1
|
Mieles M, Walter AD, Wu S, Zheng Y, Schwenk GR, Barsoum MW, Ji HF. Hydronium-Crosslinked Inorganic Hydrogel Comprised of 1D Lepidocrocite Titanate Nanofilaments. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409897. [PMID: 39494971 DOI: 10.1002/adma.202409897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/26/2024] [Indexed: 11/05/2024]
Abstract
When a few drops of acid (hydrochloric, acrylic, propionic, acetic, or formic) are added to a colloid comprised of 1D lepidocrocite titanate nanofilaments (1DLs)-2 × 2 TiO6 octahedra in cross-section-a hydrogel forms, in many cases, within seconds. The 1DL synthesis process requires the reaction between titanium diboride with tetramethylammonium (TMA+), hydroxide. Using quantitative nuclear magnetic resonance (qNMR), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC), the mass percent of TMA+ after synthesis is determined to be ≈ 13.1 ± 0.1%. The TMA+ is completely removed from the gels after 2 water soak cycles, resulting in the first completely inorganic, TiO2-based hydrogels. Ion exchanging the TMA+ with hydronium results in gels with relatively strong hydrogen bonds. The hydrogels' compression strengths increased linearly with 1DL colloid concentration. At a 1DL concentration of 45 g L-1, the compressive strength, at 80% deformation when acrylic acid is used, is ≈325 kPa. The strengths are ≈ 50% greater after the TMA+ is removed. The removal of all residual organic components in the hydrogels, including TMA+, is confirmed by qNMR, Fourier-transformed infrared spectroscopy (FTIR), and TGA/DSC. The 1DL phase is retained after gelation, TMA+ removal, and 80% compression.
Collapse
Affiliation(s)
- Matthew Mieles
- Department of Chemistry, Drexel University, Philadelphia, PA, 19104, USA
| | - Adam D Walter
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Simeng Wu
- Department of Mechanical Engineering and Mechanics, Drexel University, Philadelphia, PA, 19104, USA
| | - Yue Zheng
- Department of Mechanical Engineering and Mechanics, Drexel University, Philadelphia, PA, 19104, USA
| | - Gregory R Schwenk
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Michel W Barsoum
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Hai-Feng Ji
- Department of Chemistry, Drexel University, Philadelphia, PA, 19104, USA
| |
Collapse
|
2
|
Wu J, Sheng X, Li L, Liang J, Li Y, Zhao Z, Cui F. Rational Design of a Multifunctional Hydrogel Trap for Water and Fertilizer Capture: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17176-17190. [PMID: 39067070 DOI: 10.1021/acs.jafc.4c03207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Water scarcity and land infertility pose significant challenges to agricultural development, particularly in arid and semiarid regions. Improving soil-water-retention capacity and fertilizer utilization efficiency through the application of soil additives has become a pivotal approach in agricultural practices. Hydrogels exhibit exceptional water absorption and fertilizer retention capabilities, making them extensively utilized in the fields of agriculture, forestry, and desert control. Currently, most reviews primarily focus on the raw materials, classification, synthesis methods, and application prospects of hydrogels, with limited attention given to strategies for enhancing water-retention performance, mechanisms underlying fertilizer absorption, and environmental risks. This review covers the commonly used cross-linking methods in hydrogel synthesis and the structure-activity relationship between hydrogels and water as well as fertilizer. Additionally, a thorough analysis of the ecological benefits and risks associated with hydrogels is presented. Finally, future prospects and challenges are delineated from the perspectives of material design and engineering applications.
