1
|
Zhang Z, Chen Y, Wang D, Lin Y, Li K, Fan G, Li F. Hierarchical Nano/Micro-Array Structured CuMgAl-LDH/rGO Hybrids for Remarkably Improved Flame Retardancy and Smoke Suppression Performance of Flexible Polyvinyl Chloride. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39469766 DOI: 10.1021/acsami.4c09430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
In this study, we explored the rational integration of layered double hydroxides (LDHs) with reduced graphene oxide (rGO) to create a hierarchical nano/microarray structured CuMgAl-LDH/rGO hybrid aimed at enhancing the flame retardancy and smoke suppression properties of polymer nanocomposites. The results indicated that the limiting oxygen index (LOI) value of the G-CuMgAl/polyvinyl chloride (PVC) composite reached 35.8%, reflecting a 6.4% increase compared to pristine PVC (29.4%), and achieved a UL-94 V-0 rating. Furthermore, in comparison to pristine PVC, the peak heat release rate (PHRR) of the G-CuMgAl/PVC composite was significantly reduced by 40.2%; the total heat release rate (THR) decreased by 24.3%; the maximum average heat release rate (MARHE) diminished by 41.6%; the peak smoke production (PSPR) decreased by 37.8%; the total smoke production (TSP) was reduced by 31.3%; and the average effective heat of combustion (av-EHC) decreased by 15.2%. The enhanced flame retardancy and reduced smoke production can primarily be attributed to the multiple synergistic interactions among the highly dispersed constituents and the nano/microstructures, which effectively impede the transfer of heat, mass, and O2 from various directions while preventing further combustion of the underlying matrix by creating a tortuous path in the condensed phase. Additionally, this study provides a novel perspective on the design and synthesis of structured LDHs/rGO hybrids, with the potential to enhance flame retardancy and smoke suppression properties across a broad spectrum of polymer materials.
Collapse
Affiliation(s)
- Zixuan Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Box 98, Beijing 100029, China
| | - Yuyang Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Box 98, Beijing 100029, China
| | - Defu Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Box 98, Beijing 100029, China
| | - Yanjun Lin
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Box 98, Beijing 100029, China
- Salt Lake Chemical Engineering Research Complex, Qinghai Provincial Key Laboratory of Salt Lake Materials Chemical Engineering, Qinghai University, Xining 810016, China
| | - Kaitao Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Box 98, Beijing 100029, China
| | - Guoli Fan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Box 98, Beijing 100029, China
| | - Feng Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Box 98, Beijing 100029, China
| |
Collapse
|
2
|
Chen X, Huang W, Tang Y, Zhang R, Lu X, Liu Y, Zhu M, Fan X. Variation of Young's modulus suggested the main active sites for four different aging plastics at an early age time. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134189. [PMID: 38569345 DOI: 10.1016/j.jhazmat.2024.134189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/26/2024] [Accepted: 03/30/2024] [Indexed: 04/05/2024]
Abstract
Precisely determining which bonds are more sensitive when plastic aging occurs is critical to better understand the mechanisms of toxic release and microplastics formation. However, the relationship between chemical bonds with the active aging sites changes and the aging behavior of plastics at an early age is still unclear. Herein, the mechanical behavior of four polymers with different substituents was characterized by the high-resolution AFM. Young's modulus (YM) changes suggested that the cleavage of C-Cl bonds in PVC, C-H bonds in PE and PP, and C-F bonds in PTFE are the main active aging sites for plastic aging. The aging degree of the plastics followed the order of PVC > PP > PE > PTFE. Two aging periods exhibited different YM change behavior, the free radical and cross-linking resulted in a minor increase in YM during the initiation period. Numerous free radicals formed and cross-linking reaction happened, causing a significant increase in YM during the propagation period. Raman spectroscopy verified the formation of microplastics. This research develops promising strategies to quantitatively evaluate the aging degrees using AFM and establish the relationship between chemical bonds and mechanical behavior, which would provide new method to predict plastic pollution in actual environments.
