1
|
Gao J, Zhu Y, Zeng L, Liu X, Yang Y, Zhou Y. Recent advances on environmental behavior of Cu-based nanomaterials in soil-plant system: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 361:121289. [PMID: 38820797 DOI: 10.1016/j.jenvman.2024.121289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
In recent years, copper-based nanomaterials (Cu-based NMs) have shown great potential in promoting agriculture development due to their special physicochemical characteristics. With the mass production and overuse of Cu-based NMs, there are potential effects on the soil-plant environment. Soil organisms, especially soil microorganisms, play a significant part in terrestrial or soil ecosystems; plants, as indirect organisms with soil-related Cu-based NMs, may affect human health through plant agricultural products. Understanding the accumulation and transformation of Cu-based NMs in soil-plant systems, as well as their ecotoxicological effects and potential mechanisms, is a prerequisite for the scientific assessment of environmental risks and safe application. Therefore, based on the current literature, this review: (i) introduces the accumulation and transformation behaviors of Cu-based NMs in soil and plant systems; (ii) focuses on the ecotoxicological effects of Cu-based NMs on a variety of organisms (microorganisms, invertebrates, and plants); (iii) reveals their corresponding toxicity mechanisms. It appears from studies hitherto made that both Cu-based NMs and released Cu2+ may be the main reasons for toxicity. When Cu-based NMs enter the soil-plant environment, their intrinsic physicochemical properties, along with various environmental factors, could also affect their transport, transformation, and biotoxicity. Therefore, we should push for intensifying the multi-approach research that focuses on the behaviors of Cu-based NMs in terrestrial exposure environments, and mitigates their toxicity to ensure the promotion of Cu-based NMs.
Collapse
Affiliation(s)
- Jieyu Gao
- College of Resources and Environment, Yangtze University, Wuhan, 430100, China
| | - Yi Zhu
- College of Resources and Environment, Yangtze University, Wuhan, 430100, China.
| | - Lingfeng Zeng
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China
| | - Xin Liu
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China.
| | - Yuan Yang
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China
| | - Yaoyu Zhou
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China
| |
Collapse
|
2
|
Ahmad A, Khan M, Osman SM, Haassan AM, Javed MH, Ahmad A, Rauf A, Luque R. Benign-by-design plant extract-mediated preparation of copper oxide nanoparticles for environmentally related applications. ENVIRONMENTAL RESEARCH 2024; 247:118048. [PMID: 38160981 DOI: 10.1016/j.envres.2023.118048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/21/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
A facile, cost-competitive, scalable and novel synthetic approach is used to prepare copper oxide (CuO) nanoparticles (NPs) using Betel leaf (Piper betle) extracts as reducing, capping, and stabilizing agents. CuO-NPs were characterized using various analytical techniques, including Fourier-transform infrared (FTIR) spectroscopy, ultraviolet-visible (UV-Vis) spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), as well as photoluminescence (PL) measurements. The activity of CuO-NPs was investigated towards Congo red dye degradation, supercapacitor energy storage and antibacterial activity. A maximum of 89% photodegradation of Congo red dye (CR) was obtained. The nanoparticle modified electrode also exhibited a specific capacitance (Csp) of 179 Fg-1. Furthermore, the antibacterial potential of CuO NPs was evaluated against Bacillus subtilis and Pseudomonas aeruginosa, both strains displaying high antibacterial performance.
Collapse
Affiliation(s)
- Awais Ahmad
- Departamento de Quimica Organica, Universidad de Cordoba, Edificio Marie Curie (C-3), Ctra Nnal IV-A, Km 396, E14104, Cordoba, Spain.
