1
|
Sham Sunder Bharadwaj S, Lin CY, Divvela MJ, Joo YL. Facile Adaptation of a Fused Deposition Modeling 3D Printer to Motionless Printing through Programmable Electric Relay: Discretized Modeling and Experiments. 3D PRINTING AND ADDITIVE MANUFACTURING 2024; 11:251-260. [PMID: 38389683 PMCID: PMC10880643 DOI: 10.1089/3dp.2022.0062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
In this study, a fused deposition modeling 3D printer is modified into a motionless printer, which has the potential to print patterns in a noiseless manner possibly with improved resolution and in less delay time by eliminating the movement of nozzle or collector. In this motionless 3D printer, both nozzle and collector are fixed, whereas the extruded polymer melt is driven by high-voltage switching points on the collector. By this approach, simple 3D patterns such as multilayer circles, squares, and walls have been printed using two polymer melts with different rheological properties, high-temperature polylactic acid and acrylonitrile butadiene styrene. Furthermore, a discretized, nonisothermal bead and spring model is developed to probe printing patterns. The effect of parameters, such as number of conducting points, switching time, voltage and material properties on the accuracy of the printed simple 3D patterns, are thoroughly studied, and we demonstrated that various fiber collection patterns obtained from the experiments are favorably compared with the simulation results.
Collapse
Affiliation(s)
| | - Chia-Yi Lin
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, USA
| | - Mounica J. Divvela
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, USA
| | - Yong Lak Joo
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, USA
| |
Collapse
|
2
|
Su X, Jia C, Xiang H, Zhu M. Research progress in preparation, properties, and applications of medical protective fiber materials. APPLIED MATERIALS TODAY 2023; 32:101792. [PMID: 36937335 PMCID: PMC10001160 DOI: 10.1016/j.apmt.2023.101792] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/01/2023] [Accepted: 03/02/2023] [Indexed: 05/11/2023]
Abstract
A variety of public health events seriously threaten human life and health, especially the outbreak of COVID-19 at the end of 2019 has caused a serious impact on human production and life. Wearing personal protective equipment (PPE) is one of the most effective ways to prevent infection and stop the spread of the virus. Medical protective fiber materials have become the first choice for PPE because of their excellent barrier properties and breathability. In this article, we systematically review the latest progress in preparation technologies, properties, and applications of medical protective fiber materials. We first summarize the technological characteristics of different fiber preparation methods and compare their advantages and disadvantages. Then the barrier properties, comfort, and mechanical properties of the medical protective fiber materials used in PPE are discussed. After that, the applications of medical protective fibers in PPE are introduced, and protective clothing and masks are discussed in detail. Finally, the current status, future development trend, and existing challenges of medical protective fiber materials are summarized.
Collapse
Affiliation(s)
- Xiaolong Su
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Chao Jia
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Hengxue Xiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
3
|
He F, Wang Y, Liu J, Yao X. One-dimensional carbon based nanoreactor fabrication by electrospinning for sustainable catalysis. EXPLORATION (BEIJING, CHINA) 2023; 3:20220164. [PMID: 37933386 PMCID: PMC10624385 DOI: 10.1002/exp.20220164] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/10/2023] [Indexed: 11/08/2023]
Abstract
An efficient and economical electrocatalyst as kinetic support is key to electrochemical reactions. For this reason, chemists have been working to investigate the basic changing of chemical principles when the system is confined in limited space with nanometer-scale dimensions or sub-microliter volumes. Inspired by biological research, the design and construction of a closed reaction environment, namely the reactor, has attracted more and more interest in chemistry, biology, and materials science. In particular, nanoreactors became a high-profile rising star and different types of nanoreactors have been fabricated. Compared with the traditional particle nanoreactor, the one-dimensional (1D) carbon-based nanoreactor prepared by the electrospinning process has better electrolyte diffusion, charge transfer capabilities, and outstanding catalytic activity and selectivity than the traditional particle catalyst which has great application potential in various electrochemical catalytic reactions.
Collapse
Affiliation(s)
- Fagui He
- State Key Laboratory of Catalysis, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianLiaoningChina
| | - Yiyan Wang
- DICP‐Surrey Joint Centre for Future Materials, Department of Chemical and Process Engineering, and Advanced Technology InstituteUniversity of SurreyGuilfordSurreyUK
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Shanghai Research Institute of Petrochemical TechnologySinopecShanghaiChina
| | - Jian Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianLiaoningChina
- DICP‐Surrey Joint Centre for Future Materials, Department of Chemical and Process Engineering, and Advanced Technology InstituteUniversity of SurreyGuilfordSurreyUK
- Shanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsFudan UniversityShanghaiP. R. China
| | - Xiangdong Yao
- School of Advanced EnergySun‐yat Sen University (Shenzhen)ShenzhenGuangdongChina
| |
Collapse
|
4
|
Liu H, Bai Y, Huang C, Wang Y, Ji Y, Du Y, Xu L, Yu DG, Bligh SWA. Recent Progress of Electrospun Herbal Medicine Nanofibers. Biomolecules 2023; 13:184. [PMID: 36671570 PMCID: PMC9855805 DOI: 10.3390/biom13010184] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/28/2022] [Accepted: 01/09/2023] [Indexed: 01/18/2023] Open
Abstract
Herbal medicine has a long history of medical efficacy with low toxicity, side effects and good biocompatibility. However, the bioavailability of the extract of raw herbs and bioactive compounds is poor because of their low water solubility. In order to overcome the solubility issues, electrospinning technology can offer a delivery alternative to resolve them. The electrospun fibers have the advantages of high specific surface area, high porosity, excellent mechanical strength and flexible structures. At the same time, various natural and synthetic polymer-bound fibers can mimic extracellular matrix applications in different medical fields. In this paper, the development of electrospinning technology and polymers used for incorporating herbal medicine into electrospun nanofibers are reviewed. Finally, the recent progress of the applications of these herbal medicine nanofibers in biomedical (drug delivery, wound dressing, tissue engineering) and food fields along with their future prospects is discussed.