Collapse
Affiliation(s)
- Jinxiang Wu
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, People's Republic of China
| | - Xin Sheng
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, People's Republic of China
| | - Li Li
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, People's Republic of China
| | - Jialiang Liang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, People's Republic of China
| | - Yunyi Li
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, People's Republic of China
| | - Zhiwei Zhao
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, People's Republic of China
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Fuyi Cui
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, People's Republic of China
| |
Collapse
|
3
|
Yang C, Ji C, Guo F, Mi H, Wang Y, Qiu J. Wireless Sensor System Based on Organohydrogel Ionic Skin for Physiological Activity Monitoring. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38698676 DOI: 10.1021/acsami.3c19473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Supermolecular hydrogel ionic skin (i-skin) linked with smartphones has attracted widespread attention in physiological activity detection due to its good stability in complex scenarios. However, the low ionic conductivity, inferior mechanical properties, poor contact adhesion, and insufficient freeze resistance of most used hydrogels limit their practical application in flexible electronics. Herein, a novel multifunctional poly(vinyl alcohol)-based conductive organohydrogel (PCEL5.0%) with a supermolecular structure was constructed by innovatively employing sodium carboxymethyl cellulose (CMC-Na) as reinforcement material, ethylene glycol as antifreeze, and lithium chloride as a water retaining agent. Thanks to the synergistic effect of these components, the PCEL5.0% organohydrogel shows excellent performance in terms of ionic conductivity (1.61 S m-1), mechanical properties (tensile strength of 70.38 kPa and elongation at break of 537.84%), interfacial adhesion (1.06 kPa to pig skin), frost resistance (-50.4 °C), water retention (67.1% at 22% relative humidity), and remoldability. The resultant PCEL5.0%-based i-skin delivers satisfactory sensitivity (GF = 1.38) with fast response (348 ms) and high precision under different deformations and low temperature (-25 °C). Significantly, the wireless sensor system based on the PCEL5.0% organohydrogel i-skin can transmit signals from physiological activities and sign language to a smartphone by Bluetooth technology and dynamically displays the status of these movements. The organohydrogel i-skin shows great potential in diverse fields of physiological activity detection, human-computer interaction, and rehabilitation medicine.
Collapse
Affiliation(s)
- Congcong Yang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, P. R. China
| | - Chenchen Ji
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, P. R. China
| | - Fengjiao Guo
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, P. R. China
| | - Hongyu Mi
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, P. R. China
| | - Yongwei Wang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, P. R. China
| | - Jieshan Qiu
- State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
4
|
Varadarajan A, Badani Prado RM, Elmore K, Mishra S, Kundu S. Effects of concentration of hydrophobic component and swelling in saline solutions on mechanical properties of a stretchable hydrogel. SOFT MATTER 2024; 20:869-876. [PMID: 38170915 DOI: 10.1039/d3sm01215h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
An elastic biopolymer, resilin possesses exceptional qualities such as high stretchability and resilience. Such attributes are utilized in nature by many species for mechanical energy storage to facilitate movement. The properties of resilin are attributed to the balanced combination of hydrophilic and hydrophobic segments. To mimic the properties of resilin, we developed a hydrogel system composed of hydrophilic acrylic acid (AAc) and methacrylamide (MAM) chains and hydrophobic poly(propylene glycol diacrylate) (PPGDA) chains. The gel was produced through free-radical polymerization in 0.8 M NaCl solutions using KPS as an initiator. In these gels, AAc and MAM can form hydrogen bonds, whereas the association between PPGDA chains can lead to hydrophobic domains. The PPGDA concentration affects the level of hydrogen bonding and gel mechanical properties. Tensile experiments revealed that the elastic modulus increased with a higher PPGDA concentration. Retraction experiments demonstrated increased velocity and acceleration when released from a stretched state with increasing PPGDA concentration. Swelling and deswelling of gels in saline solutions led to a change in mechanical properties and retraction behavior. This study shows that the stretchability and resilience of these hydrogels can be adjusted by changing the concentration of hydrophobic components.
Collapse
Affiliation(s)
- Anandavalli Varadarajan
- Dave C Swalm School of Chemical Engineering, Mississippi State University, MS State, MS, 39762, USA.
| | - Rosa Maria Badani Prado
- Dave C Swalm School of Chemical Engineering, Mississippi State University, MS State, MS, 39762, USA.
| | - Katherine Elmore
- Dave C Swalm School of Chemical Engineering, Mississippi State University, MS State, MS, 39762, USA.
| | - Satish Mishra
- Dave C Swalm School of Chemical Engineering, Mississippi State University, MS State, MS, 39762, USA.
| | - Santanu Kundu
- Dave C Swalm School of Chemical Engineering, Mississippi State University, MS State, MS, 39762, USA.