Collapse
Affiliation(s)
- Xueqin Chen
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Wenyi Huang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Yi Tang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Runzhe Zhang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Xinyi Lu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Yi Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Mude Zhu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Xiaoyun Fan
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
3
|
Chen X, Han W, Xie H, Chen J. Release kinetics and risk assessment of additives in plastic advertising banners. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171411. [PMID: 38442761 DOI: 10.1016/j.scitotenv.2024.171411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/24/2024] [Accepted: 02/29/2024] [Indexed: 03/07/2024]
Abstract
Plastic advertising banners (PABs) have been widely used for advertising and publicizing with large usage amount. The PABs are usually added with plenty of chemical additives for improving material performance, and the additives can be released during the lifetime of the PABs. However, limited knowledge is available on the composition and release of the additives in the PABs. In this study, benzenoids were found as the dominant additive categories in PABs. Release kinetics of benzenoid additives with high detection frequency and high abundance from the PABs under indoor and outdoor environments were investigated. During the 150-day release experiment, average release rates of the additives from the PABs under outdoor and indoor environments were 8.3 × 10-10 kg/m2·s and 6.3 × 10-10 kg/m2·s, respectively. The release rates of the additives were negatively related to the thickness of the PAB samples. Health risk assessment indicated that chemicals associated with PABs have potential carcinogenic risks to salesmen in the shopping malls. The risks of chemical exposure associated with PABs to consumers in the shopping malls were acceptable. This study unveils a considerable source of chemical exposure to humans.
Collapse
Affiliation(s)
- Xi Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Wenjing Han
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Huaijun Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
4
|
Kudzin MH, Piwowarska D, Festinger N, Chruściel JJ. Risks Associated with the Presence of Polyvinyl Chloride in the Environment and Methods for Its Disposal and Utilization. MATERIALS (BASEL, SWITZERLAND) 2023; 17:173. [PMID: 38204025 PMCID: PMC10779931 DOI: 10.3390/ma17010173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024]
Abstract
Plastics have recently become an indispensable part of everyone's daily life due to their versatility, durability, light weight, and low production costs. The increasing production and use of plastics poses great environmental problems due to their incomplete utilization, a very long period of biodegradation, and a negative impact on living organisms. Decomposing plastics lead to the formation of microplastics, which accumulate in the environment and living organisms, becoming part of the food chain. The contamination of soils and water with poly(vinyl chloride) (PVC) seriously threatens ecosystems around the world. Their durability and low weight make microplastic particles easily transported through water or air, ending up in the soil. Thus, the problem of microplastic pollution affects the entire ecosystem. Since microplastics are commonly found in both drinking and bottled water, humans are also exposed to their harmful effects. Because of existing risks associated with the PVC microplastic contamination of the ecosystem, intensive research is underway to develop methods to clean and remove it from the environment. The pollution of the environment with plastic, and especially microplastic, results in the reduction of both water and soil resources used for agricultural and utility purposes. This review provides an overview of PVC's environmental impact and its disposal options.
Collapse
Affiliation(s)
- Marcin H. Kudzin
- Łukasiewicz Research Network—Lodz Institute of Technology, 19/27 Marii Sklodowskiej-Curie Str., 90-570 Łódź, Poland; (M.H.K.); (D.P.); (N.F.)
- Circular Economy Center (BCG), Environmental Protection Engineering Research Group, Brzezińska 5/15, 92-103 Łódź, Poland
| | - Dominika Piwowarska
- Łukasiewicz Research Network—Lodz Institute of Technology, 19/27 Marii Sklodowskiej-Curie Str., 90-570 Łódź, Poland; (M.H.K.); (D.P.); (N.F.)