Collapse
Affiliation(s)
- Hang Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yubin Bai
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Chang Huang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Ying Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yuexin Ji
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yutong Du
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Lin Xu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Sim Wan Annie Bligh
- School of Health Sciences, Caritas Institute of Higher Education, Hong Kong 999077, China
| |
Collapse
|
5
|
Elyaderani AK, De Lama-Odría MDC, del Valle LJ, Puiggalí J. Multifunctional Scaffolds Based on Emulsion and Coaxial Electrospinning Incorporation of Hydroxyapatite for Bone Tissue Regeneration. Int J Mol Sci 2022; 23:ijms232315016. [PMID: 36499342 PMCID: PMC9738225 DOI: 10.3390/ijms232315016] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Tissue engineering is nowadays a powerful tool to restore damaged tissues and recover their normal functionality. Advantages over other current methods are well established, although a continuous evolution is still necessary to improve the final performance and the range of applications. Trends are nowadays focused on the development of multifunctional scaffolds with hierarchical structures and the capability to render a sustained delivery of bioactive molecules under an appropriate stimulus. Nanocomposites incorporating hydroxyapatite nanoparticles (HAp NPs) have a predominant role in bone tissue regeneration due to their high capacity to enhance osteoinduction, osteoconduction, and osteointegration, as well as their encapsulation efficiency and protection capability of bioactive agents. Selection of appropriated polymeric matrices is fundamental and consequently great efforts have been invested to increase the range of properties of available materials through copolymerization, blending, or combining structures constituted by different materials. Scaffolds can be obtained from different processes that differ in characteristics, such as texture or porosity. Probably, electrospinning has the greater relevance, since the obtained nanofiber membranes have a great similarity with the extracellular matrix and, in addition, they can easily incorporate functional and bioactive compounds. Coaxial and emulsion electrospinning processes appear ideal to generate complex systems able to incorporate highly different agents. The present review is mainly focused on the recent works performed with Hap-loaded scaffolds having at least one structural layer composed of core/shell nanofibers.
Collapse
Affiliation(s)
- Amirmajid Kadkhodaie Elyaderani
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, Escola d’Enginyeria de Barcelona Est-EEBE, 08019 Barcelona, Spain
| | - María del Carmen De Lama-Odría
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, Escola d’Enginyeria de Barcelona Est-EEBE, 08019 Barcelona, Spain
| | - Luis J. del Valle
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, Escola d’Enginyeria de Barcelona Est-EEBE, 08019 Barcelona, Spain
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Escola d’Enginyeria de Barcelona Est-EEBE, 08019 Barcelona, Spain
- Correspondence: (L.J.d.V.); (J.P.)
| | - Jordi Puiggalí
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, Escola d’Enginyeria de Barcelona Est-EEBE, 08019 Barcelona, Spain
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Escola d’Enginyeria de Barcelona Est-EEBE, 08019 Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Carrer Baldiri i Reixac 11-15, 08028 Barcelona, Spain
- Correspondence: (L.J.d.V.); (J.P.)
| |
Collapse
|
6
|
Balakrishnan NK, Ostheller ME, Aldeghi N, Schmitz C, Groten R, Seide G. Pilot-Scale Electrospinning of PLA Using Biobased Dyes as Multifunctional Additives. Polymers (Basel) 2022; 14:polym14152989. [PMID: 35893953 PMCID: PMC9330496 DOI: 10.3390/polym14152989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/30/2022] Open
Abstract
Fibers with diameters in the lower micrometer range have unique properties suitable for applications in the textile and biomedical industries. Such fibers are usually produced by solution electrospinning, but this process is environmentally harmful because it requires the use of toxic solvents. Melt electrospinning is a sustainable alternative but the high viscosity and low electrical conductivity of molten polymers produce thicker fibers. Here, we used multifunctional biobased dyes as additives to improve the spinnability of polylactic acid (PLA), improving the spinnability by reducing the electrical resistance of the melt, and incorporating antibacterial activity against Staphylococcus aureus. Spinning trials using our 600-nozzle pilot-scale melt-electrospinning device showed that the addition of dyes produced narrower fibers in the resulting fiber web, with a minimum diameter of ~9 µm for the fiber containing 3% (w/w) of curcumin. The reduction in diameter was low at lower throughputs but more significant at higher throughputs, where the diameter reduced from 46 µm to approximately 23 µm. Although all three dyes showed antibacterial activity, only the PLA melt containing 5% (w/w) curcumin retained this property in the fiber web. Our results provide the basis for the development of environmentally friendly melt-electrospinning processes for the pilot-scale manufacturing of microfibers.