| |
Collapse
|
5
|
Jia Y, Hu J, An K, Zhao Q, Dang Y, Liu H, Wei Z, Geng S, Xu F. Hydrogel dressing integrating FAK inhibition and ROS scavenging for mechano-chemical treatment of atopic dermatitis. Nat Commun 2023; 14:2478. [PMID: 37120459 PMCID: PMC10148840 DOI: 10.1038/s41467-023-38209-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 04/20/2023] [Indexed: 05/01/2023] Open
Abstract
Atopic dermatitis (AD) is a chronic skin disease caused by skin immune dyshomeostasis and accompanied by severe pruritus. Although oxidative stress and mechanical scratching can aggravate AD inflammation, treatment targeting scratching is often overlooked, and the efficiency of mechano-chemically synergistic therapy remains unclear. Here, we find that enhanced phosphorylation of focal adhesion kinase (FAK) is associated with scratch-exacerbated AD. We then develop a multifunctional hydrogel dressing that integrates oxidative stress modulation with FAK inhibition to synergistically treat AD. We show that the adhesive, self-healing and antimicrobial hydrogel is suitable for the unique scratching and bacterial environment of AD skin. We demonstrate that it can scavenge intracellular reactive oxygen species and reduce mechanically induced intercellular junction deficiency and inflammation. Furthermore, in mouse AD models with controlled scratching, we find that the hydrogel alleviates AD symptoms, rebuilds the skin barrier, and inhibits inflammation. These results suggest that the hydrogel integrating reactive oxygen species scavenging and FAK inhibition could serve as a promising skin dressing for synergistic AD treatment.
Collapse
Affiliation(s)
- Yuanbo Jia
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University School of Life Science and Technology, 710049, Xi'an, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, 710049, Xi'an, China
| | - Jiahui Hu
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, 710049, Xi'an, China
- Department of Dermatology, The Second Affiliated Hospital, Xi'an Jiaotong University, 710004, Xi'an, Shaanxi, P. R. China
| | - Keli An
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University School of Life Science and Technology, 710049, Xi'an, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, 710049, Xi'an, China
| | - Qiang Zhao
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, 710049, Xi'an, China
- Department of Dermatology, The Second Affiliated Hospital, Xi'an Jiaotong University, 710004, Xi'an, Shaanxi, P. R. China
| | - Yang Dang
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, 710049, Xi'an, China
- Department of Dermatology, The Second Affiliated Hospital, Xi'an Jiaotong University, 710004, Xi'an, Shaanxi, P. R. China
| | - Hao Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University School of Life Science and Technology, 710049, Xi'an, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, 710049, Xi'an, China
| | - Zhao Wei
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University School of Life Science and Technology, 710049, Xi'an, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, 710049, Xi'an, China
| | - Songmei Geng
- Department of Dermatology, The Second Affiliated Hospital, Xi'an Jiaotong University, 710004, Xi'an, Shaanxi, P. R. China.
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University School of Life Science and Technology, 710049, Xi'an, China.
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, 710049, Xi'an, China.
| |
Collapse
|
6
|
Chen K, Liang K, Liu H, Liu R, Liu Y, Zeng S, Tian Y. Skin-Inspired Ultra-Tough Supramolecular Multifunctional Hydrogel Electronic Skin for Human-Machine Interaction. NANO-MICRO LETTERS 2023; 15:102. [PMID: 37052831 PMCID: PMC10102281 DOI: 10.1007/s40820-023-01084-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
Multifunctional supramolecular ultra-tough bionic e-skin with unique durability for human-machine interaction in complex scenarios still remains challenging. Herein, we develop a skin-inspired ultra-tough e-skin with tunable mechanical properties by a physical cross-linking salting-freezing-thawing method. The gelling agent (β-Glycerophosphate sodium: Gp) induces the aggregation and binding of PVA molecular chains and thereby toughens them (stress up to 5.79 MPa, toughness up to 13.96 MJ m-3). Notably, due to molecular self-assembly, hydrogels can be fully recycled and reprocessed by direct heating (100 °C for a few seconds), and the tensile strength can still be maintained at about 100% after six recoveries. The hydrogel integrates transparency (> 60%), super toughness (up to 13.96 MJ m-3, bearing 1500 times of its own tensile weight), good antibacterial properties (E. coli and S. aureus), UV protection (Filtration: 80%-90%), high electrical conductivity (4.72 S m-1), anti-swelling and recyclability. The hydrogel can not only monitor daily physiological activities, but also be used for complex activities underwater and message encryption/decryption. We also used it to create a complete finger joint rehabilitation system with an interactive interface that dynamically presents the user's health status. Our multifunctional electronic skin will have a profound impact on the future of new rehabilitation medical, human-machine interaction, VR/AR and the metaverse fields.
