1
|
Abboud HA, Zelkó R, Kazsoki A. A systematic review of liposomal nanofibrous scaffolds as a drug delivery system: a decade of progress in controlled release and therapeutic efficacy. Drug Deliv 2025; 32:2445259. [PMID: 39727310 DOI: 10.1080/10717544.2024.2445259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/14/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024] Open
Abstract
Drug-loaded liposomes incorporated in nanofibrous scaffolds is a promising approach as a multi-unit nanoscale system, which combines the merits of both liposomes and nanofibers (NFs), eliminating the drawback of liposomes' poor stability on the one hand and offering a higher potential of controlled drug release and enhanced therapeutic efficacy on the other hand. The current systematic review, which underwent a rigorous search process in PubMed, Web of Science, Scopus, Embase, and Central (Cochrane) employing (Liposome AND nanofib* AND electrosp*) as search keywords, aims to present the recent studies on using this synergic system for different therapeutic applications. The search was restricted to original, peer-reviewed studies published in English between 2014 and 2024. Of the 309 identified records, only 29 studies met the inclusion criteria. According to the literature, three different methods were identified to fabricate those nanofibrous liposomal scaffolds. The results consistently demonstrated the superiority of this dual system for numerous therapeutic applications in improving the therapy efficacy, enhancing both liposomes and drug stability, and releasing the encapsulated drug in a proper sustained release without significant initial burst release. Merging drug-loaded liposomes with NFs as liposomal nanofibrous scaffolds are a safe and efficient approach to deliver drug molecules and other substances for various pharmaceutical applications, particularly for wound dressing, tissue engineering, cancer therapy, and drug administration via the buccal and sublingual routes. However, further research is warranted to explore the potential of this system in other therapeutic applications.
Collapse
Affiliation(s)
- Houssam Aaref Abboud
- University Pharmacy Department of Pharmacy Administration, Semmelweis University, Budapest, Hungary
| | - Romána Zelkó
- University Pharmacy Department of Pharmacy Administration, Semmelweis University, Budapest, Hungary
| | - Adrienn Kazsoki
- University Pharmacy Department of Pharmacy Administration, Semmelweis University, Budapest, Hungary
| |
Collapse
|
2
|
da Trindade LG, Zanchet L, Bonsanto FP, Braga ARC. Electrospun fibers of zein and pea protein to create high-quality fibrous structures in meat analogs. Front Bioeng Biotechnol 2024; 12:1483966. [PMID: 39530060 PMCID: PMC11551025 DOI: 10.3389/fbioe.2024.1483966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction The importance of developing plant-based meat similar to animal meat lies in the fact that sensory similarity is a crucial factor in encouraging consumers to adopt this alternative. Methodology The present study reports the morphology, hydrophilicity, and thermal analysis of different fibers obtained by the electrospinning method. In the first step of this work, zein and zein/poly(ethylene oxide) (PEO) in 80% aqueous ethanol solution with varying concentrations of these polymers were investigated. Results and Discussion It was observed that the diameters of the electrospun fibers are related to the concentration and viscosity of the solutions. Moreover, the addition of small percentages of PEO makes the fibers more hydrophilic and leads to an increase in the polymeric solution viscosity. Because of its low toxicity, PEO is used in various edible products. In the second step of this work, an ideal zein/PEO combination was found to allow the pea protein (PP) to be electrospun. Adding PP to the zein/PEO blend (20:1) leads to a more hydrophilic fiber and improves thermal stability. The results suggest that the zein/PEO and zein/PEO/PP blends can offer an innovative solution to enhance the texture and appearance of plant-based meats. These simulated electrospun fibers can mimic the fibers in animal meat and are a potential alternative to provide a sensory experience as close to animal meat as possible.
Collapse
Affiliation(s)
- Letícia G. da Trindade
- Department of Chemical Engineering, Campus Diadema, Universidade Federal de São Paulo (UNIFESP), Diadema, Brazil
| | - Letícia Zanchet
- LRC - Institute of Chemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Fabiana Perrechil Bonsanto
- Department of Chemical Engineering, Campus Diadema, Universidade Federal de São Paulo (UNIFESP), Diadema, Brazil
| | - Anna Rafaela Cavalcante Braga
- Department of Chemical Engineering, Campus Diadema, Universidade Federal de São Paulo (UNIFESP), Diadema, Brazil
- Department of of Biosciences, Campus Baixada Santista, Universidade Federal de São Paulo (UNIFESP), Santos, Brazil
| |
Collapse
|
3
|
Wei W, Lu P. Designing Dual-Responsive Drug Delivery Systems: The Role of Phase Change Materials and Metal-Organic Frameworks. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3070. [PMID: 38998154 PMCID: PMC11242594 DOI: 10.3390/ma17133070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/04/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024]
Abstract
Stimuli-responsive drug delivery systems (DDSs) offer precise control over drug release, enhancing therapeutic efficacy and minimizing side effects. This review focuses on DDSs that leverage the unique capabilities of phase change materials (PCMs) and metal-organic frameworks (MOFs) to achieve controlled drug release in response to pH and temperature changes. Specifically, this review highlights the use of a combination of lauric and stearic acids as PCMs that melt slightly above body temperature, providing a thermally responsive mechanism for drug release. Additionally, this review delves into the properties of zeolitic imidazolate framework-8 (ZIF-8), a stable MOF under physiological conditions that decomposes in acidic environments, thus offering pH-sensitive drug release capabilities. The integration of these materials enables the fabrication of complex structures that encapsulate drugs within ZIF-8 or are enveloped by PCM layers, ensuring that drug release is tightly controlled by either temperature or pH levels, or both. This review provides comprehensive insights into the core design principles, material selections, and potential biomedical applications of dual-stimuli responsive DDSs, highlighting the future directions and challenges in this innovative field.
Collapse
Affiliation(s)
- Wanying Wei
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA
| | - Ping Lu
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA
| |
Collapse
|
4
|
Balanč B, Salević-Jelić A, Đorđević V, Bugarski B, Nedović V, Petrović P, Knežević-Jugović Z. The Application of Protein Concentrate Obtained from Green Leaf Biomass in Structuring Nanofibers for Delivery of Vitamin B12. Foods 2024; 13:1576. [PMID: 38790876 PMCID: PMC11121456 DOI: 10.3390/foods13101576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Nanofibers made of natural proteins have caught the increasing attention of food scientists because of their edibility, renewability, and possibility for various applications. The objective of this study was to prepare nanofibers based on pumpkin leaf protein concentrate (LPC) as a by-product from some crops and gelatin as carriers for vitamin B12 using the electrospinning technique. The starting mixtures were analyzed in terms of viscosity, density, surface tension, and electrical conductivity. Scanning electron micrographs of the obtained nanofibers showed a slight increase in fiber average diameter with the addition of LPC and vitamin B12 (~81 nm to 109 nm). Fourier transform infrared spectroscopy verified the physical blending of gelatin and LPC without phase separation. Thermal analysis showed the fibers had good thermal stability up to 220 °C, highlighting their potential for food applications, regardless of the thermal processing. Additionally, the newly developed fibers have good storage stability, as detected by low water activity values ranging from 0.336 to 0.376. Finally, the release study illustrates the promising sustained release of vitamin B12 from gelatin-LPC nanofibers, mainly governed by the Fickian diffusion mechanism. The obtained results implied the potential of these nanofibers in the development of functional food products with improved nutritional profiles.
Collapse
Affiliation(s)
- Bojana Balanč
- Innovation Centre of Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia; (B.B.); (P.P.)
| | - Ana Salević-Jelić
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Beograd, Serbia; (A.S.-J.); (V.N.)
| | - Verica Đorđević
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia; (B.B.); (Z.K.-J.)
| | - Branko Bugarski
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia; (B.B.); (Z.K.-J.)
| | - Viktor Nedović
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Beograd, Serbia; (A.S.-J.); (V.N.)
| | - Predrag Petrović
- Innovation Centre of Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia; (B.B.); (P.P.)
| | - Zorica Knežević-Jugović
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia; (B.B.); (Z.K.-J.)
| |
Collapse
|
5
|
Żuchowska A, Baranowska P, Flont M, Brzózka Z, Jastrzębska E. Review: 3D cell models for organ-on-a-chip applications. Anal Chim Acta 2024; 1301:342413. [PMID: 38553129 DOI: 10.1016/j.aca.2024.342413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 04/02/2024]
Abstract
Two-dimensional (2D) cultures do not fully reflect the human organs' physiology and the real effectiveness of the used therapy. Therefore, three-dimensional (3D) models are increasingly used in bioanalytical science. Organ-on-a-chip systems are used to obtain cellular in vitro models, better reflecting the human body's in vivo characteristics and allowing us to obtain more reliable results than standard preclinical models. Such 3D models can be used to understand the behavior of tissues/organs in response to selected biophysical and biochemical factors, pathological conditions (the mechanisms of their formation), drug screening, or inter-organ interactions. This review characterizes 3D models obtained in microfluidic systems. These include spheroids/aggregates, hydrogel cultures, multilayers, organoids, or cultures on biomaterials. Next, the methods of formation of different 3D cultures in Organ-on-a-chip systems are presented, and examples of such Organ-on-a-chip systems are discussed. Finally, current applications of 3D cell-on-a-chip systems and future perspectives are covered.