Collapse
Affiliation(s)
- Naveen Kumar Balakrishnan
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands; (M.-E.O.); (N.A.); (C.S.); (G.S.)
- Correspondence:
| | - Maike-Elisa Ostheller
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands; (M.-E.O.); (N.A.); (C.S.); (G.S.)
| | - Niccolo Aldeghi
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands; (M.-E.O.); (N.A.); (C.S.); (G.S.)
| | - Christian Schmitz
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands; (M.-E.O.); (N.A.); (C.S.); (G.S.)
| | - Robert Groten
- Department of Textile and Clothing Technology, Niederrhein University of Applied Sciences, Campus Moenchengladbach, Webschulstrasse 31, 41065 Moenchengladbach, Germany;
| | - Gunnar Seide
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands; (M.-E.O.); (N.A.); (C.S.); (G.S.)
| |
Collapse
|
7
|
Kianfar P, Nguyen Trieu H, Dalle Vacche S, Tsantilis L, Bongiovanni R, Vitale A. Solvent-free electrospinning of liquid polybutadienes and their in-situ photocuring. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Shaukat U, Rossegger E, Schlögl S. A Review of Multi-Material 3D Printing of Functional Materials via Vat Photopolymerization. Polymers (Basel) 2022; 14:polym14122449. [PMID: 35746024 PMCID: PMC9227803 DOI: 10.3390/polym14122449] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 02/04/2023] Open
Abstract
Additive manufacturing or 3D printing of materials is a prominent process technology which involves the fabrication of materials layer-by-layer or point-by-point in a subsequent manner. With recent advancements in additive manufacturing, the technology has excited a great potential for extension of simple designs to complex multi-material geometries. Vat photopolymerization is a subdivision of additive manufacturing which possesses many attractive features, including excellent printing resolution, high dimensional accuracy, low-cost manufacturing, and the ability to spatially control the material properties. However, the technology is currently limited by design strategies, material chemistries, and equipment limitations. This review aims to provide readers with a comprehensive comparison of different additive manufacturing technologies along with detailed knowledge on advances in multi-material vat photopolymerization technologies. Furthermore, we describe popular material chemistries both from the past and more recently, along with future prospects to address the material-related limitations of vat photopolymerization. Examples of the impressive multi-material capabilities inspired by nature which are applicable today in multiple areas of life are briefly presented in the applications section. Finally, we describe our point of view on the future prospects of 3D printed multi-material structures as well as on the way forward towards promising further advancements in vat photopolymerization.
Collapse
|
9
|
Deng Z, Wu H, Mu H, Jiang L, Xi W, Xu X, Zheng W. Preparation and properties of electrospun
NaYF
4
:
Yb
3+
, Er
3
+
‐
PLGA
‐gelatin nanofibers. J Appl Polym Sci 2022. [DOI: 10.1002/app.52422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Zhaoxue Deng
- Institute of Corrosion Science and Surface Technology, Key Laboratory of Superlight Material and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering Harbin Engineering University Harbin China
| | - Hongjian Wu
- Institute of Corrosion Science and Surface Technology, Key Laboratory of Superlight Material and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering Harbin Engineering University Harbin China
| | - Huaijin Mu
- Institute of Corrosion Science and Surface Technology, Key Laboratory of Superlight Material and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering Harbin Engineering University Harbin China
| | - Lipeng Jiang
- Institute of Corrosion Science and Surface Technology, Key Laboratory of Superlight Material and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering Harbin Engineering University Harbin China
| | - Weiyan Xi
- Institute of Corrosion Science and Surface Technology, Key Laboratory of Superlight Material and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering Harbin Engineering University Harbin China
| | - Xiaoxue Xu
- School of Biomedical Engineering, Faculty of Engineering and Information Technology University of Technology Sydney Ultimo New South Wales Australia
| | - Wei Zheng
- Institute of Corrosion Science and Surface Technology, Key Laboratory of Superlight Material and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering Harbin Engineering University Harbin China
| |
Collapse
|
10
|
β-cyclodextrin based electrospun nanofibers for arginase immobilization and its application in the production of L-ornithine. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-02968-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Shao Z, Chen J, Ke LJ, Wang Q, Wang X, Li W, Zheng G. Directional Transportation in a Self-Pumping Dressing Based on a Melt Electrospinning Hydrophobic Mesh. ACS Biomater Sci Eng 2021; 7:5918-5926. [PMID: 34752074 DOI: 10.1021/acsbiomaterials.1c01118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Self-pumping wound dressings with directional water transport ability have been widely studied for their function of directional extraction of excessive biofluid from wounds while keeping the wound in a moderately humid environment to realize rapid wound healing. However, the existing solutions have not paid close attention to the fabrication of a nonirritating hydrophobic layer facing the wounds, which may cause irritation to wounds and thereby further worsen inflammation. Herein, a flexible and elastic thermoplastic polyurethane (TPU) hydrophobic microfiber mesh (TPU-HMM) produced by melt electrospinning (MES) is reported. The TPU-HMM was compounded to a hydrophilic nanofiber membrane, which was fabricated by blending with polyamide 6 and poly(ethylene glycol) (PA6-PEG) to form a composite self-pumping dressing, for which the breakthrough pressure in a reverse direction was 12.8 times than that in a positive direction and the forward water transmission rate was increased by 700%. It shows good directional water transport ability and is expected to absorb excessive biofluid of the wounds. This solvent-free and easy-process TPU-HMM provides a new strategy for the development of functional self-pumping textiles, and the solvent-free fabrication method for fibers, which eliminates the potential toxicity brought by solvent residues, offers more possibilities for its applications in biomedicine.
