1
|
Choudhary P, Ronkainen J, Carson J, Karhunen V, Lin A, Melton PE, Jarvelin MR, Miettunen J, Huang RC, Sebert S. Developmental origins of psycho-cardiometabolic multimorbidity in adolescence and their underlying pathways through methylation markers: a two-cohort study. Eur Child Adolesc Psychiatry 2024; 33:3157-3167. [PMID: 38366065 PMCID: PMC11424745 DOI: 10.1007/s00787-024-02390-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/26/2024] [Indexed: 02/18/2024]
Abstract
Understanding the biological mechanisms behind multimorbidity patterns in adolescence is important as they may act as intermediary risk factor for long-term health. We aimed to explore relationship between prenatal exposures and adolescent's psycho-cardiometabolic intermediary traits mediated through epigenetic biomarkers, using structural equation modeling (SEM). We used data from mother-child dyads from pregnancy and adolescents at 16-17 years from two prospective cohorts: Northern Finland Birth Cohort 1986 (NFBC1986) and Raine Study from Australia. Factor analysis was applied to generate two different latent factor structures: (a) prenatal exposures and (b) adolescence psycho-cardiometabolic intermediary traits. Furthermore, three types of epigenetic biomarkers were included: (1) DNA methylation score for maternal smoking during pregnancy (DNAmMSS), (2) DNAm age estimate PhenoAge and (3) DNAm estimate for telomere length (DNAmTL). Similar factor structure was observed between both cohorts yielding three prenatal factors, namely BMI (Body Mass Index), SOP (Socio-Obstetric-Profile), and Lifestyle, and four adolescent factors: Anthropometric, Insulin-Triglycerides, Blood Pressure, and Mental health. In the SEM pathways, stronger direct effects of F1prenatal-BMI (NFBC1986 = β: 0.27; Raine = β: 0.39) and F2prenatal-SOP (β: -0.11) factors were observed on adolescent psycho-cardiometabolic multimorbidity. We observed an indirect effect of prenatal latent factors through epigenetic markers on a psycho-cardiometabolic multimorbidity factor in Raine study (P < 0.05). The present study exemplifies an evidence-based approach in two different birth cohorts to demonstrate similar composite structure of prenatal exposures and psycho-cardiometabolic traits (despite cultural, social, and genetic differences) and a common plausible pathway between them through underlying epigenetic markers.
Collapse
Affiliation(s)
- Priyanka Choudhary
- Research Unit of Population Health, Faculty of Medicine, University of Oulu, Oulu, Finland.
| | - Justiina Ronkainen
- Research Unit of Population Health, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Jennie Carson
- Telethon Kids Institute, Perth, Australia
- School of Population and Global Health, University of Western Australia, Perth, Australia
| | - Ville Karhunen
- Research Unit of Population Health, Faculty of Medicine, University of Oulu, Oulu, Finland
- Research Unit of Mathematical Sciences, Faculty of Science, University of Oulu, Oulu, Finland
| | - Ashleigh Lin
- Telethon Kids Institute, Perth, Australia
- UWA Centre for Child Health Research, University of Western Australia, Perth, Australia
| | - Phillip E Melton
- School of Population and Global Health, University of Western Australia, Perth, Australia
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Marjo-Riitta Jarvelin
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College, London, UK
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Kingston Lane, Uxbridge, Middlesex, UK
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Jouko Miettunen
- Research Unit of Population Health, Faculty of Medicine, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Rae-Chi Huang
- Telethon Kids Institute, Perth, Australia
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia
- Nutrition and Health Innovation Research Institute (NHIRI), School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia
| | - Sylvain Sebert
- Research Unit of Population Health, Faculty of Medicine, University of Oulu, Oulu, Finland
| |
Collapse
|
2
|