Collapse
Affiliation(s)
- Agnieszka Żuchowska
- Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland
| | - Patrycja Baranowska
- Center for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822, Warsaw, Poland
| | - Magdalena Flont
- Center for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822, Warsaw, Poland
| | - Zbigniew Brzózka
- Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland
| | - Elżbieta Jastrzębska
- Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland.
| |
Collapse
|
6
|
Gavande V, Nagappan S, Seo B, Lee WK. A systematic review on green and natural polymeric nanofibers for biomedical applications. Int J Biol Macromol 2024; 262:130135. [PMID: 38354938 DOI: 10.1016/j.ijbiomac.2024.130135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/06/2024] [Accepted: 02/11/2024] [Indexed: 02/16/2024]
Abstract
Electrospinning is the simplest technique to produce ultrathin nanofibers, which enables the use of nanotechnology in various applications. Nanofibrous materials produced through electrospinning have garnered significant attention in biomedical applications due to their unique properties and versatile potential. In recent years, there has been a growing emphasis on incorporating sustainability principles into material design and production. However, electrospun nanofibers, owing to their reliance on solvents associated with significant drawbacks like toxicity, flammability, and disposal challenges, frequently fall short of meeting environmentally friendly standards. Due to the limited solvent choices and heightened concerns for safety and hygiene in modern living, it becomes imperative to carefully assess the implications of employing electrospun nanofibers in diverse applications and consumer products. This systematic review aims to comprehensively assess the current state of research and development in the field of "green and natural" electrospun polymer nanofibers as well as more fascinating and eco-friendly commercial techniques, solvent preferences, and other green routes that respect social and legal restrictions tailored for biomedical applications. We explore the utilization of biocompatible and biodegradable polymers sourced from renewable feedstocks, eco-friendly processing techniques, and the evaluation of environmental impacts. Our review highlights the potential of green and natural electrospun nanofibers to address sustainability concerns while meeting the demanding requirements of various biomedical applications, including tissue engineering, drug delivery, wound healing, and diagnostic platforms. We analyze the advantages, challenges, and future prospects of these materials, offering insights into the evolving landscape of environmentally responsible nanofiber technology in the biomedical field.
Collapse
Affiliation(s)
- Vishal Gavande
- Department of Polymer Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Saravanan Nagappan
- Industry-University Cooperation Foundation, Pukyong National University, Busan 48513, Republic of Korea
| | - Bongkuk Seo
- Advanced Industrial Chemistry Research Center, Advanced Convergent Chemistry Division, Korea Research Institute of Chemical Technology (KRICT), 45 Jonggaro, Ulsan 44412, Republic of Korea
| | - Won-Ki Lee
- Department of Polymer Engineering, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
7
|
Türkoğlu GC, Khomarloo N, Mohsenzadeh E, Gospodinova DN, Neznakomova M, Salaün F. PVA-Based Electrospun Materials-A Promising Route to Designing Nanofiber Mats with Desired Morphological Shape-A Review. Int J Mol Sci 2024; 25:1668. [PMID: 38338946 PMCID: PMC10855838 DOI: 10.3390/ijms25031668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Poly(vinyl alcohol) is one of the most attractive polymers with a wide range of uses because of its water solubility, biocompatibility, low toxicity, good mechanical properties, and relatively low cost. This review article focuses on recent advances in poly(vinyl alcohol) electrospinning and summarizes parameters of the process (voltage, distance, flow rate, and collector), solution (molecular weight and concentration), and ambient (humidity and temperature) in order to comprehend the influence on the structural, mechanical, and chemical properties of poly(vinyl alcohol)-based electrospun matrices. The importance of poly(vinyl alcohol) electrospinning in biomedical applications is emphasized by exploring a literature review on biomedical applications including wound dressings, drug delivery, tissue engineering, and biosensors. The study also highlights a new promising area of particles formation through the electrospraying of poly(vinyl alcohol). The limitations and advantages of working with different poly(vinyl alcohol) matrices are reviewed, and some recommendations for the future are made to advance this field of study.
Collapse
Affiliation(s)
- Gizem Ceylan Türkoğlu
- Department of Textile Engineering, Dokuz Eylul University, İzmir 35397, Turkey;
- Univ. Lille, ENSAIT, ULR 2461-GEMTEX-Génie et Matériaux Textiles, F-59000 Lille, France; (N.K.); (E.M.)
| | - Niloufar Khomarloo
- Univ. Lille, ENSAIT, ULR 2461-GEMTEX-Génie et Matériaux Textiles, F-59000 Lille, France; (N.K.); (E.M.)
- Univ. Lille, ENSAIT, ULR 2461-GEMTEX-Génie et Matériaux Textiles, Junia, F-59000 Lille, France
| | - Elham Mohsenzadeh
- Univ. Lille, ENSAIT, ULR 2461-GEMTEX-Génie et Matériaux Textiles, F-59000 Lille, France; (N.K.); (E.M.)
- Univ. Lille, ENSAIT, ULR 2461-GEMTEX-Génie et Matériaux Textiles, Junia, F-59000 Lille, France
| | - Dilyana Nikolaeva Gospodinova
- Faculty of Electrical Engineering, Department of Electrical Apparatus, Technical University of Sofia, 1156 Sofia, Bulgaria;
| | - Margarita Neznakomova
- Faculty of Industrial Technology, Department of Material Science and Technology of Materials, Technical University of Sofia, 1000 Sofia, Bulgaria;
| | - Fabien Salaün
- Univ. Lille, ENSAIT, ULR 2461-GEMTEX-Génie et Matériaux Textiles, F-59000 Lille, France; (N.K.); (E.M.)
| |
Collapse
|
8
|
Voorhis C, González-Benito J, Kramar A. "Nano in Nano"-Incorporation of ZnO Nanoparticles into Cellulose Acetate-Poly(Ethylene Oxide) Composite Nanofibers Using Solution Blow Spinning. Polymers (Basel) 2024; 16:341. [PMID: 38337230 DOI: 10.3390/polym16030341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
In this work, the preparation and characterization of composites from cellulose acetate (CA)-poly(ethylene oxide) (PEO) nanofibers (NFs) with incorporated zinc oxide nanoparticles (ZnO-NPs) using solution blow spinning (SBS) is reported. CA-PEO nanofibers were produced by spinning solution that contained a higher CA-to-PEO ratio and lower (equal) CA-to-PEO ratio. Nanoparticles were added to comprise 2.5% and 5% of the solution, calculated on the weight of the polymers. To have better control of the SBS processing conditions, characterization of the spinning suspensions is carried out, which reveals a decrease in viscosity (two- to eightfold) upon the addition of NPs. It is observed that this variation of viscosity does not significantly affect the mean diameters of nanofibers, but does affect the mode of the nanofibers' size distribution, whereby lower viscosity provides thinner fibers. FESEM-EDS confirms ZnO NP encapsulation into nanofibers, specifically into the CA component based on UV-vis studies, since the release of ZnO is not detected for up to 5 days in deionized water, despite the significant swelling of the material and accompanied dissolution of water-soluble PEO. Upon the dissolution of CA nanofibers into acetone, immediate release of ZnO is detected, both visually and by spectrometer. ATR-FTIR studies reveal interaction of ZnO with the CA component of composite nanofibers. As ZnO nanoparticles are known for their bioactivity, it can be concluded that these CA-PEO-ZnO composites are good candidates to be used in filtration membranes, with no loss of incorporated ZnO NPs or their release into an environment.
Collapse
Affiliation(s)
- Caroline Voorhis
- School of Science, Marist College, 3399 North Road, Poughkeepsie, NY 12601, USA
- Department of Materials Science and Engineering and Chemical Engineering, Institute of Chemistry and Materials Álvaro Alonso Barba, IQMAAB, Universidad Carlos III de Madrid, Avda. Universidad 30, 28911 Leganés, Spain
| | - Javier González-Benito
- Department of Materials Science and Engineering and Chemical Engineering, Institute of Chemistry and Materials Álvaro Alonso Barba, IQMAAB, Universidad Carlos III de Madrid, Avda. Universidad 30, 28911 Leganés, Spain
| | - Ana Kramar
- Department of Materials Science and Engineering and Chemical Engineering, Institute of Chemistry and Materials Álvaro Alonso Barba, IQMAAB, Universidad Carlos III de Madrid, Avda. Universidad 30, 28911 Leganés, Spain
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), Calle Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Spain
| |
Collapse
|
9
|
Amarjargal A, Cegielska O, Kolbuk D, Kalaska B, Sajkiewicz P. On-Demand Sequential Release of Dual Drug from pH-Responsive Electrospun Janus Nanofiber Membranes toward Wound Healing and Infection Control. ACS APPLIED MATERIALS & INTERFACES 2024; 16:153-165. [PMID: 38150182 DOI: 10.1021/acsami.3c13676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Drugs against bacteria and abnormal cells, such as antibiotics and anticancer drugs, may save human lives. However, drug resistance is becoming more common in the clinical world. Nowadays, a synergistic action of multiple bioactive compounds and their combination with smart nanoplatforms has been considered an alternative therapeutic strategy to fight drug resistance in multidrug-resistant cancers and microorganisms. The present study reports a one-step fabrication of innovative pH-responsive Janus nanofibers loaded with two active compounds, each in separate polymer compartments for synergistic combination therapy. By dissolving one of the compartments from the nanofibers, we could clearly demonstrate a highly yielded anisotropic Janus structure with two faces by scanning electron microscopy (SEM) analysis. To better understand the distinctive attributes of Janus nanofibers, several analytical methods, such as X-ray diffraction (XRD), FTIR spectroscopy, and contact angle goniometry, were utilized to examine and compare them to those of monolithic nanofibers. Furthermore, a drug release test was conducted in pH 7.4 and 6.0 media since the properties of Janus nanofibers correlate significantly with different environmental pH levels. This resulted in the on-demand sequential codelivery of octenidine (OCT) and curcumin (CUR) to the corresponding pH stimulus. Accordingly, the antibacterial properties of Janus fibers against Escherichia coli and Staphylococcus aureus, tested in a suspension test, were pH-dependent, i.e., greater in pH 6 due to the synergistic action of two active compounds, and Eudragit E100 (EE), and highly satisfactory. The biocompatibility of the Janus fibers was confirmed in selected tests.