Collapse
Affiliation(s)
- Zungui Shao
- Department of Instrumental and Electrical Engineering, Xiamen University, Xiamen 361102, China
| | - Junyu Chen
- Department of Instrumental and Electrical Engineering, Xiamen University, Xiamen 361102, China
| | - Ling-Jie Ke
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Qingfeng Wang
- Department of Instrumental and Electrical Engineering, Xiamen University, Xiamen 361102, China
| | - Xiang Wang
- School of Mechanical and Automotive Engineering, Xiamen University of Technology, Xiamen 361024, China
| | - Wenwang Li
- School of Mechanical and Automotive Engineering, Xiamen University of Technology, Xiamen 361024, China
| | - Gaofeng Zheng
- Department of Instrumental and Electrical Engineering, Xiamen University, Xiamen 361102, China
| |
Collapse
|
12
|
Demirci S, Celebioglu A, Kinali‐Demirci S, Idil O, Uyar T. Antibacterial Activity of Cyclodextrin‐Azo Dye Inclusion Complex Encapsulated Electrospun Polycaprolactone Nanofibers. ChemistrySelect 2021. [DOI: 10.1002/slct.202101881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Serkan Demirci
- Institute of Materials Science & Nanotechnology UNAM-National Nanotechnology Research Center Bilkent University Ankara 06800 Turkey
- Department of Chemistry Amasya University Ipekkoy Amasya 05100 Turkey
- Department of Biotechnology Amasya University Ipekkoy Amasya 05100 Turkey
| | - Asli Celebioglu
- Institute of Materials Science & Nanotechnology UNAM-National Nanotechnology Research Center Bilkent University Ankara 06800 Turkey
- Department of Fiber Science & Apparel Design College of Human Ecology Cornell University Ithaca NY 14853 USA
| | - Selin Kinali‐Demirci
- Department of Chemistry Amasya University Ipekkoy Amasya 05100 Turkey
- Department of Biotechnology Amasya University Ipekkoy Amasya 05100 Turkey
| | - Onder Idil
- Department of Biotechnology Amasya University Ipekkoy Amasya 05100 Turkey
- Department of Preschool Education Faculty of Education Amasya University Amasya 05100 Turkey
| | - Tamer Uyar
- Institute of Materials Science & Nanotechnology UNAM-National Nanotechnology Research Center Bilkent University Ankara 06800 Turkey
- Department of Fiber Science & Apparel Design College of Human Ecology Cornell University Ithaca NY 14853 USA
| |
Collapse
|
13
|
Cazorla-Luna R, Ruiz-Caro R, Veiga MD, Malcolm RK, Lamprou DA. Recent advances in electrospun nanofiber vaginal formulations for women's sexual and reproductive health. Int J Pharm 2021; 607:121040. [PMID: 34450222 DOI: 10.1016/j.ijpharm.2021.121040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/17/2021] [Accepted: 08/21/2021] [Indexed: 12/22/2022]
Abstract
Electrospinning is an innovative technique that allows production of nanofibers and microfibers by applying a high voltage to polymer solutions of melts. The properties of these fibers - which include high surface area, high drug loading capacity, and ability to be manufactured from mucoadhesive polymers - may be particularly useful in a myriad of drug delivery and tissue engineering applications. The last decade has witnessed a surge of interest in the application of electrospinning technology for the fabrication of vaginal drug delivery systems for the treatment and prevention of diseases associated with women's sexual and reproductive health, including sexually transmitted infections (e.g. infection with human immunodeficiency virus and herpes simplex virus) vaginitis, preterm birth, contraception, multipurpose prevention technology strategies, cervicovaginal cancer, and general maintenance of vaginal health. Due to their excellent mechanical properties, electrospun scaffolds are also being investigated as next-generation materials in the surgical treatment of pelvic organ prolapse. In this article, we review the latest advances in the field.
Collapse
Affiliation(s)
- Raúl Cazorla-Luna
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Roberto Ruiz-Caro
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - María-Dolores Veiga
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - R Karl Malcolm
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| | - Dimitrios A Lamprou
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
14
|
Affiliation(s)
- Bülin Atıcı
- Nano-Science and Nano-Engineering Program, Graduate School of Science, Engineering and Technology, Istanbul Technical University, Istanbul, Turkey
| | - Cüneyt H. Ünlü
- Chemistry, Istanbul Technical University, Turkey, Istanbul
| | - Meltem Yanilmaz
- Nano-Science and Nano-Engineering Program, Graduate School of Science, Engineering and Technology, Istanbul Technical University, Istanbul, Turkey
- Textile Engineering, Istanbul Technical University, Istanbul, Turkey
| |
Collapse
|
15
|
Melt Electrospinning of Polymers: Blends, Nanocomposites, Additives and Applications. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11041808] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Melt electrospinning has been developed in the last decade as an eco-friendly and solvent-free process to fill the gap between the advantages of solution electrospinning and the need of a cost-effective technique for industrial applications. Although the benefits of using melt electrospinning compared to solution electrospinning are impressive, there are still challenges that should be solved. These mainly concern to the improvement of polymer melt processability with reduction of polymer degradation and enhancement of fiber stability; and the achievement of a good control over the fiber size and especially for the production of large scale ultrafine fibers. This review is focused in the last research works discussing the different melt processing techniques, the most significant melt processing parameters, the incorporation of different additives (e.g., viscosity and conductivity modifiers), the development of polymer blends and nanocomposites, the new potential applications and the use of drug-loaded melt electrospun scaffolds for biomedical applications.