Lyu CC, Meng Y, Che HY, Suo JL, He YT, Zheng Y, Jiang H, Zhang JB, Yuan B. MSI2 Modulates Unsaturated Fatty Acid Metabolism by Binding FASN in Bovine Mammary Epithelial Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20359-20371. [PMID: 38059915 DOI: 10.1021/acs.jafc.3c07280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
The regulation of fatty acid metabolism is crucial for milk flavor and quality. Therefore, it is important to explore the genes that play a role in fatty acid metabolism and their mechanisms of action. The RNA-binding protein Musashi2 (MSI2) is involved in the regulation of numerous biological processes and plays a regulatory role in post-transcriptional translation. However, its role in the mammary glands of dairy cows has not been reported. The present study examined MSI2 expression in mammary glands from lactating and dry milk cows. Experimental results in bovine mammary epithelial cells (BMECs) showed that MSI2 was negatively correlated with the ability to synthesize milk fat and that MSI2 decreased the content of unsaturated fatty acids (UFAs) in BMECs. Silencing of Msi2 increased triglyceride accumulation in BMECs and increased the proportion of UFAs. MSI2 affects TAG synthesis and milk fat synthesis by regulating fatty acid synthase (FASN). In addition, RNA immunoprecipitation experiments in BMECs demonstrated for the first time that MSI2 can bind to the 3'-UTR of FASN mRNA to exert a regulatory effect. In conclusion, MSI2 affects milk fat synthesis and fatty acid metabolism by regulating the triglyceride synthesis and UFA content through binding FASN.
Collapse
Affiliation(s)
- Chen-Chen Lyu
- Department of Laboratory Animals, College of Animal Sciences, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, Jilin, China
| | - Yu Meng
- Department of Laboratory Animals, College of Animal Sciences, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, Jilin, China
| | - Hao-Yu Che
- Department of Laboratory Animals, College of Animal Sciences, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, Jilin, China
| | - Jin-Long Suo
- Institute of Microsurgery on Extremities, and Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yun-Tong He
- Department of Laboratory Animals, College of Animal Sciences, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, Jilin, China
| | - Yi Zheng
- Department of Laboratory Animals, College of Animal Sciences, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, Jilin, China
| | - Hao Jiang
- Department of Laboratory Animals, College of Animal Sciences, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, Jilin, China
| | - Jia-Bao Zhang
- Department of Laboratory Animals, College of Animal Sciences, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, Jilin, China
| | - Bao Yuan
- Department of Laboratory Animals, College of Animal Sciences, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, Jilin, China
| |
Collapse
|
3
|
Bian J, Zhao J, Zhao Y, Hao X, He S, Li Y, Huang L. Impact of individual factors on DNA methylation of drug metabolism genes: A systematic review. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2023; 64:401-415. [PMID: 37522536 DOI: 10.1002/em.22567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/12/2023] [Accepted: 07/26/2023] [Indexed: 08/01/2023]
Abstract
Individual differences in drug response have always existed in clinical treatment. Many non-genetic factors show non-negligible impacts on personalized medicine. Emerging studies have demonstrated epigenetic could connect non-genetic factors and individual treatment differences. We used systematic retrieval methods and reviewed studies that showed individual factors' impact on DNA methylation of drug metabolism genes. In total, 68 studies were included, and half (n = 36) were cohort studies. Six aspects of individual factors were summarized from the perspective of personalized medicine: parental exposure, environmental pollutants exposure, obesity and diet, drugs, gender and others. The most research (n = 11) focused on ABCG1 methylation. The majority of studies showed non-genetic factors could result in a significant DNA methylation alteration in drug metabolism genes, which subsequently affects the pharmacokinetic processes. However, the underlying mechanism remained unknown. Finally, some viewpoints were presented for future research.