- Doctoral School of Exact and Natural Sciences, University of Lodz, 21/23 Jana Matejki Str., 90-237 Łódź, Poland
- UNESCO Chair on Ecohydrology and Applied Ecology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Str., 90-232 Łódź, Poland
- European Regional Centre for Ecohydrology of the Polish Academy of Sciences, 3 Tylna Str., 90-364 Łódź, Poland
| | - Natalia Festinger
- Łukasiewicz Research Network—Lodz Institute of Technology, 19/27 Marii Sklodowskiej-Curie Str., 90-570 Łódź, Poland; (M.H.K.); (D.P.); (N.F.)
- Circular Economy Center (BCG), Environmental Protection Engineering Research Group, Brzezińska 5/15, 92-103 Łódź, Poland
| | - Jerzy J. Chruściel
- Łukasiewicz Research Network—Lodz Institute of Technology, 19/27 Marii Sklodowskiej-Curie Str., 90-570 Łódź, Poland; (M.H.K.); (D.P.); (N.F.)
- Circular Economy Center (BCG), Environmental Protection Engineering Research Group, Brzezińska 5/15, 92-103 Łódź, Poland
| |
Collapse
|
5
|
Ali SS, Hassan GK, Ismail SH, Ebnalwaled AA, Mohamed GG, Hafez M. Exploration of PVC@SiO 2 nanostructure for adsorption of methylene blue via using quartz crystal microbalance technology. Sci Rep 2023; 13:19621. [PMID: 37949908 PMCID: PMC10638405 DOI: 10.1038/s41598-023-46807-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/05/2023] [Indexed: 11/12/2023] Open
Abstract
Methylene blue (MB) dye is considered a well-known dye in many industries and the low concentration of MB is considered very polluted for all environment if it discharged without any treatment. For that reason, many researchers used advanced technologies for removing MB such as the electrochemical methods that considered very simple and give rapid response. Considering these aspects, a novel quartz crystal microbalance nanosensors based on different concentrations of PVC@SiO2 were designed for real-time adsorption of MB dye in the aqueous streams at different pHs and different temperatures. The characterization results of PVC@SiO2 showed that the PVC@SiO2 have synthesized in spherical shape. The performance of the designed QCM-Based PVC@SiO2 nanosensors were examined by the QCM technique. The sensitivity of designed nanosensors was evaluated at constant concentration of MB (10 mg/L) at different pHs (2, 7 and 11) and temperatures (20 °C, 25 °C, and 30 °C). From the experimental, the best concentration of PVC@SiO2 was 3% for adsorbed 9.99 mg of cationic methylene blue at pH 11 and temperature 20 °C in only 5.6 min.
Collapse
Affiliation(s)
- Safaa S Ali
- Department of Physics, Faculty of Science, Cairo University, Giza, 12613, Egypt
- Department of Basic Sciences, Pyramids Higher Institute for Engineering and Technology, Giza, 12613, Egypt
| | - Gamal K Hassan
- Water Pollution Research Department, National Research Centre, 33El-Bohouth St. (Former El-Tahrir St.), Dokki, P.O. 12622, Giza, Egypt
| | - Sameh H Ismail
- Faculty of Nanotechnology for Postgraduate Studies, Cairo University, Sheikh Zayed Campus, 6th October City, Giza, 12588, Egypt
| | - A A Ebnalwaled
- Electronics & Nano Devices (END) Lab, Physics Department, Faculty of Science, South Valley University, Qena, 83523, Egypt
| | - Gehad G Mohamed
- Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt.