Collapse
|
16
|
|
17
|
He FL, Deng X, Zhou YQ, Zhang TD, Liu YL, Ye YJ, Yin DC. Controlled release of antibiotics from poly-ε-caprolactone/polyethylene glycol wound dressing fabricated by direct-writing melt electrospinning. POLYM ADVAN TECHNOL 2018. [DOI: 10.1002/pat.4481] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Feng-Li He
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences; Northwestern Polytechnical University; Xi'an PR China
| | - Xudong Deng
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences; Northwestern Polytechnical University; Xi'an PR China
| | - Ya-Qing Zhou
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences; Northwestern Polytechnical University; Xi'an PR China
| | - Tuo-Di Zhang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences; Northwestern Polytechnical University; Xi'an PR China
| | - Ya-Li Liu
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences; Northwestern Polytechnical University; Xi'an PR China
| | - Ya-Jing Ye
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences; Northwestern Polytechnical University; Xi'an PR China
| | - Da-Chuan Yin
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences; Northwestern Polytechnical University; Xi'an PR China
| |
Collapse
|
18
|
|
19
|
Chala TF, Wu CM, Chou MH, Guo ZL. Melt Electrospun Reduced Tungsten Oxide /Polylactic Acid Fiber Membranes as a Photothermal Material for Light-Driven Interfacial Water Evaporation. ACS APPLIED MATERIALS & INTERFACES 2018; 10:28955-28962. [PMID: 30052021 DOI: 10.1021/acsami.8b07434] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The development of efficient photothermal materials is the most important issue in solar water evaporation. In this work, melt electrospun reduced tungsten oxide/polylactic acid (WO2.72/PLA) fiber membranes were successfully prepared with improved near-infrared (NIR) photothermal conversion properties owing to strong NIR photoabsorption by the metal oxide. WO2.72 powder nanoparticles were incorporated into PLA matrix by melt processing, following which the composites were extruded into wires using a single screw extruder. Subsequently, fiber membranes were prepared from the extruded wire of the WO2.72/PLA composite by melt electrospinning, which is a cost-effective technique that can produce fiber membranes without the addition of environmentally unfriendly chemicals. The melt electrospun WO2.72/PLA fiber membranes, floatable on water due to surface hydrophobicity, were systematically designed for, and applied to, vapor generation based on the interfacial concept of solar heating. With the photothermal WO2.72/PLA fiber membrane containing 7 wt % WO2.72 nanoparticles, the water evaporation efficiency was reached 81.39%, which is higher than that for the pure PLA fiber membrane and bulk water. Thus, this work contributes to the development of novel photothermal fiber membranes in order to enhance light-driven water evaporation performance for potential applications in the fields of water treatment and desalination.
Collapse
Affiliation(s)
- Tolesa Fita Chala
- Department of Materials Science and Engineering , National Taiwan University of Science and Technology , Taipei 10607 Taiwan , R.O.C
| | - Chang-Mou Wu
- Department of Materials Science and Engineering , National Taiwan University of Science and Technology , Taipei 10607 Taiwan , R.O.C
| | - Min-Hui Chou
- Department of Materials Science and Engineering , National Taiwan University of Science and Technology , Taipei 10607 Taiwan , R.O.C
| | - Zhen-Lin Guo
- Department of Materials Science and Engineering , National Taiwan University of Science and Technology , Taipei 10607 Taiwan , R.O.C
| |
Collapse
|
20
|
Yu DG, Li JJ, Williams GR, Zhao M. Electrospun amorphous solid dispersions of poorly water-soluble drugs: A review. J Control Release 2018; 292:91-110. [PMID: 30118788 DOI: 10.1016/j.jconrel.2018.08.016] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/07/2018] [Accepted: 08/09/2018] [Indexed: 12/20/2022]
Abstract
The development of oral dosage forms for poorly water-soluble active pharmaceutical ingredients (APIs) is a persistent challenge. A range of methods has been explored to address this issue, and amorphous solid dispersions (ASDs) have received increasing attention. ASDs are typically prepared by starting with a liquid precursor (a solution or melt) and applying energy for solidification. Many techniques can be used, with the emergence of electrospinning as a potent option in recent years. This method uses electrical energy to induce changes from liquid to solid. Through the direct applications of electrical energy, electrospinning can generate nanofiber-based ASDs from drug-loaded solutions, melts and melt-solutions. The technique can also be combined with other approaches using the application of mechanical, thermal or other energy sources. Electrospinning has numerous advantages over other approaches to produce ASDs. These advantages include extremely rapid drying speeds, ease of implentation, compatibility with a wide range of active ingredients (including those which are thermally labile), and the generation of products with large surface areas and high porosity. Furthermore, this technique exhibits the potential to create so-called 'fifth-generation' ASDs with nanostructured architectures, such as core/shell or Janus systems and their combinations. These advanced systems can improve dissolution behaviour and provide programmable drug release profiles. Additionally, the fiber components and their spatial distributions can be precisely controlled. Electrospun fiber-based ASDs can maintain an incorporated active ingredient in the amorphous physical form for prolonged periods of time because of their homogeneous drug distribution within the polymer matrix (typically they comprise solid solutions), and ability to inhibit molecular motion. These ASDs can be utilised to generate oral dosage forms for poorly water-soluble drugs, resulting in linear or multiple-phase release of one or more APIs. Electrospun ASDs can also be exploited as templates for manipulating molecular self-assembly, offering a bridge between ASDs and other types of dosage forms. This review addresses the development, advantages and pharmaceutical applications of electrospinning for producing polymeric ASDs. Material preparation and analysis procedures are considered. The mechanisms through which performance has been improved are also discussed.