Collapse
Affiliation(s)
- Altangerel Amarjargal
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5b, Warsaw 02-106, Poland
- Power Engineering School, Mongolian University of Science and Technology, 8th khoroo, Baga toiruu, Sukhbaatar district, Ulaanbaatar 14191, Mongolia
| | - Olga Cegielska
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5b, Warsaw 02-106, Poland
| | - Dorota Kolbuk
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5b, Warsaw 02-106, Poland
| | - Bartlomiej Kalaska
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2c, Bialystok 15-089, Poland
| | - Pawel Sajkiewicz
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5b, Warsaw 02-106, Poland
| |
Collapse
|
10
|
Peng Y, Zhao D, Li M, Wen X, Ni Y. The Interactions of Soy Protein and Wheat Gluten for the Development of Meat-like Fibrous Structure. Molecules 2023; 28:7431. [PMID: 37959850 PMCID: PMC10647354 DOI: 10.3390/molecules28217431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
Consumers who are environmentally and health conscious are increasingly looking for plant-based alternatives to replace animal-based products in their daily diets. Among these alternatives, there is a growing demand for meat analogues that closely resemble the taste and texture of meat. As a result, significant efforts have been dedicated to developing meat analogues with a desirable meat-like structure. Currently, soy protein and wheat gluten are the main ingredients used for producing these meat analogues due to their availability and unique functionalities. This study observed that high moisture extrusion at moisture levels of 50-80% has become a common approach for creating fibrous structures, with soy protein and wheat gluten being considered incompatible proteins. After the structuring process, they form two-phase filled gels, with wheat gluten acting as the continuous phase and soy protein serving as a filler material. Moreover, the formation of soy protein and wheat gluten networks relies on a combination of covalent and non-covalent interaction bonds, including hydrogen bonds that stabilize the protein networks, hydrophobic interactions governing protein chain associations during thermo-mechanical processes, and disulfide bonds that potentially contribute to fibrous structure formation. This review provides case studies and examples that demonstrate how specific processing conditions can improve the overall structure, aiming to serve as a valuable reference for further research and the advancement of fibrous structures.
Collapse
Affiliation(s)
- Yu Peng
- College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Beijing 100083, China; (Y.P.); (M.L.); (Y.N.)
| | - Dandan Zhao
- College of Food Science & Biology, Hebei University of Science and Technology, No. 26 Yuxiang Street, Shijiazhuang 050000, China;
| | - Mo Li
- College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Beijing 100083, China; (Y.P.); (M.L.); (Y.N.)
| | - Xin Wen
- College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Beijing 100083, China; (Y.P.); (M.L.); (Y.N.)
| | - Yuanying Ni
- College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Beijing 100083, China; (Y.P.); (M.L.); (Y.N.)
| |
Collapse
|
11
|
Jung S, Kim J, Bang J, Jung M, Park S, Yun H, Kwak HW. pH-sensitive cellulose/chitin nanofibrillar hydrogel for dye pollutant removal. Carbohydr Polym 2023; 317:121090. [PMID: 37364959 DOI: 10.1016/j.carbpol.2023.121090] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023]
Abstract
In this study, a pH-sensitive smart hydrogel was successfully prepared by combining a polyelectrolyte complex using biopolymeric nanofibrils. By adding a green citric acid cross-linking agent to the formed chitin and cellulose-derived nanofibrillar polyelectrolytic complex, a hydrogel with excellent structural stability could be prepared even in a water environment, and all processes were conducted in an aqueous system. The prepared biopolymeric nanofibrillar hydrogel not only enables rapid conversion of swelling degree and surface charge according to pH but can also effectively remove ionic contaminants. The ionic dye removal capacity was 372.0 mg/g for anionic AO and 140.5 mg/g for cationic MB. The surface charge conversion ability according to pH could be easily applied to the desorption of the removed contaminants, and as a result, it showed an excellent contaminant removal efficiency of 95.1 % or more even in the repeated reuse process 5 times. Overall, the eco-friendly biopolymeric nanofibrillar pH-sensitive hydrogel shows potential for complex wastewater treatment and long-term use.
Collapse
Affiliation(s)
- Seungoh Jung
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jungkyu Kim
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Junsik Bang
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Minjung Jung
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Sangwoo Park
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Heecheol Yun
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Hyo Won Kwak
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
12
|
Kumar M, Hilles AR, Ge Y, Bhatia A, Mahmood S. A review on polysaccharides mediated electrospun nanofibers for diabetic wound healing: Their current status with regulatory perspective. Int J Biol Macromol 2023; 234:123696. [PMID: 36801273 DOI: 10.1016/j.ijbiomac.2023.123696] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/08/2023] [Accepted: 02/11/2023] [Indexed: 02/18/2023]
Abstract
The current treatment strategies for diabetic wound care provide only moderate degree of effectiveness; hence new and improved therapeutic techniques are in great demand. Diabetic wound healing is a complex physiological process that involves synchronisation of various biological events such as haemostasis, inflammation, and remodelling. Nanomaterials like polymeric nanofibers (NFs) offer a promising approach for the treatment of diabetic wounds and have emerged as viable options for wound management. Electrospinning is a powerful and cost-effective method to fabricate versatile NFs with a wide array of raw materials for different biological applications. The electrospun NFs have unique advantages in the development of wound dressings due to their high specific surface area and porosity. The electrospun NFs possess a unique porous structure and biological function similar to the natural extracellular matrix (ECM), and are known to accelerate wound healing. Compared to traditional dressings, the electrospun NFs are more effective in healing wounds owing to their distinct characteristics, good surface functionalisation, better biocompatibility and biodegradability. This review provides a comprehensive overview of the electrospinning procedure and its operating principle, with special emphasis on the role of electrospun NFs in the treatment of diabetic wounds. This review discusses the present techniques applied in the fabrication of NF dressings, and highlights the future prospects of electrospun NFs in medicinal applications.
Collapse
Affiliation(s)
- Mohit Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India
| | - Ayah R Hilles
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, United Kingdom
| | - Yi Ge
- INHART, International Islamic University Malaysia, Jalan Gombak, 53100 Kuala Lumpur, Selangor, Malaysia
| | - Amit Bhatia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India
| | - Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
13
|
Doğan D, Karaduman FR, Horzum N, Metin AÜ. Boron nitride decorated poly(vinyl alcohol)/poly(acrylic acid) composite nanofibers: A promising material for biomedical applications. J Mech Behav Biomed Mater 2023; 141:105773. [PMID: 36934687 DOI: 10.1016/j.jmbbm.2023.105773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/09/2023]
Abstract
In this study, polyvinyl alcohol (PVA) and polyacrylic acid (PAA) nanofibers loaded with boron nitride nanoparticles (mBN) were fabricated by using electrospinning and crosslinked by heat treatment. The physical, chemical, and mechanical properties, hydrophilic behavior, and degradability of composite nanofibers were evaluated. The mechanical properties such as elastic modulus, elongation percentage at the break, and mechanical strength of PVA/PAA nanofibers improved with mBN loading. The thermal conductivity of composite nanofibers reached 0.12 W/m·K at mBN content of 1.0 wt% due to the continuous heat conduction pathways of mBN. In the meantime, while there was no cytotoxicity recorded for both L929 and HUVEC cell lines for all composite nanofibers, the antimicrobial efficiency improved with the incorporation of mBN compared with PVA/PAA and recorded as 68.8% and 75.1% for Escherichia coli and Staphylococcus aureus, respectively. On this basis, the present work proposes a promising biomaterial for biomedical applications such as dual drug delivery, particularly including both hydrophobic and hydrophilic drugs or wound dressing.
Collapse
Affiliation(s)
- Deniz Doğan
- Department of Chemistry, Faculty of Science and Arts, Kırıkkale University, Yahşihan, 71450, Kırıkkale, Turkey
| | - F Rabia Karaduman
- Graduate School of Natural and Applied Sciences, İzmir Katip Çelebi University, İzmir, 35620, Turkey
| | - Nesrin Horzum
- Department of Engineering Sciences, Izmir Katip Çelebi University, Izmir, Turkey
| | - Ayşegül Ülkü Metin
- Department of Chemistry, Faculty of Science and Arts, Kırıkkale University, Yahşihan, 71450, Kırıkkale, Turkey.
| |
Collapse
|
14
|
Yardimci AI, Kayhan M, Tarhan O. Polyacrylonitrile (PAN)/Polyvinyl Alcohol (PVA) Electrospun Nanofibrous Membranes Synthesis, Characterizations and Their Air Permeability Properties. J MACROMOL SCI B 2023. [DOI: 10.1080/00222348.2023.2187133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
| | - Mehmet Kayhan
- Scientific Analysis, Technological Application and Research Center, Usak University, Usak, Turkey
| | - Ozgur Tarhan
- Department of Food Engineering, Usak University, Usak, Turkey
| |
Collapse
|
15
|
Acceleration of Electrospun PLA Degradation by Addition of Gelatin. Int J Mol Sci 2023; 24:ijms24043535. [PMID: 36834947 PMCID: PMC9966984 DOI: 10.3390/ijms24043535] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Biocompatible polyesters are widely used in biomedical applications, including sutures, orthopedic devices, drug delivery systems, and tissue engineering scaffolds. Blending polyesters with proteins is a common method of tuning biomaterial properties. Usually, it improves hydrophilicity, enhances cell adhesion, and accelerates biodegradation. However, inclusion of proteins to a polyester-based material typically reduces its mechanical properties. Here, we describe the physicochemical properties of an electrospun polylactic acid (PLA)-gelatin blend with a 9:1 PLA:gelatin ratio. We found that a small content (10 wt%) of gelatin does not affect the extensibility and strength of wet electrospun PLA mats but significantly accelerates their in vitro and in vivo decomposition. After a month, the thickness of PLA-gelatin mats subcutaneously implanted in C57black mice decreased by 30%, while the thickness of the pure PLA mats remained almost unchanged. Thus, we suggest the inclusion of a small amount of gelatin as a simple tool to tune the biodegradation behavior of PLA mats.
