < 0.0001). Conversely, IFIT1 and IFIT2 demonstrated the significantly decreased levels in peripheral blood mononuclear cells (PBMCs) of SALI patients (p < 0.0001). Furthermore, the expression levels of IFIT1 and IFIT2 were both negatively correlated with ALT activity (r = -0.3426, p = 0.0002; r = -0.3069, p = 0.0008) and AST activity (r = -0.2483, p = 0.0072; r = -0.3261, p = 0.0004), respectively. Moreover, the expression of IFIT1 and IFIT2 was both negatively related to the levels of TNF-α (r = -0.5027, p < 0.0001; r = -0.4218, p < 0.0001), IL-1β (r = -0.3349, p = 0.0002; r = -0.4070, p < 0.0001) and IL-6 (r = -0.2734, p = 0.0030; r = -0.3536, p < 0.0001), respectively. Conclusion IFIT1 and IFIT2 can serve as the diagnostic markers for sepsis-related liver injury, and IFIT1 and IFIT2 may participate in the pathological process of sepsis-related liver injury by regulating inflammation and liver function.
Collapse
Affiliation(s)
- Zhipeng Liu
- Information Department, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu Province, 225300, People's Republic of China
| | - Xinyu Yuan
- Emergency Department, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu Province, 225300, People's Republic of China
| | - Yan Huang
- Medical College, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Zihan Gu
- Nanjing University of Finance & Economics, Nanjing, 210023, People's Republic of China
| | - Lu Xue
- Department of Critical Care Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu Province, 225300, People's Republic of China
| | - Shanshan Xue
- Institute of Clinical Laboratory, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu Province, 225300, People's Republic of China
| | - Jun Wang
- Emergency Department, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu Province, 225300, People's Republic of China
| |
Collapse
|
5
|
Yang Y, Liu X, Yang D, Li L, Li S, Lu S, Li N. Interplay of CD36, autophagy, and lipid metabolism: insights into cancer progression. Metabolism 2024; 155:155905. [PMID: 38548128 DOI: 10.1016/j.metabol.2024.155905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/17/2024] [Accepted: 03/23/2024] [Indexed: 04/05/2024]
Abstract
CD36, a scavenger receptor B2 that is dynamically distributed between cell membranes and organelle membranes, plays a crucial role in regulating lipid metabolism. Abnormal CD36 activity has been linked to a range of metabolic disorders, such as obesity, nonalcoholic fatty liver disease, insulin resistance and cardiovascular disease. CD36 undergoes various modifications, including palmitoylation, glycosylation, and ubiquitination, which greatly affect its binding affinity to various ligands, thereby triggering and influencing various biological effects. In the context of tumors, CD36 interacts with autophagy to jointly regulate tumorigenesis, mainly by influencing the tumor microenvironment. The central role of CD36 in cellular lipid homeostasis and recent molecular insights into CD36 in tumor development indicate the applicability of CD36 as a therapeutic target for cancer treatment. Here, we discuss the diverse posttranslational modifications of CD36 and their respective roles in lipid metabolism. Additionally, we delve into recent research findings on CD36 in tumors, outlining ongoing drug development efforts targeting CD36 and potential strategies for future development and highlighting the interplay between CD36 and autophagy in the context of cancer. Our aim is to provide a comprehensive understanding of the function of CD36 in both physiological and pathological processes, facilitating a more in-depth analysis of cancer progression and a better development and application of CD36-targeting drugs for tumor therapy in the near future.
Collapse
Affiliation(s)
- Yuxuan Yang
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xiaokun Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Di Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Lianhui Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Sheng Li
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Sen Lu
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Ning Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
6
|
Bi CF, Liu J, Hu XD, Yang LS, Zhang JF. Novel insights into the regulatory role of N6-methyladenosine methylation modified autophagy in sepsis. Aging (Albany NY) 2023; 15:15676-15700. [PMID: 38112620 PMCID: PMC10781468 DOI: 10.18632/aging.205312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/23/2023] [Indexed: 12/21/2023]
Abstract
Sepsis is defined as a life-threatening organ dysfunction caused by a dysregulated host response to infection. It is characterized by high morbidity and mortality and one of the major diseases that seriously hang over global human health. Autophagy is a crucial regulator in the complicated pathophysiological processes of sepsis. The activation of autophagy is known to be of great significance for protecting sepsis induced organ dysfunction. Recent research has demonstrated that N6-methyladenosine (m6A) methylation is a well-known post-transcriptional RNA modification that controls epigenetic and gene expression as well as a number of biological processes in sepsis. In addition, m6A affects the stability, export, splicing and translation of transcripts involved in the autophagic process. Although it has been suggested that m6A methylation regulates the biological metabolic processes of autophagy and is more frequently seen in the progression of sepsis pathogenesis, the underlying molecular mechanisms of m6A-modified autophagy in sepsis have not been thoroughly elucidated. The present article fills this gap by providing an epigenetic review of the processes of m6A-modified autophagy in sepsis and its potential role in the development of novel therapeutics.
Collapse
Affiliation(s)
- Cheng-Fei Bi
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
- School of Clinical Medicine, Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Jia Liu
- Medical Experimental Center, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Xiao-Dong Hu
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Li-Shan Yang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Jun-Fei Zhang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
- Medical Experimental Center, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
| |
Collapse
|