Collapse
Affiliation(s)
- Deng-Guang Yu
- School of Materials Science & Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Jiao-Jiao Li
- School of Materials Science & Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Gareth R Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Min Zhao
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
21
|
Naeimirad M, Zadhoush A, Kotek R, Esmaeely Neisiany R, Nouri Khorasani S, Ramakrishna S. Recent advances in core/shell bicomponent fibers and nanofibers: A review. J Appl Polym Sci 2018. [DOI: 10.1002/app.46265] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mohammadreza Naeimirad
- Department of Materials and Textile Engineering, Faculty of Engineering; Razi University; Kermanshah Iran
| | - Ali Zadhoush
- Department of Textile Engineering; Isfahan University of Technology; Isfahan 84156-83111 Iran
| | - Richard Kotek
- Fiber and Polymer Science, College of Textiles; North Carolina State University; Raleigh North Carolina 27695-8301
| | - Rasoul Esmaeely Neisiany
- Department of Mechanical Engineering, Faculty of Engineering; Center for Nanofibers and Nanotechnology, National University of Singapore; Singapore 117576 Singapore
- Department of Chemical Engineering; Isfahan University of Technology; Isfahan 84156-83111 Iran
| | - Saied Nouri Khorasani
- Department of Chemical Engineering; Isfahan University of Technology; Isfahan 84156-83111 Iran
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, Faculty of Engineering; Center for Nanofibers and Nanotechnology, National University of Singapore; Singapore 117576 Singapore
| |
Collapse
|
22
|
Nazari T, Garmabi H. The effects of processing parameters on the morphology of PLA/PEG melt electrospun fibers. POLYM INT 2017. [DOI: 10.1002/pi.5486] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Tayebe Nazari
- Department of Polymer Engineering and Color Technology; Amirkabir University of Technology; Tehran Iran
| | - Hamid Garmabi
- Department of Polymer Engineering and Color Technology; Amirkabir University of Technology; Tehran Iran
| |
Collapse
|
23
|
Sahay R, Radchenko I, Budiman AS, Baji A. Measuring the Pull-Off Force of an Individual Fiber Using a Novel Picoindenter/Scanning Electron Microscope Technique. MATERIALS (BASEL, SWITZERLAND) 2017; 10:ma10091074. [PMID: 28902168 PMCID: PMC5615728 DOI: 10.3390/ma10091074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/10/2017] [Accepted: 09/11/2017] [Indexed: 06/07/2023]
Abstract
We employed a novel picoindenter (PI)/scanning electron microscopy (SEM) technique to measure the pull-off force of an individual electrospun poly(vinylidene fluoride) (PVDF) fibers. Individual fibers were deposited over a channel in a custom-designed silicon substrate, which was then attached to a picoindenter. The picoindenter was then positioned firmly on the sample stage of the SEM. The picoindenter tip laterally pushed individual fibers to measure the force required to detach it from the surface of substrate. SEM was used to visualize and document the process. The measured pull-off force ranged between 5.8 ± 0.2 μN to ~17.8 ± 0.2 μN for individual fibers with average diameter ranging from 0.8 to 2.3 μm. Thus, this study, a first of its kind, demonstrates the use of a picoindenter to measure the pull-off force of a single micro/nanofiber.
Collapse
Affiliation(s)
- Rahul Sahay
- Engineering Product Development (EPD) Pillar, Singapore University of Technology and Design, 8 Somapah Rd, Singapore 487372, Singapore.
| | - Ihor Radchenko
- The Xtreme Materials Laboratory (XML), Singapore University of Technology and Design, 8 Somapah Rd, Singapore 487372, Singapore.
| | - Arief S Budiman
- The Xtreme Materials Laboratory (XML), Singapore University of Technology and Design, 8 Somapah Rd, Singapore 487372, Singapore.
| | - Avinash Baji
- Engineering Product Development (EPD) Pillar, Singapore University of Technology and Design, 8 Somapah Rd, Singapore 487372, Singapore.