Collapse
|
16
|
Kazemianrad F, Koocheki A, Ghorani B. Encapsulation of caffeine in sandwich structured Alyssum homolocarpum seed gum/PVA/gelatin nanofibers using electrospinning technique. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
17
|
Alvandi H, Hatamian-Zarmi A, Webster TJ. Bioactivity and applications of mushroom and polysaccharide-derived nanotherapeutics. Nanomedicine (Lond) 2023. [DOI: 10.1016/b978-0-12-818627-5.00021-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
|
18
|
Dele-Afolabi TT, Mohamed Ariff AH, Ojo-Kupoluyi OJ, Atoyebi EO. Chitosan Nanocomposites as Wound Healing Materials: Advances in Processing Techniques and Mechanical Properties. PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY 2022. [DOI: 10.47836/pjst.31.1.32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This review discusses the increasing potential of chitosan nanocomposites as viable materials capable of targeting these debilitating factors. This review focuses on various techniques used to process chitosan nanocomposites and their mechanical properties. Chitosan nanocomposites are regarded as highly effective antimicrobials for the treatment of chronic wounds. Chitosan nanocomposites, such as chitosan/polyethylene and oxide/silica/ciprofloxacin, demonstrate efficient antibacterial activity and exhibit no cytotoxicity against Human Foreskin Fibroblast Cell Lines (HFF2). Other studies have also showcased the capacity of chitosan nanocomposites to accelerate and improve tissue regeneration through increment in the number of fibroblast cells and angiogenesis and reduction of the inflammation phase. The layer-by-layer technique has benefits, ensuring its suitability in preparing chitosan nanocomposites for drug delivery and wound dressing applications. While the co-precipitation route requires a cross-linker to achieve stability during processing, the solution-casting route can produce stable chitosan nanocomposites without a cross-linker. By using the solution casting method, fillers such as multi-walled carbon nanotubes (MWCNTs) and halloysite nanotubes (HTs) can be uniformly distributed in the chitosan, leading to improved mechanical properties. The antibacterial effects can be achieved with the introduction of AgNPs or ZnO. With the increasing understanding of the biological mechanisms that control these diseases, there is an influx in the introduction of novel materials into the mainstream wound care market.
Collapse
|
19
|
Filtration-processed biomass nanofiber electrodes for flexible bioelectronics. J Nanobiotechnology 2022; 20:491. [PMCID: PMC9675094 DOI: 10.1186/s12951-022-01684-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/26/2022] [Indexed: 11/21/2022] Open
Abstract
An increasing demand for bioelectronics that interface with living systems has driven the development of materials to resolve mismatches between electronic devices and biological tissues. So far, a variety of different polymers have been used as substrates for bioelectronics. Especially, biopolymers have been investigated as next-generation materials for bioelectronics because they possess interesting characteristics such as high biocompatibility, biodegradability, and sustainability. However, their range of applications has been restricted due to the limited compatibility of classical fabrication methods with such biopolymers. Here, we introduce a fabrication process for thin and large-area films of chitosan nanofibers (CSNFs) integrated with conductive materials. To this end, we pattern carbon nanotubes (CNTs), silver nanowires, and poly (3,4-ethylenedioxythiophene):poly (styrenesulfonate) (PEDOT:PSS) by a facile filtration process that uses polyimide masks fabricated via laser ablation. This method yields feedlines of conductive material on nanofiber paper and demonstrates compatibility with conjugated and high-aspect-ratio materials. Furthermore, we fabricate a CNT neural interface electrode by taking advantage of this fabrication process and demonstrate peripheral nerve stimulation to the rapid extensor nerve of a live locust. The presented method might pave the way for future bioelectronic devices based on biopolymer nanofibers.
Collapse
|
20
|
Li Y, Zhou M, Zheng W, Yang J, Jiang N. Scaffold-based tissue engineering strategies for soft-hard interface regeneration. Regen Biomater 2022; 10:rbac091. [PMID: 36683751 PMCID: PMC9847541 DOI: 10.1093/rb/rbac091] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 11/13/2022] Open
Abstract
Repairing injured tendon or ligament attachments to bones (enthesis) remains costly and challenging. Despite superb surgical management, the disorganized enthesis newly formed after surgery accounts for high recurrence rates after operations. Tissue engineering offers efficient alternatives to promote healing and regeneration of the specialized enthesis tissue. Load-transmitting functions thus can be restored with appropriate biomaterials and engineering strategies. Interestingly, recent studies have focused more on microstructure especially the arrangement of fibers since Rossetti successfully demonstrated the variability of fiber underspecific external force. In this review, we provide an important update on the current strategies for scaffold-based tissue engineering of enthesis when natural structure and properties are equally emphasized. We firstly described compositions, structures and features of natural enthesis with their special mechanical properties highlighted. Stimuli for growth, development and healing of enthesis widely used in popular strategies are systematically summarized. We discuss the fabrication of engineering scaffolds from the aspects of biomaterials, techniques and design strategies and comprehensively evaluate the advantages and disadvantages of each strategy. At last, this review pinpoints the remaining challenges and research directions to make breakthroughs in further studies.
Collapse
Affiliation(s)
| | | | - Wenzhuo Zheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | | | - Nan Jiang
- Correspondence address. E-mail: (N.J.); (J.Y.)
| |
Collapse
|
21
|
Cho W, Park Y, Jung YM, Park JH, Park J, Yoo HS. Electrospun Nanofibrils Surface-Decorated with Photo-Cross-Linked Hyaluronic Acid for Cell-Directed Assembly. ACS OMEGA 2022; 7:40355-40363. [PMID: 36385880 PMCID: PMC9647879 DOI: 10.1021/acsomega.2c05322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Hyaluronic acid (HA) was chemically immobilized on the surface of electrospun nanofibrils to form a cell/NF complex. Poly(caprolactone) (PCL) was electrospun into nanofibrous mats that were subsequently aminolyzed into nanofibrils. The aminolyzed nanofibrils were surface-decorated with methacrylated HA via Michael type addtion and by photo-cross-linking. Fourier transform infrared spectroscopy revealed the presence of HA on the surface of the nanofibrils. The thermogravimetric and colorimetric analyses indicate that the degree of HA immobilization could be varied by varying the photo-cross-linking duration. Thus, on increasing the photo-cross-linking duration, the swelling ratios increased gradually, and the surface charge of the decorated nanofibrils decreased. NIH3T3 cells and surface-decorated nanofibrils spontaneously assembled into the cell/NF complex. A higher degree of surface-immobilized HA enhanced cell viability and proliferation compared to nanofibrils without surface-immobilized HA. Thus, we envision that HA-immobilized nanofibrils can be employed as a tissue-engineering matrix to control cell proliferation and differentiation.
Collapse
Affiliation(s)
- Wanho Cho
- Department
of Medical Biomaterials Engineering, Kangwon
National University, Chuncheon 24341, Republic of Korea
| | - Yeonju Park
- Kangwon
Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Young Mee Jung
- Kangwon
Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Republic of Korea
- Department
of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
- KIIT, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ju Hyun Park
- Department
of Medical Biomaterials Engineering, Kangwon
National University, Chuncheon 24341, Republic of Korea
- KIIT, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jongmin Park
- Department
of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
- KIIT, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hyuk Sang Yoo
- Department
of Medical Biomaterials Engineering, Kangwon
National University, Chuncheon 24341, Republic of Korea
- Kangwon
Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Republic of Korea
- KIIT, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
22
|
Sokoot EA, Arkan E, Khazaei M, Moradipour P. A novel 3D-electrospun nanofibers-scaffold grafted with Royal Jelly: improve hydrophilicity of the nanofibers-scaffold and proliferation of HUVEC cell line. Cell Tissue Bank 2022; 24:329-340. [DOI: 10.1007/s10561-022-10035-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 08/10/2022] [Indexed: 11/02/2022]
|
23
|
Garcia J, Felix M, Cordobés F, Guerrero A. Effect of solvent and additives on the electrospinnability of BSA solutions. Colloids Surf B Biointerfaces 2022; 217:112683. [DOI: 10.1016/j.colsurfb.2022.112683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 02/09/2023]
|
24
|
Wang N, Xie Y, Xi Z, Mi Z, Deng R, Liu X, Kang R, Liu X. Hope for bone regeneration: The versatility of iron oxide nanoparticles. Front Bioeng Biotechnol 2022; 10:937803. [PMID: 36091431 PMCID: PMC9452849 DOI: 10.3389/fbioe.2022.937803] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/02/2022] [Indexed: 11/18/2022] Open
Abstract
Although bone tissue has the ability to heal itself, beyond a certain point, bone defects cannot rebuild themselves, and the challenge is how to promote bone tissue regeneration. Iron oxide nanoparticles (IONPs) are a magnetic material because of their excellent properties, which enable them to play an active role in bone regeneration. This paper reviews the application of IONPs in bone tissue regeneration in recent years, and outlines the mechanisms of IONPs in bone tissue regeneration in detail based on the physicochemical properties, structural characteristics and safety of IONPs. In addition, a bibliometric approach has been used to analyze the hot spots and trends in the field in order to identify future directions. The results demonstrate that IONPs are increasingly being investigated in bone regeneration, from the initial use as magnetic resonance imaging (MRI) contrast agents to later drug delivery vehicles, cell labeling, and now in combination with stem cells (SCs) composite scaffolds. In conclusion, based on the current research and development trends, it is more inclined to be used in bone tissue engineering, scaffolds, and composite scaffolds.