Collapse
Affiliation(s)
- Kun Chen
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169, People's Republic of China
| | - Kewei Liang
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169, People's Republic of China
| | - He Liu
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169, People's Republic of China
| | - Ruonan Liu
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169, People's Republic of China
| | - Yiying Liu
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169, People's Republic of China
| | - Sijia Zeng
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169, People's Republic of China
| | - Ye Tian
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169, People's Republic of China.
- Foshan Graduate School of Innovation, Northeastern University, Foshan, 528300, People's Republic of China.
| |
Collapse
|
7
|
Li M, Zhou Y, Li X, Li S, Zhao J, Hou X, Yuan X. Highly stretchable, injectable hydrogels with cyclic endurance and shape-stability in dynamic mechanical environments, by microunit reformation. J Mater Chem B 2023; 11:3001-3013. [PMID: 36919763 DOI: 10.1039/d2tb02738k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Traditional injectable hydrogels have so far found it difficult to accommodate resistance to large deformation and shape-stability under cyclic deformation. Polyampholyte (PA) hydrogels exhibit resistance to large deformation, good fatigue-resistance and rapid self-healing under dynamic forces. The limitations of the preparation process result in non-injectability of polyampholyte (PA) hydrogels. Electrostatic interactions as a medium for resistance to large deformation and shape-stability after cyclic deformation in reformed injectable hydrogels has been explored in this study. The prepared hydrogels (as-prepared PA-N) were dried and smashed into microunits and then mixed with 0.9% NaCl solution to transform them into reformed hydrogels (as-reformed PA-N) via a needle to achieve injectability. The as-reformed PA-N could exhibit 913.6% elongation at break and showed shape-stability under cyclic deformation due to the efficient self-healing abilities of the microunits and the inherited structure of the prepared hydrogels, which are superior to those of current tough injectable hydrogels. Potential applications in elbow cyclic bending and frequent movement of mobile wounds have been proved in this study. Overall, the results showed that the as-reformed PA-N achieved convenient injectability with resistance to large deformation and shape-stability under cyclic deformation at the same time.
Collapse
Affiliation(s)
- Meiru Li
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China.
| | - Yuwei Zhou
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China.
| | - Xueping Li
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China. .,Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Sidi Li
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, Shandong, China
| | - Jin Zhao
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China.
| | - Xin Hou
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China.
| | - Xubo Yuan
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
8
|
Erkoc C, Yildirim E, Yurtsever M, Okay O. Roadmap to Design Mechanically Robust Copolymer Hydrogels Naturally Cross-Linked by Hydrogen Bonds. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Cagla Erkoc
- Department of Chemistry, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey
| | - Erol Yildirim
- Department of Chemistry, Middle East Technical University, 06800 Ankara, Turkey
| | - Mine Yurtsever
- Department of Chemistry, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey
| | - Oguz Okay
- Department of Chemistry, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey
| |
Collapse
|
9
|
Montazerian H, Davoodi E, Baidya A, Badv M, Haghniaz R, Dalili A, Milani AS, Hoorfar M, Annabi N, Khademhosseini A, Weiss PS. Bio-macromolecular design roadmap towards tough bioadhesives. Chem Soc Rev 2022; 51:9127-9173. [PMID: 36269075 PMCID: PMC9810209 DOI: 10.1039/d2cs00618a] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Emerging sutureless wound-closure techniques have led to paradigm shifts in wound management. State-of-the-art biomaterials offer biocompatible and biodegradable platforms enabling high cohesion (toughness) and adhesion for rapid bleeding control as well as robust attachment of implantable devices. Tough bioadhesion stems from the synergistic contributions of cohesive and adhesive interactions. This Review provides a biomacromolecular design roadmap for the development of tough adhesive surgical sealants. We discuss a library of materials and methods to introduce toughness and adhesion to biomaterials. Intrinsically tough and elastic polymers are leveraged primarily by introducing strong but dynamic inter- and intramolecular interactions either through polymer chain design or using crosslink regulating additives. In addition, many efforts have been made to promote underwater adhesion via covalent/noncovalent bonds, or through micro/macro-interlock mechanisms at the tissue interfaces. The materials settings and functional additives for this purpose and the related characterization methods are reviewed. Measurements and reporting needs for fair comparisons of different materials and their properties are discussed. Finally, future directions and further research opportunities for developing tough bioadhesive surgical sealants are highlighted.