| | - Mariam Khan
- School of Applied Sciences and Humanity (NUSASH), National University of Technology, Islamabad, 44000, Pakistan
| | - Sameh M Osman
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ahmad M Haassan
- Faculty of Engineering and Technology, Future University in Egypt, New Cairo, 11835, Egypt
| | - Muhammad Hassan Javed
- Sustainable Development Study Centre, Government College University, Lahore, 54000, Pakistan
| | - Anees Ahmad
- Sustainable Development Study Centre, Government College University, Lahore, 54000, Pakistan
| | - Abdul Rauf
- Sustainable Development Study Centre, Government College University, Lahore, 54000, Pakistan
| | - Rafael Luque
- Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., 117198, Moscow, Russian Federation; Universidad ECOTEC, Km 13.5 Samborondón, Samborondón EC092302, Ecuador
| |
Collapse
|
3
|
Nzilu DM, Madivoli ES, Makhanu DS, Wanakai SI, Kiprono GK, Kareru PG. Green synthesis of copper oxide nanoparticles and its efficiency in degradation of rifampicin antibiotic. Sci Rep 2023; 13:14030. [PMID: 37640783 PMCID: PMC10462644 DOI: 10.1038/s41598-023-41119-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023] Open
Abstract
In recent ages, green nanotechnology has gained attraction in the synthesis of metallic nanoparticles due to their cost-effectiveness, simple preparation steps, and environmentally-friendly. In the present study, copper oxide nanoparticles (CuO NPs) were prepared using Parthenium hysterophorus whole plant aqueous extract as a reducing, stabilizing, and capping agent. The CuO NPs were characterized via UV-Vis Spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR), powder X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), and Dynamic Light Scattering (DLS). The UV-Vis spectra of CuO NPs showed a surface plasmonic resonance band to occur at 340 nm. FTIR analysis revealed the presence of secondary metabolites on the surface of CuO NPs, with a characteristic Cu-O stretching band being identified at 522 cm-1. Scanning electron micrographs and transmission electron micrographs showed that CuO NPs were nearly spherical, with an average particle of 59.99 nm obtained from the SEM micrograph. The monoclinic crystalline structure of CuO NPs was confirmed using XRD, and crystallite size calculated using the Scherrer-Debye equation was found to be 31.58 nm. DLS showed the presence of nanoparticle agglomeration, which revealed uniformity of the CuO NPs. Furthermore, the degradation ability of biosynthesized nanoparticles was investigated against rifampicin antibiotic. The results showed that the optimum degradation efficiency of rifampicin at 98.43% was obtained at 65℃ temperature, 50 mg dosage of CuO NPs, 10 mg/L concentration of rifampicin solution, and rifampicin solution at pH 2 in 8 min. From this study, it can be concluded that CuO NPs synthesized from Parthenium hysterophorus aqueous extract are promising in the remediation of environmental pollution from antibiotics. In this light, the study reports that Parthenium hysterophorus-mediated green synthesis of CuO NPs can effectively address environmental pollution in cost-effective, eco-friendly, and sustainable ways.
Collapse
Affiliation(s)
- Dennis Mwanza Nzilu
- Chemistry Department, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000, 00200, Nairobi, Kenya.
| | - Edwin Shigwenya Madivoli
- Chemistry Department, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000, 00200, Nairobi, Kenya
| | - David Sujee Makhanu
- Department of Biological and Physical Sciences, Karatina University, P.O. Box 1957-10101, Karatina, Kenya
| | - Sammy Indire Wanakai
- Chemistry Department, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000, 00200, Nairobi, Kenya
| | - Gideon Kirui Kiprono
- Chemistry Department, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000, 00200, Nairobi, Kenya
| | - Patrick Gachoki Kareru
- Chemistry Department, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000, 00200, Nairobi, Kenya
| |
Collapse
|
4
|
Çiçek S. Influences of l-ascorbic acid on cytotoxic, biochemical, and genotoxic damages caused by copper II oxide nanoparticles in the rainbow trout gonad cells-2. Comp Biochem Physiol C Toxicol Pharmacol 2023; 266:109559. [PMID: 36738901 DOI: 10.1016/j.cbpc.2023.109559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/09/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023]
Abstract
In parallel with the raising use of copper oxide nanoparticles (CuO NPs) in various industrial and commercial practices, scientific reports on their release to the environment and toxicity are increasing. The toxicity of CuO NPs is mostly based on their oxidative stress. Therefore, it is necessary to investigate the efficacy of well-known therapeutic agents as antioxidants against CuO NPs damage. This study aimed to investigate the mechanism of this damage and to display whether l-ascorbic acid could preserve against the cell toxicities induced by CuO NPs in the rainbow trout gonad cells-2 (RTG-2). While CuO NPs treatment significantly diminished cell viability, the l-ascorbic acid supplement reversed this. l-ascorbic acid treatment reversed the changes in expressions of sod1, sod2, gpx1a, and gpx4b genes while playing a supportive role in the changes in the expression of the cat gene induced by CuO NPs treatment. Moreover, CuO NPs treatment caused an upregulation in the expressions of growth-related genes (gh1, igf1, and igf2) and l-ascorbic acid treatment further increased these effects. CuO NPs treatment significantly up-regulated the expression of the gapdh gene (glycolytic enzyme gene) compared to the control group, and l-ascorbic acid treatment significantly down-regulated the expression of the gapdh gene compared to CuO NPs treatment. The genotoxicity test demonstrated that l-ascorbic acid treatment increased the genotoxic effect caused by CuO NPs by acting as a co-mutagen. Based on the findings, l-ascorbic acid has the potential to be sometimes inhibitory and sometimes supportive of cellular mechanisms caused by CuO NPs.