Collapse
Affiliation(s)
- Nan Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yimin Xie
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhipeng Xi
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zehua Mi
- Hospital for Skin Diseases, Institute of Dermatology Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, China
| | - Rongrong Deng
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiyu Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ran Kang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Orthopedics, Nanjing Lishui Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Xin Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Orthopedics, Nanjing Lishui Hospital of Traditional Chinese Medicine, Nanjing, China
| |
Collapse
|
25
|
Cenhrang K, Robart L, Castiaux AD, Martin RS. 3D printed devices with integrated collagen scaffolds for cell culture studies including transepithelial/transendothelial electrical resistance (TEER) measurements. Anal Chim Acta 2022; 1221:340166. [PMID: 35934386 PMCID: PMC9511703 DOI: 10.1016/j.aca.2022.340166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/07/2022] [Accepted: 07/10/2022] [Indexed: 11/01/2022]
Abstract
In this paper, we describe the use of 3D printed devices for both static and flow studies that contain electrospun collagen scaffolds and can accommodate transepithelial/transendothelial electrical resistance (TEER) measurements. Electrospinning was used to create the collagen scaffold, followed by an optimized 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-Hydroxysuccinimide (EDC/NHS) cross-linking procedure to produce stable collagen fibers that are similar in size to fibers in vivo. LC/MS was used to study the leaching of solvent and NHS from the scaffold, with several rinsing steps being shown to eliminate the leaching and promote the culture of Madin-Darby Canine Kidney (MDCK) epithelial cells on the scaffold. Both static and flow 2-part devices were successfully fabricated by 3D printing using either VeroClear or MED610 material (PolyJet printing) and assembling the scaffold between laser cut Teflon gaskets. The devices were designed to easily accommodate commonly used STX2 chopstick electrodes for TEER measurements. A detailed comparison was made between the use of collagen scaffolds vs other electrospun materials for cell culture. The collagen extracellular matrix model displayed a high barrier functionality for up to 7 days. In addition, a different 3D printed device with a collagen scaffold is described to incorporate continuous flow and replenishment of media under the cell layer in a manner that also enables periodic recording of TEER measurements. Overall, this work shows that the combination of biological ECM materials such as collagen into microfluidic devices that incorporate flow have great potential to form more realistic cell culture models in areas such as blood brain barrier research.
Collapse
Affiliation(s)
| | - Logan Robart
- Department of Chemistry, Saint Louis University, USA
| | - Andre D Castiaux
- Department of Chemistry, Saint Louis University, USA; Center for Additive Manufacturing, Saint Louis University, USA
| | - R Scott Martin
- Department of Chemistry, Saint Louis University, USA; Center for Additive Manufacturing, Saint Louis University, USA.
| |
Collapse
|
26
|
Nowak J, Kerns A, Patel P, Batzinger K, Tong X, Samuel J. The Construction of Biologically Relevant Fiber-Reinforced Hydrogel Geometries Using Air-Assisted Dual-Polarity Electrospinning. J Biomech Eng 2022; 145:1143326. [PMID: 35864787 DOI: 10.1115/1.4055038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Indexed: 11/08/2022]
Abstract
Fiber-reinforced hydrogels are a class of soft composite materials that has seen increased use across a wide variety of biomedical applications. However, existing fabrication techniques for these hydrogels are unable to realize biologically relevant macro/meso-scale geometries. To address this limitation, this paper presents a novel air-assisted, dual-polarity electrospinning printhead that converges high-strength electric fields, with low velocity air flow to remove the collector dependency seen with traditional far-field electrospinning setups. The use of this printhead, in conjunction with different configurations of deformable collection templates has resulted in the production of three classes of fiber-reinforced hydrogel prototype geometries, viz. (i) tubular geometries with bifurcations and meso-scale texturing; (ii) hollow, non-tubular geometries with single and dual-entrances; and (iii) 3D printed flat geometries with varying fiber density. All three classes of prototype geometries were mechanically characterized to have properties that were in line with those observed in living soft tissues. With the realization of this printhead, biologically relevant macro/meso-scale geometries can be realized using fiber-reinforced hydrogels to aid a wide array of biomedical applications.
Collapse
Affiliation(s)
- James Nowak
- Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Andrew Kerns
- Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Priyank Patel
- Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Kate Batzinger
- Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Xing Tong
- Department of Electrical, Computer, and Systems Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Johnson Samuel
- Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| |
Collapse
|
27
|
García-Fuentevilla L, Rubio-Valle JF, Martín-Sampedro R, Valencia C, Eugenio ME, Ibarra D. Different Kraft lignin sources for electrospun nanostructures production: Influence of chemical structure and composition. Int J Biol Macromol 2022; 214:554-567. [PMID: 35752340 DOI: 10.1016/j.ijbiomac.2022.06.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 11/05/2022]
Abstract
This work focuses on the structural features and physicochemical properties of different Kraft lignins and how they can influence the electrospinning process to obtain nanostructures. Structural features of Kraft lignins were characterized by Nuclear Magnetic Resonance, Size Exclusion Chromatography, Fourier-transform Infrared Spectroscopy, and thermal analysis, whereas chemical composition was analyzed by standard method. The addition of cellulose acetate (CA) improves the electrospinning process of Kraft lignins (KL). Thus, solutions of KL/CA at 30 wt% with a KL:CA weight ratio of 70:30 were prepared and then physicochemical and rheologically characterized. The morphology of electrospun nanostructures depends on the intrinsic properties of the solutions and the chemical structure and composition of Kraft lignins. Then, surface tension, electrical conductivity and viscosity of eucalypt/CA and poplar/CA solutions were suitable to obtain electrospun nanostructures based on uniform cross-linked nanofibers with a few beaded fibers. It could be related with the higher purity and higher linear structure, phenolic content and S/G ratios of lignin samples. However, the higher values of electrical conductivity and viscosity of OTP/CA solutions resulted in electrospun nanostructure with micro-sized particles connected by thin fibers, due to a lower purity, S/G ratio and phenolic content and higher branched structure in OTP lignin.
Collapse
Affiliation(s)
| | - José F Rubio-Valle
- Pro2TecS-Chemical Process and Product Technology Research Centre, Departamento de Ingeniería Química, ETSI, Campus de "El Carmen", Universidad de Huelva, 21071 Huelva, Spain
| | | | - Concepción Valencia
- Pro2TecS-Chemical Process and Product Technology Research Centre, Departamento de Ingeniería Química, ETSI, Campus de "El Carmen", Universidad de Huelva, 21071 Huelva, Spain
| | - María E Eugenio
- Forest Research Center, INIA-CSIC, Ctra. de la Coruña, km 7.5., 28040 Madrid, Spain.
| | - David Ibarra
- Forest Research Center, INIA-CSIC, Ctra. de la Coruña, km 7.5., 28040 Madrid, Spain
| |
Collapse
|
28
|
Wu S, Dong T, Li Y, Sun M, Qi Y, Liu J, Kuss MA, Chen S, Duan B. State-of-the-art review of advanced electrospun nanofiber yarn-based textiles for biomedical applications. APPLIED MATERIALS TODAY 2022; 27:101473. [PMID: 35434263 PMCID: PMC8994858 DOI: 10.1016/j.apmt.2022.101473] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/23/2022] [Accepted: 03/31/2022] [Indexed: 05/02/2023]
Abstract
The pandemic of the coronavirus disease 2019 (COVID-19) has made biotextiles, including face masks and protective clothing, quite familiar in our daily lives. Biotextiles are one broad category of textile products that are beyond our imagination. Currently, biotextiles have been routinely utilized in various biomedical fields, like daily protection, wound healing, tissue regeneration, drug delivery, and sensing, to improve the health and medical conditions of individuals. However, these biotextiles are commonly manufactured with fibers with diameters on the micrometer scale (> 10 μm). Recently, nanofibrous materials have aroused extensive attention in the fields of fiber science and textile engineering because the fibers with nanoscale diameters exhibited obviously superior performances, such as size and surface/interface effects as well as optical, electrical, mechanical, and biological properties, compared to microfibers. A combination of innovative electrospinning techniques and traditional textile-forming strategies opens a new window for the generation of nanofibrous biotextiles to renew and update traditional microfibrous biotextiles. In the last two decades, the conventional electrospinning device has been widely modified to generate nanofiber yarns (NYs) with the fiber diameters less than 1000 nm. The electrospun NYs can be further employed as the primary processing unit for manufacturing a new generation of nano-textiles using various textile-forming strategies. In this review, starting from the basic information of conventional electrospinning techniques, we summarize the innovative electrospinning strategies for NY fabrication and critically discuss their advantages and limitations. This review further covers the progress in the construction of electrospun NY-based nanotextiles and their recent applications in biomedical fields, mainly including surgical sutures, various scaffolds and implants for tissue engineering, smart wearable bioelectronics, and their current and potential applications in the COVID-19 pandemic. At the end, this review highlights and identifies the future needs and opportunities of electrospun NYs and NY-based nanotextiles for clinical use.
Collapse
Key Words
- CNT, carbon nanotube
- COVID-19, coronavirus disease 2019
- ECM, extracellular matrix
- Electrospinning
- FDA, food and drug administration
- GF, gauge factor
- GO, graphene oxide
- HAVIC, human aortic valve interstitial cell
- HAp, hydroxyapatite
- MSC, mesenchymal stem cell
- MSC-SC, MSC derived Schwann cell-like cell
- MWCNT, multiwalled carbon nanotube
- MY, microfiber yarn
- MeGel, methacrylated gelatin
- NGC, nerve guidance conduit
- NHMR, neutral hollow metal rod
- NMD, neutral metal disc
- NY, nanofiber yarn
- Nanoyarns
- PA6, polyamide 6
- PA66, polyamide 66
- PAN, polyacrylonitrile
- PANi, polyaniline
- PCL, polycaprolactone
- PEO, polyethylene oxide
- PGA, polyglycolide
- PHBV, poly(3-hydroxybutyrate-co-3-hydroxyvalerate)
- PLCL, poly(L-lactide-co-ε-caprolactone)
- PLGA, poly(lactic-co-glycolic acid)
- PLLA, poly(L-lactic acid)
- PMIA, poly(m-phenylene isophthalamide)
- PPDO, polydioxanone
- PPy, polypyrrole
- PSA, poly(sulfone amide)
- PU, polyurethane
- PVA, poly(vinyl alcohol)
- PVAc, poly(vinyl acetate)
- PVDF, poly(vinylidene difluoride)
- PVDF-HFP, poly(vinylidene floride-co-hexafluoropropylene)
- PVDF-TrFE, poly(vinylidene fluoride trifluoroethylene)
- PVP, poly(vinyl pyrrolidone)
- SARS-CoV-2, severe acute respiratory syndrome coronavirus 2
- SC, Schwann cell
- SF, silk fibroin
- SWCNT, single-walled carbon nanotube
- TGF-β1, transforming growth factor-β1
- Textile-forming technique
- Tissue scaffolds
- VEGF, vascular endothelial growth factor
- Wearable bioelectronics
- bFGF, basic fibroblast growth factor
Collapse
Affiliation(s)
- Shaohua Wu
- College of Textiles & Clothing, Qingdao University, Qingdao, China
| | - Ting Dong
- College of Textiles & Clothing, Qingdao University, Qingdao, China
| | - Yiran Li
- College of Textiles & Clothing, Qingdao University, Qingdao, China
| | - Mingchao Sun
- College of Textiles & Clothing, Qingdao University, Qingdao, China
| | - Ye Qi
- College of Textiles & Clothing, Qingdao University, Qingdao, China
| | - Jiao Liu
- College of Textiles & Clothing, Qingdao University, Qingdao, China
| | - Mitchell A Kuss
- Mary & Dick Holland Regenerative Medicine Program and Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Surgery, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Shaojuan Chen
- College of Textiles & Clothing, Qingdao University, Qingdao, China
| | - Bin Duan
- Mary & Dick Holland Regenerative Medicine Program and Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Surgery, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
29
|
Recent Advances in 3D Bioprinting: A Review of Cellulose-Based Biomaterials Ink. Polymers (Basel) 2022; 14:polym14112260. [PMID: 35683932 PMCID: PMC9183181 DOI: 10.3390/polym14112260] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 12/19/2022] Open
Abstract
Cellulose-based biodegradable hydrogel proves to be excellently suitable for the medical and water treatment industry based on the expressed properties such as its flexible structure and broad compatibility. Moreover, their potential to provide excellent waste management from the unutilized plant has triggered further study on the advanced biomaterial applications. To extend the use of cellulose-based hydrogel, additive manufacturing is a suitable technique for hydrogel fabrication in complex designs. Cellulose-based biomaterial ink used in 3D bioprinting can be further used for tissue engineering, drug delivery, protein study, microalgae, bacteria, and cell immobilization. This review includes a discussion on the techniques available for additive manufacturing, bio-based material, and the formation of a cellulose-based hydrogel.