Collapse
Affiliation(s)
- Hossein Montazerian
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA.
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, Los Angeles, California 90024, USA.
| | - Elham Davoodi
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA.
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, Los Angeles, California 90024, USA.
- Multi-Scale Additive Manufacturing Lab, Mechanical and Mechatronics Engineering Department, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Avijit Baidya
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, USA.
| | - Maryam Badv
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, USA
- Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Reihaneh Haghniaz
- Terasaki Institute for Biomedical Innovation, Los Angeles, Los Angeles, California 90024, USA.
| | - Arash Dalili
- School of Engineering, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
| | - Abbas S Milani
- School of Engineering, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
| | - Mina Hoorfar
- School of Engineering, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
- School of Engineering and Computer Science, University of Victoria, Victoria, British Columbia V8P 3E6, Canada
| | - Nasim Annabi
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA.
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, USA.
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, Los Angeles, California 90024, USA.
| | - Paul S Weiss
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA.
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, USA
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
10
|
Yang J, Chen Y, Zhao L, Zhang J, Luo H. Constructions and Properties of Physically Cross-Linked Hydrogels Based on Natural Polymers. POLYM REV 2022. [DOI: 10.1080/15583724.2022.2137525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Affiliation(s)
- Jueying Yang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| | - Yu Chen
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, China
- Sports & Medicine Integration Research Center (SMIRC), Capital University of Physical Education and Sports, Beijing, China
| | - Lin Zhao
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| | - Jinghua Zhang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| | - Hang Luo
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
11
|
Chen S, De Guzman MR, Tsou CH, Li M, Suen MC, Gao C, Tsou CY. Hydrophilic and absorption properties of reversible nanocomposite polyvinyl alcohol hydrogels reinforced with graphene-doped zinc oxide nanoplates for enhanced antibacterial activity. Polym J 2022. [DOI: 10.1038/s41428-022-00711-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
12
|
Yan G, He S, Chen G, Ma S, Zeng A, Chen B, Yang S, Tang X, Sun Y, Xu F, Lin L, Zeng X. Highly Flexible and Broad-Range Mechanically Tunable All-Wood Hydrogels with Nanoscale Channels via the Hofmeister Effect for Human Motion Monitoring. NANO-MICRO LETTERS 2022; 14:84. [PMID: 35348885 PMCID: PMC8964865 DOI: 10.1007/s40820-022-00827-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 02/22/2022] [Indexed: 05/12/2023]
Abstract
Wood-based hydrogel with a unique anisotropic structure is an attractive soft material, but the presence of rigid crystalline cellulose in natural wood makes the hydrogel less flexible. In this study, an all-wood hydrogel was constructed by cross-linking cellulose fibers, polyvinyl alcohol (PVA) chains, and lignin molecules through the Hofmeister effect. The all-wood hydrogel shows a high tensile strength of 36.5 MPa and a strain up to ~ 438% in the longitudinal direction, which is much higher than its tensile strength (~ 2.6 MPa) and strain (~ 198%) in the radial direction, respectively. The high mechanical strength of all-wood hydrogels is mainly attributed to the strong hydrogen bonding, physical entanglement, and van der Waals forces between lignin molecules, cellulose nanofibers, and PVA chains. Thanks to its excellent flexibility, good conductivity, and sensitivity, the all-wood hydrogel can accurately distinguish diverse macroscale or subtle human movements, including finger flexion, pulse, and swallowing behavior. In particular, when "An Qi" was called four times within 15 s, two variations of the pronunciation could be identified. With recyclable, biodegradable, and adjustable mechanical properties, the all-wood hydrogel is a multifunctional soft material with promising applications, such as human motion monitoring, tissue engineering, and robotics materials.