| |
Collapse
|
24
|
Mayadeo N, Morikawa K, Naraghi M, Green MJ. Modeling of downstream heating in melt electrospinning of polymers. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/polb.24394] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Nikhil Mayadeo
- Artie McFerrin Department of Chemical EngineeringTexas A&M University, College Station Texas77843
| | - Kai Morikawa
- Department of Aerospace EngineeringTexas A&M University, College Station Texas77843
| | - Mohammad Naraghi
- Department of Aerospace EngineeringTexas A&M University, College Station Texas77843
| | - Micah J. Green
- Artie McFerrin Department of Chemical EngineeringTexas A&M University, College Station Texas77843
| |
Collapse
|
25
|
Aytac Z, Yildiz ZI, Kayaci-Senirmak F, Tekinay T, Uyar T. Electrospinning of cyclodextrin/linalool-inclusion complex nanofibers: Fast-dissolving nanofibrous web with prolonged release and antibacterial activity. Food Chem 2017; 231:192-201. [PMID: 28449997 DOI: 10.1016/j.foodchem.2017.03.113] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 03/09/2017] [Accepted: 03/22/2017] [Indexed: 12/15/2022]
Abstract
The volatility and limited water solubility of linalool is a critical issue to be solved. Here, we demonstrated the electrospinning of polymer-free nanofibrous webs of cyclodextrin/linalool-inclusion complex (CD/linalool-IC-NFs). Three types of modified cyclodextrin (HPβCD, MβCD, and HPγCD) were used to electrospin CD/linalool-IC-NFs. Free-standing CD/linalool-IC-NFs facilitate maximum loading of linalool up to 12% (w/w). A significant amount of linalool (45-89%) was preserved in CD/linalool-IC-NFs, due to enhancement in the thermal stability of linalool by cyclodextrin inclusion complexation. Remarkably, CD/linalool-IC-NFs have shown fast-dissolving characteristics in which these nanofibrous webs dissolved in water within two seconds. Furthermore, linalool release from CD/linalool-IC-NFs inhibited growth of model Gram-negative (E. coli) and Gram-positive (S. aureus) bacteria to a great extent. Briefly, characteristics of liquid linalool have been preserved in a solid nanofiber form and designed CD/linalool-IC-NFs confer high loading capacity, enhanced shelf life and strong antibacterial activity of linalool.
Collapse
Affiliation(s)
- Zeynep Aytac
- Institute of Materials Science & Nanotechnology, UNAM-National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
| | - Zehra Irem Yildiz
- Institute of Materials Science & Nanotechnology, UNAM-National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
| | - Fatma Kayaci-Senirmak
- Institute of Materials Science & Nanotechnology, UNAM-National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
| | - Turgay Tekinay
- Life Sciences Application and Research Center, Gazi University, Ankara 06830, Turkey; Department of Medical Biology and Genetics, Faculty of Medicine, Gazi University, Ankara 06560, Turkey
| | - Tamer Uyar
- Institute of Materials Science & Nanotechnology, UNAM-National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey.
| |
Collapse
|
26
|
Zhang B, Yan X, He HW, Yu M, Ning X, Long YZ. Solvent-free electrospinning: opportunities and challenges. Polym Chem 2017. [DOI: 10.1039/c6py01898j] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Electrospinning (e-spinning) has attracted tremendous attention because this technology provides a simple and versatile method for fabricating ultrafine fibers from a rich variety of materials including polymers, composites, and ceramics.
Collapse
Affiliation(s)
- Bin Zhang
- Collaborative Innovation Center for Nanomaterials & Devices
- College of Physics
- Qingdao University
- Qingdao 266071
- China
| | - Xu Yan
- Collaborative Innovation Center for Nanomaterials & Devices
- College of Physics
- Qingdao University
- Qingdao 266071
- China
| | - Hong-Wei He
- Collaborative Innovation Center for Nanomaterials & Devices
- College of Physics
- Qingdao University
- Qingdao 266071
- China
| | - Miao Yu
- Collaborative Innovation Center for Nanomaterials & Devices
- College of Physics
- Qingdao University
- Qingdao 266071
- China
| | - Xin Ning
- Industrial Research Institute of Nonwovens & Technical Textiles
- Qingdao University
- Qingdao 266071
- China
| | - Yun-Ze Long
- Collaborative Innovation Center for Nanomaterials & Devices
- College of Physics
- Qingdao University
- Qingdao 266071
- China
| |
Collapse
|
27
|
Thermo-rheological and interfacial properties of polylactic acid/polyethylene glycol blends toward the melt electrospinning ability. J Appl Polym Sci 2016. [DOI: 10.1002/app.44120] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
28
|
|
29
|
Morphology, crystallization behavior and tensile properties of β-nucleated isotactic polypropylene fibrous membranes prepared by melt electrospinning. CHINESE JOURNAL OF POLYMER SCIENCE 2014. [DOI: 10.1007/s10118-014-1465-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
30
|
Cao L, Su D, Su Z, Chen X. Fabrication of Multiwalled Carbon Nanotube/Polypropylene Conductive Fibrous Membranes by Melt Electrospinning. Ind Eng Chem Res 2014. [DOI: 10.1021/ie403746p] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Li Cao
- Key Laboratory
of Carbon Fiber and Functional Polymers (Beijing University of Chemical
Technology), Ministry of Education, Beijing 100029, China
| | - Dunfan Su
- Key Laboratory
of Carbon Fiber and Functional Polymers (Beijing University of Chemical
Technology), Ministry of Education, Beijing 100029, China
| | - Zhiqiang Su
- Key
Laboratory of Beijing City on Preparation and Processing of Novel