Collapse
|
30
|
Singh YP, Dasgupta S. Gelatin-based electrospun and lyophilized scaffolds with nano scale feature for bone tissue engineering application: review. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:1704-1758. [PMID: 35443894 DOI: 10.1080/09205063.2022.2068943] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The rebuilding of the normal functioning of the damaged human body bone tissue is one of the main objectives of bone tissue engineering (BTE). Fabricated scaffolds are mostly treated as artificial supports and as materials for regeneration of neo bone tissues and must closely biomimetic the native extracellular matrix of bone. The materials used for developing scaffolds should be biodegradable, nontoxic, and biocompatible. For the resurrection of bone disorder, specifically natural and synthetic polymers such as chitosan, PCL, gelatin, PGA, PLA, PLGA, etc. meet the requirements for serving their functions as artificial bone substitute materials. Gelatin is one of the potential candidates which could be blended with other polymers or composites to improve its physicochemical, mechanical, and biological performances as a bone graft. Scaffolds are produced by several methods including electrospinning, self-assembly, freeze-drying, phase separation, fiber drawing, template synthesis, etc. Among them, freeze-drying and electrospinning are among the popular, simplest, versatile, and cost-effective techniques. The design and preparation of freeze-dried and electrospun scaffolds are of intense research over the last two decades. Freeze-dried and electrospun scaffolds offer a distinctive architecture at the micro to nano range with desired porosity and pore interconnectivity for selective movement of small biomolecules and play its role as an appropriate matrix very similar to the natural bone extracellular matrix. This review focuses on the properties and functionalization of gelatin-based polymer and its composite in the form of bone scaffolds fabricated primarily using lyophilization and electrospinning technique and their applications in BTE.
Collapse
Affiliation(s)
- Yogendra Pratap Singh
- Department of Ceramic Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - Sudip Dasgupta
- Department of Ceramic Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India
| |
Collapse
|
31
|
Matei E, Predescu AM, Râpă M, Țurcanu AA, Mateș I, Constantin N, Predescu C. Natural Polymers and Their Nanocomposites Used for Environmental Applications. NANOMATERIALS 2022; 12:nano12101707. [PMID: 35630932 PMCID: PMC9146209 DOI: 10.3390/nano12101707] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/13/2022] [Accepted: 05/15/2022] [Indexed: 02/04/2023]
Abstract
The aim of this review is to bring together the main natural polymer applications for environmental remediation, as a class of nexus materials with advanced properties that offer the opportunity of integration in single or simultaneous decontamination processes. By identifying the main natural polymers derived from agro-industrial sources or monomers converted by biotechnology into sustainable polymers, the paper offers the main performances identified in the literature for: (i) the treatment of water contaminated with heavy metals and emerging pollutants such as dyes and organics, (ii) the decontamination and remediation of soils, and (iii) the reduction in the number of suspended solids of a particulate matter (PM) type in the atmosphere. Because nanotechnology offers new horizons in materials science, nanocomposite tunable polymers are also studied and presented as promising materials in the context of developing sustainable and integrated products in society to ensure quality of life. As a class of future smart materials, the natural polymers and their nanocomposites are obtained from renewable resources, which are inexpensive materials with high surface area, porosity, and high adsorption properties due to their various functional groups. The information gathered in this review paper is based on the publications in the field from the last two decades. The future perspectives of these fascinating materials should take into account the scale-up, the toxicity of nanoparticles, and the competition with food production, as well as the environmental regulations.
Collapse
|
32
|
Core-Sheath Electrospun Nanofibers Based on Chitosan and Cyclodextrin Polymer for the Prolonged Release of Triclosan. Polymers (Basel) 2022; 14:polym14101955. [PMID: 35631838 PMCID: PMC9147127 DOI: 10.3390/polym14101955] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 01/27/2023] Open
Abstract
This work focuses on the manufacture of core-sheath nanofibers (NFs) based on chitosan (CHT) as sheath and cyclodextrin polymer (PCD) as core and loaded with triclosan (TCL). In parallel, monolithic NFs consisting of blended CHT-PCD and TCL were prepared. Nanofibers were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Fourier Transform Infrared spectroscopy (FTIR). SEM displayed the morphology of NFs and the structure of the nanowebs, while TEM evidenced the core-sheath structure of NFs prepared by coaxial electrospinning. The core diameters and sheath thicknesses were found dependent on respective flow rates of both precursor solutions. Nanofibers stability and TCL release in aqueous medium were studied and correlated with the antibacterial activity against Staphylococcus aureus and Escherichia coli. Results showed that the release profiles of TCL and therefore the antibacterial activity were directly related to the type of nanofibers. In the case of monolithic nanofibers, the NFs matrix was composed of polyelectrolyte complex (PEC formed between CHT and PCD) and resulted in a prolonged release of TCL and a sustained antibacterial effect. In the case of core-sheath NFs, the PEC was formed only at the core-sheath interface, leading to less stable NFs and therefore to a faster release of TCL, and to a less extended antibacterial activity compared to monolithic ones.
Collapse
|
33
|
Nair KS, James NR. Reinforcement of electrospun polyurethane fibers with resorcinol–formaldehyde resin. J Appl Polym Sci 2022. [DOI: 10.1002/app.52007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kiran Sukumaran Nair
- Polymer Science and Engineering Division CSIR‐National Chemical Laboratory Pune Maharashtra India
| | - Nirmala Rachel James
- Department of Chemistry Indian Institute of Space Science and Technology Thiruvananthapuram Kerala India
| |
Collapse
|
34
|
Bikuna-Izagirre M, Aldazabal J, Paredes J. Gelatin Blends Enhance Performance of Electrospun Polymeric Scaffolds in Comparison to Coating Protocols. Polymers (Basel) 2022; 14:polym14071311. [PMID: 35406188 PMCID: PMC9002644 DOI: 10.3390/polym14071311] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 01/31/2023] Open
Abstract
The electrospinning of hybrid polymers is a versatile fabrication technique which takes advantage of the biological properties of natural polymers and the mechanical properties of synthetic polymers. However, the literature is scarce when it comes to comparisons of blends regarding coatings and the improvements offered thereby in terms of cellular performance. To address this, in the present study, nanofibrous electrospun scaffolds of polycaprolactone (PCL), their coating and their blend with gelatin were compared. The morphology of nanofibrous scaffolds was analyzed under field emission scanning electron microscopy (FE-SEM), indicating the influence of the presence of gelatin. The scaffolds were mechanically tested with tensile tests; PCL and PCL gelatin coated scaffolds showed higher elastic moduli than PCL/gelatin meshes. Viability of mouse embryonic fibroblasts (MEF) was evaluated by MTT assay, and cell proliferation on the scaffold was confirmed by fluorescence staining. The positive results of the MTT assay and cell growth indicated that the scaffolds of PCL/gelatin excelled in comparison to other scaffolds, and may serve as good candidates for tissue engineering applications.
Collapse
Affiliation(s)
- Maria Bikuna-Izagirre
- Tecnun School of Engineering, University of Navarra, Manuel Lardizabal 13, 20018 San Sebastian, Spain; (M.B.-I.); (J.A.)
- Biomedical Engineering Centre, University of Navarra, Campus Universitario, 31080 Pamplona, Spain
| | - Javier Aldazabal
- Tecnun School of Engineering, University of Navarra, Manuel Lardizabal 13, 20018 San Sebastian, Spain; (M.B.-I.); (J.A.)
- Biomedical Engineering Centre, University of Navarra, Campus Universitario, 31080 Pamplona, Spain
| | - Jacobo Paredes
- Tecnun School of Engineering, University of Navarra, Manuel Lardizabal 13, 20018 San Sebastian, Spain; (M.B.-I.); (J.A.)