Collapse
Affiliation(s)
- Guihua Yan
- College of Energy, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Shuaiming He
- State Key Laboratory of Pulp and Paper-Making Engineering, South China University of Technology, Guangzhou, 510640, People's Republic of China.
| | - Gaofeng Chen
- College of Energy, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Sen Ma
- College of Energy, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Anqi Zeng
- College of Energy, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Binglin Chen
- College of Energy, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Shuliang Yang
- College of Energy, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Xing Tang
- College of Energy, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Yong Sun
- College of Energy, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Feng Xu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No. 35, Tsinghua East Road, Haidian, Beijing, 100083, People's Republic of China
| | - Lu Lin
- College of Energy, Xiamen University, Xiamen, 361102, People's Republic of China.
| | - Xianhai Zeng
- College of Energy, Xiamen University, Xiamen, 361102, People's Republic of China.
| |
Collapse
|
13
|
Nakamoto M, Noguchi M, Nishiguchi A, Mano JF, Matsusaki M, Akashi M. Fabrication of highly stretchable hydrogel based on crosslinking between alendronates functionalized poly-γ-glutamate and calcium cations. Mater Today Bio 2022; 14:100225. [PMID: 35280331 PMCID: PMC8914556 DOI: 10.1016/j.mtbio.2022.100225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/29/2021] [Accepted: 02/24/2022] [Indexed: 11/27/2022] Open
Abstract
We report a highly stretchable hydrogel based on the crosslinking structure between calcium cations and alendronates (ALN) conjugated with poly-γ-glutamate (γ-PGA), a typical biodegradable polymer. γ-PGA with ALN (γ-PGA-ALN) forms the hydrogel in the aqueous solution containing CaCl2. The hydrogel shows 2000% of stretchability and reversible stretching without failure at a strain of 250%. The fracture strain and stress are tunable by varying the concentration of either γ-PGA-ALN or CaCl2, indicating the importance of fine-tuning of the density of the cross-linkage to control the mechanical properties of the hydrogel. We believe the biodegradable polymer based highly stretchable hydrogel has potential for use in various fields such as tissue engineering.
Collapse
Affiliation(s)
- Masahiko Nakamoto
- Division of Applied Chemistry, Osaka University, Graduate School of Engineering, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Moe Noguchi
- Division of Applied Chemistry, Osaka University, Graduate School of Engineering, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Akihiro Nishiguchi
- Division of Applied Chemistry, Osaka University, Graduate School of Engineering, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - João F Mano
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Campus Universitario de Santiago, 3810-193, Aveiro, Portugal
| | - Michiya Matsusaki
- Division of Applied Chemistry, Osaka University, Graduate School of Engineering, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Mitsuru Akashi
- Division of Applied Chemistry, Osaka University, Graduate School of Engineering, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Department of Frontier Biosciences, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
14
|
Luo C, Xie S, Deng X, Sun Y, Shen Y, Li M, Fu W. From Micelle-like Aggregates to Extremely-stretchable, Fatigue-resistant, Highly-resilient and Self-healable Hydrogels. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
15
|
Guo J, Yu Y, Zhang H, Sun L, Zhao Y. Elastic MXene Hydrogel Microfiber-Derived Electronic Skin for Joint Monitoring. ACS APPLIED MATERIALS & INTERFACES 2021; 13:47800-47806. [PMID: 34590841 DOI: 10.1021/acsami.1c10311] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Effective and timely joint monitoring has been a significantly vital research direction in human healthcare. As an emerging technology, flexible electronics provides more possibilities and applicabilities for practical sensing and signal transmission. Here, we provide novel elastic MXene microfibers of controllable morphologies at a microscale through microfluidic technology for actual joint motion monitoring. Double-network hydrogels including covalently cross-linking polyacrylamide and ionically cross-linking alginate were chosen for superelasticity. For the improvement of the electrical conductivity of superelastic hydrogel microfibers, MXene was selected to mix with them. By introducing the cross-linker to the outer channel, microfibers with controllable diameters along with high electrical conductivities and tensile properties could be fabricated successfully. The practical value of the synthesized microfibers in joint movement sensing has been demonstrated by acting as the element of new motion sensors. Based on these features, it is believed that these elastic MXene hydrogel microfibers have high potential for rapid sensing and diagnosis of joint diseases.