Collapse
Affiliation(s)
- Semra Çiçek
- Animal Biotechnology Department, Faculty of Agriculture, Atatürk University, Erzurum 25400, Turkey.
| |
Collapse
|
5
|
Wang Y, Deng C, Cota-Ruiz K, Peralta-Videa JR, Sun Y, Rawat S, Tan W, Reyes A, Hernandez-Viezcas JA, Niu G, Li C, Gardea-Torresdey JL. Improvement of nutrient elements and allicin content in green onion (Allium fistulosum) plants exposed to CuO nanoparticles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 725:138387. [PMID: 32298898 DOI: 10.1016/j.scitotenv.2020.138387] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 05/04/2023]
Abstract
With the exponential growth of nanomaterial production in the last years, nano copper (Cu)-based compounds are gaining more consideration in agriculture since they can work as pesticides or fertilizers. Chinese scallions (Allium fistulosum), which are characterized by their high content of the antioxidant allicin, were the chosen plants for this study. Spectroscopic and microscopic techniques were used to evaluate the nutrient element, allicin content, and enzyme antioxidant properties of scallion plants. Plants were harvested after growing for 80 days at greenhouse conditions in soil amended with CuO particles [nano (nCuO) and bulk (bCuO)] and CuSO4 at 75-600 mg/kg]. Two-photon microscopy images demonstrated the particulate Cu uptake in nCuO and bCuO treated roots. In plants exposed to 150 mg/kg of the Cu-based compounds, root Cu content was higher in plants treated with nCuO compared with bCuO, CuSO4, and control (p ≤ 0.05). At 150 mg/kg, nCuO increased root Ca (86%), root Fe (71%), bulb Ca (74%), and bulb Mg (108%) content, compared with control (p ≤ 0.05). At the same concentration, bCuO reduced root Ca (67%) and root Mg (33%), compared with control (p ≤ 0.05). At all concentrations, nCuO and CuSO4 increased leaf allicin (56-187% and 42-90%, respectively), compared with control (p ≤ 0.05). The antioxidant enzymes were differentially affected by the Cu-based treatments. Overall, the data showed that nCuO enhances nutrient and allicin contents in scallion, which suggests they might be used as a nanofertilizer for onion production.
Collapse
Affiliation(s)
- Yi Wang
- Chemistry and Biochemistry Department, The University of Texas at El Paso, 500 West University Avenue, El Paso TX-79968, USA; University of California Centre for Environmental Implications of Nanotechnology, The University of Texas at El Paso, 500 West University Avenue, El Paso TX-79968, USA
| | - Chaoyi Deng
- Environmental Science and Engineering PhD Program, The University of Texas at El Paso, 500 West University Avenue, El Paso TX-79968, USA; University of California Centre for Environmental Implications of Nanotechnology, The University of Texas at El Paso, 500 West University Avenue, El Paso TX-79968, USA
| | - Keni Cota-Ruiz
- Chemistry and Biochemistry Department, The University of Texas at El Paso, 500 West University Avenue, El Paso TX-79968, USA; University of California Centre for Environmental Implications of Nanotechnology, The University of Texas at El Paso, 500 West University Avenue, El Paso TX-79968, USA
| | - Jose R Peralta-Videa
- Chemistry and Biochemistry Department, The University of Texas at El Paso, 500 West University Avenue, El Paso TX-79968, USA; Environmental Science and Engineering PhD Program, The University of Texas at El Paso, 500 West University Avenue, El Paso TX-79968, USA; University of California Centre for Environmental Implications of Nanotechnology, The University of Texas at El Paso, 500 West University Avenue, El Paso TX-79968, USA
| | - Youping Sun
- Texas A&M Agrilife Research and Extension Centre at Dallas, 17360 Coit Road, TX 75252, USA
| | - Swati Rawat
- Environmental Science and Engineering PhD Program, The University of Texas at El Paso, 500 West University Avenue, El Paso TX-79968, USA; University of California Centre for Environmental Implications of Nanotechnology, The University of Texas at El Paso, 500 West University Avenue, El Paso TX-79968, USA
| | - Wenjuan Tan
- Environmental Science and Engineering PhD Program, The University of Texas at El Paso, 500 West University Avenue, El Paso TX-79968, USA; University of California Centre for Environmental Implications of Nanotechnology, The University of Texas at El Paso, 500 West University Avenue, El Paso TX-79968, USA
| | - Andres Reyes
- Department of Physics, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, USA
| | - Jose A Hernandez-Viezcas
- Chemistry and Biochemistry Department, The University of Texas at El Paso, 500 West University Avenue, El Paso TX-79968, USA; University of California Centre for Environmental Implications of Nanotechnology, The University of Texas at El Paso, 500 West University Avenue, El Paso TX-79968, USA
| | - Genhua Niu
- Texas A&M Agrilife Research and Extension Centre at Dallas, 17360 Coit Road, TX 75252, USA
| | - Chunqiang Li
- Department of Physics, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, USA
| | - Jorge L Gardea-Torresdey
- Chemistry and Biochemistry Department, The University of Texas at El Paso, 500 West University Avenue, El Paso TX-79968, USA; Environmental Science and Engineering PhD Program, The University of Texas at El Paso, 500 West University Avenue, El Paso TX-79968, USA; University of California Centre for Environmental Implications of Nanotechnology, The University of Texas at El Paso, 500 West University Avenue, El Paso TX-79968, USA.
| |
Collapse
|