Polymer Materials, Beijing University of Chemical Technology, Beijing 100013, China
| | - Xiaonong Chen
- Key Laboratory
of Carbon Fiber and Functional Polymers (Beijing University of Chemical
Technology), Ministry of Education, Beijing 100029, China
| |
Collapse
|
31
|
Fabrication of microfibrous and nano-/microfibrous scaffolds: melt and hybrid electrospinning and surface modification of poly(L-lactic acid) with plasticizer. BIOMED RESEARCH INTERNATIONAL 2013; 2013:309048. [PMID: 24381937 PMCID: PMC3870109 DOI: 10.1155/2013/309048] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 11/02/2013] [Indexed: 11/18/2022]
Abstract
Biodegradable poly(L-lactic acid) (PLA) fibrous scaffolds were prepared by electrospinning from a PLA melt containing poly(ethylene glycol) (PEG) as a plasticizer to obtain thinner fibers. The effects of PEG on the melt electrospinning of PLA were examined in terms of the melt viscosity and fiber diameter. Among the parameters, the content of PEG had a more significant effect on the average fiber diameter and its distribution than those of the spinning temperature. Furthermore, nano-/microfibrous silk fibroin (SF)/PLA and PLA/PLA composite scaffolds were fabricated by hybrid electrospinning, which involved a combination of solution electrospinning and melt electrospinning. The SF/PLA (20/80) scaffolds consisted of a randomly oriented structure of PLA microfibers (average fiber diameter = 8.9 µm) and SF nanofibers (average fiber diameter = 820 nm). The PLA nano-/microfiber (20/80) scaffolds were found to have similar pore parameters to the PLA microfiber scaffolds. The PLA scaffolds were treated with plasma in the presence of either oxygen or ammonia gas to modify the surface of the fibers. This approach of controlling the surface properties and diameter of fibers could be useful in the design and tailoring of novel scaffolds for tissue engineering.
Collapse
|
32
|
Mota C, Puppi D, Gazzarri M, Bártolo P, Chiellini F. Melt electrospinning writing of three-dimensional star poly(ϵ-caprolactone) scaffolds. POLYM INT 2013. [DOI: 10.1002/pi.4509] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Carlos Mota
- Laboratory of Bioactive Polymeric Materials for Biomedical and Environmental Applications (BIOLab), Department of Chemistry and Industrial Chemistry; University of Pisa; via Vecchia Livornese 1291 56010 San Piero a Grado (Pi) Italy
| | - Dario Puppi
- Laboratory of Bioactive Polymeric Materials for Biomedical and Environmental Applications (BIOLab), Department of Chemistry and Industrial Chemistry; University of Pisa; via Vecchia Livornese 1291 56010 San Piero a Grado (Pi) Italy
| | - Matteo Gazzarri
- Laboratory of Bioactive Polymeric Materials for Biomedical and Environmental Applications (BIOLab), Department of Chemistry and Industrial Chemistry; University of Pisa; via Vecchia Livornese 1291 56010 San Piero a Grado (Pi) Italy
| | - Paulo Bártolo
- Centre for Rapid and Sustainable Product Development; Centro Empresarial da Marinha Grande; Rua de Portugal − Zona Industrial 2430-028 Marinha Grande Portugal
| | - Federica Chiellini
- Laboratory of Bioactive Polymeric Materials for Biomedical and Environmental Applications (BIOLab), Department of Chemistry and Industrial Chemistry; University of Pisa; via Vecchia Livornese 1291 56010 San Piero a Grado (Pi) Italy
| |
Collapse
|
33
|
Cao L, Dong M, Zhang A, Liu Y, Yang W, Su Z, Chen X. Morphologies and crystal structures of styrene-acrylonitrile/isotactic polypropylene ultrafine fibers fabricated by melt electrospinning. POLYM ENG SCI 2013. [DOI: 10.1002/pen.23515] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Li Cao
- Key Laboratory of Carbon Fiber and Functional Polymers; Ministry of Education; School of Material Science and Technology, Beijing University of Chemical Technology; Beijing 100029 People's Republic of China
| | - Mu Dong
- Beijing Research Institute of Chemical Industry; SINOPEC; Polymer Research & Development Center; Beijing 100013 People's Republic of China
| | - Anyang Zhang
- Key Laboratory of Carbon Fiber and Functional Polymers; Ministry of Education; School of Material Science and Technology, Beijing University of Chemical Technology; Beijing 100029 People's Republic of China
| | - Yong Liu
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials; Beijing University of Chemical Technology; Beijing 100013 People's Republic of China
| | - Weimin Yang
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials; Beijing University of Chemical Technology; Beijing 100013 People's Republic of China
| | - Zhiqiang Su
- Key Laboratory of Carbon Fiber and Functional Polymers; Ministry of Education; School of Material Science and Technology, Beijing University of Chemical Technology; Beijing 100029 People's Republic of China
| | - Xiaonong Chen
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials; Beijing University of Chemical Technology; Beijing 100013 People's Republic of China
| |
Collapse
|
34
|
Li X, Liu H, Liu J, Wang J, Li C. Preparation and experimental parameters analysis of laser melt electrospun poly(L-lactide) fibers via orthogonal design. POLYM ENG SCI 2012. [DOI: 10.1002/pen.23138] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
35
|
Sahay R, Kumar PS, Sridhar R, Sundaramurthy J, Venugopal J, Mhaisalkar SG, Ramakrishna S. Electrospun composite nanofibers and their multifaceted applications. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm30966a] [Citation(s) in RCA: 234] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|