Collapse
Affiliation(s)
- Jiahui Guo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Department of Clinical Laboratory, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Yunru Yu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Han Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Department of Clinical Laboratory, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Lingyu Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Department of Clinical Laboratory, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Yuanjin Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Department of Clinical Laboratory, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| |
Collapse
|
16
|
Li Y, Liu C, Lv X, Sun S. A highly sensitive strain sensor based on a silica@polyaniline core-shell particle reinforced hydrogel with excellent flexibility, stretchability, toughness and conductivity. SOFT MATTER 2021; 17:2142-2150. [PMID: 33439186 DOI: 10.1039/d0sm01998d] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hydrogel-based flexible strain sensors for personal health monitoring and human-machine interaction have attracted wide interest among researchers. In this paper, hydrophobic association and nanocomposite conductive hydrogels were successfully prepared by introducing polyaniline coated silica (SiO2@PANI) core-shell particles into an acrylamide-lauryl methacrylate (P(AM/LMA)) copolymer matrix. The hydrophobic interaction between the SiO2@PANI core-shell particles and the hydrophobic LMA in the P(AM/LMA) chains induced the hydrogels with outstanding mechanical properties. Furthermore, the polyaniline on the SiO2 surface and the inorganic salt formed a conductive network, which synergistically enhanced the conductivity of the hydrogels. The obtained hydrogels integrate high tensile strength (1398 kPa), ultra-stretchability (>1000%), wonderful strain sensitivity (gauge factor = 10.407 at 100-1100% strain), quick response (300 ms), and excellent durability (>300 cycles) due to the hydrophobic association and nanocomposite effect. The prepared SiO2@PANI-P(AM/LMA) hydrogel shows high stress sensitivity to detect human movements and displays a broad application prospect in flexible strain-sensor field.
Collapse
Affiliation(s)
- Youqiang Li
- Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China.
| | - Chuang Liu
- Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China.
| | - Xue Lv
- Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China.
| | - Shulin Sun
- Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China.
| |
Collapse
|
17
|
Qiao Z, Mieles M, Ji H. Injectable and moldable hydrogels for use in sensitive and wide range strain sensing applications. Biopolymers 2020; 111:e23355. [DOI: 10.1002/bip.23355] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 03/20/2020] [Accepted: 04/06/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Zhen Qiao
- Department of ChemistryDrexel University Philadelphia Pennsylvania USA
| | - Matthew Mieles
- Department of ChemistryDrexel University Philadelphia Pennsylvania USA
| | - Hai‐Feng Ji
- Department of ChemistryDrexel University Philadelphia Pennsylvania USA
| |
Collapse
|
18
|
Qiao Z, Parks J, Choi P, Ji HF. Applications of Highly Stretchable and Tough Hydrogels. Polymers (Basel) 2019; 11:E1773. [PMID: 31661812 PMCID: PMC6918353 DOI: 10.3390/polym11111773] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 10/21/2019] [Indexed: 11/29/2022] Open
Abstract
Stretchable and tough hydrogels have drawn a lot of attention recently. Due to their unique properties, they have great potential in the application in areas such as mechanical sensing, wound healing, and drug delivery. In this review, we will summarize recent developments of stretchable and tough hydrogels in these areas.
Collapse
Affiliation(s)
- Zhen Qiao
- Department of Chemistry, Drexel University, Philadelphia, PA 19104, USA.
| | - Jesse Parks
- Department of Chemistry, Drexel University, Philadelphia, PA 19104, USA.
| | - Phillip Choi
- Department of Chemistry, Drexel University, Philadelphia, PA 19104, USA.
| | - Hai-Feng Ji
- Department of Chemistry, Drexel University, Philadelphia, PA 19104, USA.
| |
Collapse
|