- Biomedical Engineering Centre, University of Navarra, Campus Universitario, 31080 Pamplona, Spain
- Correspondence:
| |
Collapse
|
35
|
A Comprehensive Study on the Applications of Clays into Advanced Technologies, with a Particular Attention on Biomedicine and Environmental Remediation. INORGANICS 2022. [DOI: 10.3390/inorganics10030040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In recent years, a great interest has arisen around the integration of naturally occurring clays into a plethora of advanced technological applications, quite far from the typical fabrication of traditional ceramics. This “second (technological) life” of clays into fields of emerging interest is mainly due to clays’ peculiar properties, in particular their ability to exchange (capture) ions, their layered structure, surface area and reactivity, and their biocompatibility. Since the maximization of clay performances/exploitations passes through the comprehension of the mechanisms involved, this review aims at providing a useful text that analyzes the main goals reached by clays in different fields coupled with the analysis of the structure-property correlations. After providing an introduction mainly focused on the economic analysis of clays global trading, clays are classified basing on their structural/chemical composition. The main relevant physicochemical properties are discussed (particular attention has been dedicated to the influence of interlayer composition on clay properties). Lastly, a deep analysis of the main relevant nonconventional applications of clays is presented. Several case studies describing the use of clays in biomedicine, environmental remediation, membrane technology, additive manufacturing, and sol-gel processes are presented, and results critically discussed.
Collapse
|
36
|
Cruz-Salas CN, Prieto C, Calderón-Santoyo M, Lagarón JM, Ramos-Hernández JA, Ragazzo-Sánchez JA. Antimutagenic and Antiproliferative Activity of the Coccoloba uvifera L. Extract Loaded in Nanofibers of Gelatin/Agave Fructans Elaborated by Electrospinning. Anticancer Agents Med Chem 2022; 22:2788-2798. [PMID: 35297353 DOI: 10.2174/1871520622666220316161957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/09/2021] [Accepted: 12/22/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The Coccoloba uvifera L. species is currently considered an important source of compounds of high biological value such as lupeol, this is related to different biological activities of importance to human health. OBJECTIVE The objective of this study was to encapsulate the C. uvifera extract in nanofibers made with the biopolymers gelatin (G)/high-grade polymerization agave fructans (HDPAF) in the proportions 1:0, 1:1, 1:2, 1:3 and 0:1, through the electrospinning process, in addition to evaluating the antimutagenic and antiproliferative properties of the encapsulated extract. METHOD The physicochemical characteristics of the nanofibers were evaluated, as well as the antiproliferative and antimutagenic activities of the encapsulated and unencapsulated extract. SEM evaluation shows nanofibers of smooth, continuous morphology and nanometric size (50-250 nm). The TGA, FTIR-ATR, HPLC-MS analyzes reveal the presence of the extract in the nanofibers. RESULTS The extract did not show a mutagenic effect during the development of the Ames test, on the other hand, the MTT test showed the antiproliferative effect at the concentrations of 50 and 100 µg/mL of extract. CONCLUSION the extract of C. uvifera loaded in nanofibers elaborated by electrospinning with the G/HDPAF biopolymers, conserves its antimutagenic and antiproliferative properties.
Collapse
Affiliation(s)
- Carla N Cruz-Salas
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Av. Tecnológico 2595, Tepic C.P. 63175, Nayarit, Mexico
| | - Cristina Prieto
- Novel Materials and Nanotechnology Group, IATA-CSIC, Calle Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Spain
| | - Montserrat Calderón-Santoyo
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Av. Tecnológico 2595, Tepic C.P. 63175, Nayarit, Mexico
| | - José M Lagarón
- Novel Materials and Nanotechnology Group, IATA-CSIC, Calle Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Spain
| | - Jorge Alberto Ramos-Hernández
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Av. Tecnológico 2595, Tepic C.P. 63175, Nayarit, Mexico
| | - Juan Arturo Ragazzo-Sánchez
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Av. Tecnológico 2595, Tepic C.P. 63175, Nayarit, Mexico
| |
Collapse
|
37
|
Ahmadi‐Nohadani H, Nono‐Tagne S, Barrett CJ, Otsuka I. Electrospun Azo‐Cellulose Fabric: A Smart Polysaccharidic Photo‐actuator. Macromol Rapid Commun 2022; 43:e2200063. [DOI: 10.1002/marc.202200063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/22/2022] [Indexed: 11/12/2022]
Affiliation(s)
| | | | | | - Issei Otsuka
- Université Grenoble Alpes, CNRS, CERMAV Grenoble 38000 France
| |
Collapse
|
38
|
Yamaguchi G, Yoshiba K, Kawada S, Sato R, Nagai D, Maki Y, Yamamoto T, Tanaka S, Chu B, Dobashi T. Preparation of electro-spun konjac glucomannan fabric with entrapped DNA and dynamics of adsorption of acridine orange for carcinogen removal application. ADSORPTION 2022. [DOI: 10.1007/s10450-022-00357-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
Cheng Y, Zhang Y, Wu H. Polymeric Fibers as Scaffolds for Spinal Cord Injury: A Systematic Review. Front Bioeng Biotechnol 2022; 9:807533. [PMID: 35223816 PMCID: PMC8864123 DOI: 10.3389/fbioe.2021.807533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/16/2021] [Indexed: 11/30/2022] Open
Abstract
Spinal cord injury (SCI) is a complex neurological condition caused by trauma, inflammation, and other diseases, which often leads to permanent changes in strength and sensory function below the injured site. Changes in the microenvironment and secondary injuries continue to pose challenges for nerve repair and recovery after SCI. Recently, there has been progress in the treatment of SCI with the use of scaffolds for neural tissue engineering. Polymeric fibers fabricated by electrospinning have been increasingly used in SCI therapy owing to their biocompatibility, complex porous structure, high porosity, and large specific surface area. Polymer fibers simulate natural extracellular matrix of the nerve fiber and guide axon growth. Moreover, multiple channels of polymer fiber simulate the bundle of nerves. Polymer fibers with porous structure can be used as carriers loaded with drugs, nerve growth factors and cells. As conductive fibers, polymer fibers have electrical stimulation of nerve function. This paper reviews the fabrication, characterization, and application in SCI therapy of polymeric fibers, as well as potential challenges and future perspectives regarding their application.
Collapse
Affiliation(s)
- Yuanpei Cheng
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yanbo Zhang
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Han Wu
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
40
|
Influence of substrate temperature parameter on electrospinning process: example of application to the formation of gelatin fibers. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04109-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractThe substrate temperature was investigated to broaden the applicability of controlling the morphology of polymeric fibers produced during the electrospinning process. A laboratory electrospinning setup was designed using a substrate heated in a temperature range of 25 °C to 100 °C. A gelatin polymer was used as an example to obtain beads-free gelatin fibers by fixing the main electrospinning parameters. Based on XRD, FTIR, and DSC techniques, the electrospun gelatin fibers did not show any change in their chemical composition up to 100 °C. Heating the substrate at 50 °C may be the best selection factor to obtain gelatin fibers; the fiber diameters experienced a significant decrease from 680 ± 140 nm to 420 ± 120 nm with increasing substrate temperature from 25 to 50 °C, respectively. They showed stability of the diameter at 380 ± 130 nm and 390 ± 130 nm when increasing substrate temperatures from 75 to 100 °C, respectively, with a significant variation in their diameter distribution. Therefore, this ability to control the electrospinning process using a heated substrate makes it promising for fabricating electrospun beads-free fibers of biopolymers such as gelatin for tissue engineering and drug delivery carriers.
Collapse
|
41
|
Angel N, Li S, Yan F, Kong L. Recent advances in electrospinning of nanofibers from bio-based carbohydrate polymers and their applications. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
42
|
Estévez M, Montalbano G, Gallo-Cordova A, Ovejero JG, Izquierdo-Barba I, González B, Tomasina C, Moroni L, Vallet-Regí M, Vitale-Brovarone C, Fiorilli S. Incorporation of Superparamagnetic Iron Oxide Nanoparticles into Collagen Formulation for 3D Electrospun Scaffolds. NANOMATERIALS 2022; 12:nano12020181. [PMID: 35055200 PMCID: PMC8778221 DOI: 10.3390/nano12020181] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 02/01/2023]
Abstract
Nowadays, there is an ever-increasing interest in the development of systems able to guide and influence cell activities for bone regeneration. In this context, we have explored for the first time the combination of type-I collagen and superparamagnetic iron oxide nanoparticles (SPIONs) to design magnetic and biocompatible electrospun scaffolds. For this purpose, SPIONs with a size of 12 nm were obtained by thermal decomposition and transferred to an aqueous medium via ligand exchange with dimercaptosuccinic acid (DMSA). The SPIONs were subsequently incorporated into type-I collagen solutions to prove the processability of the resulting hybrid formulation by means of electrospinning. The optimized method led to the fabrication of nanostructured scaffolds composed of randomly oriented collagen fibers ranging between 100 and 200 nm, where SPIONs resulted distributed and embedded into the collagen fibers. The SPIONs-containing electrospun structures proved to preserve the magnetic properties of the nanoparticles alone, making these matrices excellent candidates to explore the magnetic stimuli for biomedical applications. Furthermore, the biological assessment of these collagen scaffolds confirmed high viability, adhesion, and proliferation of both pre-osteoblastic MC3T3-E1 cells and human bone marrow-derived mesenchymal stem cells (hBM-MSCs).
Collapse
Affiliation(s)
- Manuel Estévez
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, 28040 Madrid, Spain; (M.E.); (B.G.); (M.V.-R.)
| | - Giorgia Montalbano
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy; (G.M.); (C.V.-B.)
| | - Alvaro Gallo-Cordova
- Department of Energy Environment and Health, Instituto de Ciencia de Materiales de Madrid C.S.I.C., Sor Juana Inés de la Cruz 3, Cantoblanco, 28049 Madrid, Spain; (A.G.-C.); (J.G.O.)
| | - Jesús G. Ovejero
- Department of Energy Environment and Health, Instituto de Ciencia de Materiales de Madrid C.S.I.C., Sor Juana Inés de la Cruz 3, Cantoblanco, 28049 Madrid, Spain; (A.G.-C.); (J.G.O.)
| | - Isabel Izquierdo-Barba
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, 28040 Madrid, Spain; (M.E.); (B.G.); (M.V.-R.)
- CIBER de Bioingeniería Biomateriales y Nanomedicina CIBER-BBN, 28040 Madrid, Spain
- Correspondence: (I.I.-B.); (S.F.)
| | - Blanca González
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, 28040 Madrid, Spain; (M.E.); (B.G.); (M.V.-R.)