- Nanoscience Department, Basic and Applied Sciences Institute, Egypt-Japan University of Science and Technology, New Borg El Arab, Alexandria, 21934, Egypt.
| | - M Hafez
- Department of Physics, Faculty of Science, Cairo University, Giza, 12613, Egypt
| |
Collapse
|
6
|
Gou N, Yang W, Gao S, Li Q. Incorporation of ultrathin porous metal-free graphite carbon nitride nanosheets in polyvinyl chloride for efficient photodegradation. JOURNAL OF HAZARDOUS MATERIALS 2023; 447:130795. [PMID: 36669405 DOI: 10.1016/j.jhazmat.2023.130795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/24/2022] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
Solid-phase photocatalytic degradation of waste plastics is one of the promising approaches to solve the "white pollution" problem. In this work, a low cost, metal-free, environmentally friendly organic photocatalyst, graphite carbon nitride (g-C3N4), was used for the first time to successfully enhance the photodegradation of polyvinyl chloride (PVC) under simulated sunlight from its visible light photocatalytic capability, while its organic nature and abundant surface functional groups were beneficial for its good dispersion in plastics. It was found that the ultrathin porous g-C3N4 nanosheet synthesized from urea (the UCN sample) had much stronger photodegradation effect in PVC/g-C3N4 composite films than its thick block counterpart synthesized with melamine (the MCN sample) due to its larger specific surface area, higher pore volume, and enhanced photogenerated charge carrier separation. With the incorporation of only 1 wt% UCN sample into PVC, its mechanical properties were largely enhanced with the tensile strength increase of ∼ 45% and the elongation at break increase of ∼ 72%, and its weight loss increased ∼ 58% after 120 h irradiation in the weather resistance test chamber. ·O2- and h+ produced by the UCN sample were found as the main active species in the photocatalytic degradation of PVC to dechlorinate PVC and decompose its long-chain molecules into short-chain small molecules until its final degradation into CO2 and H2O under ideal conditions.
Collapse
Affiliation(s)
- Ning Gou
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Weiyi Yang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Shuang Gao
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Qi Li
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China.
| |
Collapse
|
7
|
Using waste poly(vinyl chloride) to synthesize chloroarenes by plasticizer-mediated electro(de)chlorination. Nat Chem 2023; 15:222-229. [PMID: 36376389 DOI: 10.1038/s41557-022-01078-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 09/27/2022] [Indexed: 11/16/2022]
Abstract
New approaches are needed to both reduce and reuse plastic waste. In this context, poly(vinyl chloride) (PVC) is an appealing target as it is the least recycled high-production-volume polymer due to its facile release of plasticizers and corrosive HCl gas. Herein, these limitations become advantageous in a paired-electrolysis reaction in which HCl is intentionally generated from PVC to chlorinate arenes in an air- and moisture-tolerant process that is mediated by the plasticizer. The reaction proceeds efficiently with other plastic waste present and a commercial plasticized PVC product (laboratory tubing) can be used directly. A simplified life-cycle assessment reveals that using PVC waste as the chlorine source in the paired-electrolysis reaction has a lower global warming potential than HCl. Overall, this method should inspire other strategies for repurposing waste PVC and related polymers using electrosynthetic reactions, including those that take advantage of existing polymer additives.
Collapse
|
8
|
Hamidi N. Upcycling poly(vinyl chloride) waste tubes: Studies of thermal stability and kinetics of films made of waste polyvinylchloride tube at the initial steps of degradation. J Appl Polym Sci 2023. [DOI: 10.1002/app.53663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Nasrollah Hamidi
- Department of Biological and Physical Sciences South Carolina State University Orangeburg South Carolina USA
| |
Collapse
|
9
|
Mijangos C, Calafel I, Santamaría A. Poly(vinyl chloride), a historical polymer still evolving. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
10
|
Vebr A, Dallegre M, Autissier L, Drappier C, Lejeune K, Gigmes D, Kermagoret A. Nitroxide mediated radical polymerization for the preparation of poly(vinyl chloride) grafted poly(acrylate) copolymers. Polym Chem 2022. [DOI: 10.1039/d2py00308b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In view to control the thermal properties of PVC without the use of toxic phthalate derivatives, alkoxyamines were grafted onto an azide modified PVC, through copper catalyzed azide-alkyne cycloaddition (CuAAC),...
Collapse
|