- CIBER de Bioingeniería Biomateriales y Nanomedicina CIBER-BBN, 28040 Madrid, Spain
| | - Clarissa Tomasina
- Complex Tissue Regeneration Department, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ET Maastricht, The Netherlands; (C.T.); (L.M.)
| | - Lorenzo Moroni
- Complex Tissue Regeneration Department, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ET Maastricht, The Netherlands; (C.T.); (L.M.)
| | - María Vallet-Regí
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, 28040 Madrid, Spain; (M.E.); (B.G.); (M.V.-R.)
- CIBER de Bioingeniería Biomateriales y Nanomedicina CIBER-BBN, 28040 Madrid, Spain
| | - Chiara Vitale-Brovarone
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy; (G.M.); (C.V.-B.)
| | - Sonia Fiorilli
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy; (G.M.); (C.V.-B.)
- Correspondence: (I.I.-B.); (S.F.)
| |
Collapse
|
43
|
Deshmukh SB, Kulandainathan AM, Murugavel K. A review on Biopolymer-derived Electrospun Nanofibers for Biomedical and Antiviral Applications. Biomater Sci 2022; 10:4424-4442. [DOI: 10.1039/d2bm00820c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Unique aspects of polymer-derived nanofibers provide significant potential in the area of biomedical and health care applications. Much research has demonstrated several plausible nanofibers to overcome the modern-day challenges in...
Collapse
|
44
|
Mehrandish S, Mohammadi G, Mirzaeei S. Preparation and functional evaluation of electrospun polymeric nanofibers as a new system for sustained topical ocular delivery of itraconazole. Pharm Dev Technol 2021; 27:25-39. [PMID: 34895024 DOI: 10.1080/10837450.2021.2018609] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Due to the rapid clearance of external agents from the surface of the cornea, conventional ocular formulations usually require frequent and long duration of administration to achieve a therapeutic level of the drug on the cornea which can be conquered using prolonged-release nanofibrous inserts. In the present study, for the first time, polymeric nanofibers of itraconazole (ITZ), a potent triazole antifungal agent, were prepared as ocular inserts to enhance the topical ocular delivery of the drug. Three different nanofibers were prepared by electrospinning using polyvinyl alcohol-cellulose acetate and polycaprolactone-polyethylene glycol 12 000 polymeric blends. Nanofibers indicated uniform structures with the mean diameter ranging between 137 and 180 nm. Differential scanning calorimetry and Fourier-transform infrared spectroscopy confirmed the amorphous state of the drug in the formulations and the no drug-polymer interaction. Appropriate stability, suitable flexibility, and 2.2-3.9 MPa tensile strength were observed. Formulations indicated antifungal efficacy against Candida albicans and Aspergillus fumigatus and cell viability >70% at different concentrations. Results of bioassay against Candida albicans exhibited prolonged in vitro release of 50-70% of ITZ for almost 55 days. The results suggested that the nanofibers could be considered suitable for prolonged delivery of the ITZ as an antifungal requiring frequent and long duration of administration.
Collapse
Affiliation(s)
- Saba Mehrandish
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ghobad Mohammadi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shahla Mirzaeei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
45
|
Maningat CC, Jeradechachai T, Buttshaw MR. Textured wheat and pea proteins for meat alternative applications. Cereal Chem 2021. [DOI: 10.1002/cche.10503] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
46
|
A Novel Superabsorbent Polymer from Crosslinked Carboxymethyl Tragacanth Gum with Glutaraldehyde: Synthesis, Characterization, and Swelling Properties. Int J Biomater 2021; 2021:5008833. [PMID: 34845410 PMCID: PMC8627358 DOI: 10.1155/2021/5008833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/25/2021] [Accepted: 11/01/2021] [Indexed: 11/17/2022] Open
Abstract
Nowadays, current global environmental problems include measures to eliminate or reduce the negative impact of chemicals from petroleum sources and, therefore, the use of materials from natural resources is increasingly recommended. In this context, natural-based superabsorbent polymers derived from polypeptides and polysaccharides have undergone chemical and biochemical modifications to improve their ability to absorb and retain large amounts of liquids. In the present paper, a new process has been used to overcome the side effects of radical polymerization in the manufacture of conventional polyacrylate superabsorbents (SAPs). Tragacanth gum (TG) was selected to prepare a new superabsorbent material (CMTG-GA) based on carboxymethyl tragacanth (CMTG) crosslinked with glutaraldehyde (GA). The characterization of the polymer was carried out by FTIR, TGA, XRD, and SEM. The effect of the amount of crosslinking agent and the pH on the water absorption capacity was also examined. Subsequently, swelling studies were performed using free swelling capacity (FSC) and centrifuge retention capacity (CRC) techniques in distilled water, tap water, and saline solution. The results showed that the CRC of the new material is not less than 42.1 g/g, which was observed for a ratio of 20% by weight of GA to CMTG. Likewise, the maximum absorption results were 43.9 and 32.14 g/g, respectively, for FSC and CRC at pH 8.0. In addition, a comparison of the swelling capacities of the synthesized product with a commercial SAP extracted from a baby diaper, well known in the Moroccan market, showed that the performances were very similar.
Collapse
|
47
|
Allafchian A, Saeedi S, Jalali SAH. Biocompatibility of electrospun cell culture scaffolds made from balangu seed mucilage/PVA composites. NANOTECHNOLOGY 2021; 33:075302. [PMID: 34757957 DOI: 10.1088/1361-6528/ac3860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
Synthesis of Balangu (Lallemantia royleana) seed mucilage (BSM) solutions combined with polyvinyl alcohol (PVA) was studied for the purpose of producing 3D electrospun cell culture scaffolds. Production of pure BSM nanofibers proved to be difficult, yet integration of PVA contributed to a facile and successful formation of BSM/PVA nanofibers. Different BSM/PVA ratios were fabricated to achieve the desired nanofibrous structure for cell proliferation. It is found that the optimal bead-free ratio of 50/50 with a mean fiber diameter of ≈180 nm presents the most desirable scaffold structure for cell growth. The positive effect of PVA incorporation was approved by analyzing BSM/PVA solutions through physiochemical assays such as electrical conductivity, viscosity and surface tension tests. According to the thermal analysis (TGA/DSC), incorporation of PVA enhanced thermal stability of the samples. Successful fabrication of the nanofibers is verified by FT-IR spectra, where no major chemical interaction between BSM and PVA is detected. The crystallinity of the electrospun nanofibers is investigated by XRD, revealing the nearly amorphous structure of BSM/PVA scaffolds. The MTT assay is employed to verify the biocompatibility of the scaffolds. The cell culture experiment using epithelial Vero cells shows the affinity of the cells to adhere to their nanofibrous substrate and grow to form continuous cell layers after 72 h of incubation.
Collapse
Affiliation(s)
- Alireza Allafchian
- Research Institute for Nanotechnology and Advanced Materials, Isfahan University of Technology, Isfahan 84156-83111, Iran
- Research Institute for Biotechnology and Bioengineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Shiva Saeedi
- Research Institute for Nanotechnology and Advanced Materials, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Seyed Amir Hossein Jalali
- Research Institute for Biotechnology and Bioengineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
- Department of Natural Resources, Isfahan University of Technology, Isfahan 84156-83111, Iran
| |
Collapse
|
48
|
Mao X, Shokef Y. Introduction to force transmission by nonlinear biomaterials. SOFT MATTER 2021; 17:10172-10176. [PMID: 34755159 DOI: 10.1039/d1sm90194j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Xiaoming Mao and Yair Shokef introduce the Soft Matter themed collection on force transmission by nonlinear biomaterials.
Collapse
Affiliation(s)
- Xiaoming Mao
- Department of Physics, University of Michigan, Ann Arbor, Michigan, 48109, USA.
| | - Yair Shokef
- School of Mechanical Engineering, Sackler Center for Computational Molecular and Materials Science, and Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
49
|
Hung SH, Bowden JW, Peltier RE, Schiffman JD. Optimizing the Packing Density and Chemistry of Cellulose Nanofilters for High-Efficiency Particulate Removal. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c03051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Shao-Hsiang Hung
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303, United States
| | - Jared W. Bowden
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303, United States
| | - Richard E. Peltier
- School of Public Health & Health Sciences, University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303, United States
| | - Jessica D. Schiffman
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303, United States
| |
Collapse
|
50
|
El-Aassar MR, Ibrahim OM, Al-Oanzi ZH. Biotechnological Applications of Polymeric Nanofiber Platforms Loaded with Diverse Bioactive Materials. Polymers (Basel) 2021; 13:3734. [PMID: 34771291 PMCID: PMC8586957 DOI: 10.3390/polym13213734] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 10/23/2021] [Accepted: 10/24/2021] [Indexed: 02/07/2023] Open
Abstract
This review article highlights the critical research and formative works relating to nanofiber composites loaded with bioactive materials for diverse applications, and discusses the recent research on the use of electrospun nanofiber incorporating bioactive compounds such as essential oils, herbal bioactive components, plant extracts, and metallic nanoparticles. Inevitably, with the common advantages of bioactive components and polymer nanofibers, electrospun nanofibers containing bioactive components have attracted intense interests for their applications in biomedicine and cancer treatment. Many studies have only concentrated on the production and performance of electrospun nanofiber loaded with bioactive components; in this regard, the features of different types of electrospun nanofiber incorporating a wide variety of bioactive compounds and their developing trends are summarized and assessed in the present article, as is the feasible use of nanofiber technology to produce products on an industrial scale in different applications.
Collapse
Affiliation(s)
- M. R. El-Aassar
- Department of Chemistry, College of Science, Jouf University, Sakaka 75471, Saudi Arabia
- Polymer Materials Research Department, Advanced Technology and New Material Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria 21934, Egypt
| | - Omar M. Ibrahim
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Ziad H. Al-Oanzi
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 75471, Saudi Arabia
| |
Collapse
|