Collapse
Affiliation(s)
- Jialu Bian
- Department of Pharmacy, People's Hospital of Peking University, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Science, Peking University, Beijing, China
| | - Jinxia Zhao
- Department of Pharmacy, People's Hospital of Peking University, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Science, Peking University, Beijing, China
| | - Yinyu Zhao
- Department of Pharmacy, People's Hospital of Peking University, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Science, Peking University, Beijing, China
| | - Xu Hao
- Department of Pharmacy, People's Hospital of Peking University, Beijing, China
| | - Shiyu He
- Department of Pharmacy, People's Hospital of Peking University, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Science, Peking University, Beijing, China
| | - Yuanyuan Li
- Department of Pharmacy, People's Hospital of Peking University, Beijing, China
| | - Lin Huang
- Department of Pharmacy, People's Hospital of Peking University, Beijing, China
| |
Collapse
|
4
|
Balfour D, Melton PE, McVeigh JA, Huang R, Eastwood PR, Wanstall S, Reynolds AC, Cohen‐Woods S. Childhood sleep health and epigenetic age acceleration in late adolescence: Cross-sectional and longitudinal analyses. Acta Paediatr 2023; 112:1001-1010. [PMID: 36808764 PMCID: PMC10952569 DOI: 10.1111/apa.16719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/14/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023]
Abstract
AIM Investigate if childhood measures of sleep health are associated with epigenetic age acceleration in late adolescence. METHODS Parent-reported sleep trajectories from age 5 to 17, self-reported sleep problems at age 17, and six measures of epigenetic age acceleration at age 17 were studied in 1192 young Australians from the Raine Study Gen2. RESULTS There was no evidence for a relationship between the parent-reported sleep trajectories and epigenetic age acceleration (p ≥ 0.17). There was a positive cross-sectional relationship between self-reported sleep problem score and intrinsic epigenetic age acceleration at age 17 (b = 0.14, p = 0.04), which was attenuated after controlling for depressive symptom score at the same age (b = 0.08, p = 0.34). Follow-up analyses suggested this finding may represent greater overtiredness and intrinsic epigenetic age acceleration in adolescents with higher depressive symptoms. CONCLUSION There was no evidence for a relationship between self- or parent-reported sleep health and epigenetic age acceleration in late adolescence after adjusting for depressive symptoms. Mental health should be considered as a potential confounding variable in future research on sleep and epigenetic age acceleration, particularly if subjective measures of sleep are used.
Collapse
Affiliation(s)
- David Balfour
- College of Education, Psychology, and Social WorkFlinders UniversityAdelaideSouth AustraliaAustralia
| | - Phillip E. Melton
- Menzies Institute for Medical Research, College of Health and MedicineUniversity of TasmaniaHobartTasmaniaAustralia
- School of Population and Global HealthThe University of Western AustraliaNedlandsWestern AustraliaAustralia
| | - Joanne A. McVeigh
- Curtin School of Allied HealthCurtin UniversityPerthWestern AustraliaAustralia
- Movement Physiology Laboratory, School of PhysiologyUniversity of the WitwatersrandJohannesburgSouth Africa
| | - Rae‐Chi Huang
- Nutrition and Health Innovation Research Institute (NHIRI)Edith Cowan UniversityPerthWestern AustraliaAustralia
| | - Peter R. Eastwood
- Flinders Health and Medical Research Institute (Sleep Health)Flinders UniversityAdelaideSouth AustraliaAustralia
| | - Sian Wanstall
- Flinders Health and Medical Research Institute (Sleep Health)Flinders UniversityAdelaideSouth AustraliaAustralia
| | - Amy C. Reynolds
- Flinders Health and Medical Research Institute (Sleep Health)Flinders UniversityAdelaideSouth AustraliaAustralia
| | - Sarah Cohen‐Woods
- College of Education, Psychology, and Social WorkFlinders UniversityAdelaideSouth AustraliaAustralia
- Flinders University Institute for Mental Health and WellbeingFlinders UniversityAdelaideSouth AustraliaAustralia
- Flinders Centre for Innovation in CancerFlinders UniversityAdelaideSouth AustraliaAustralia
| |
Collapse
|
5
|
Recent Advances in the Knowledge of the Mechanisms of Leptin Physiology and Actions in Neurological and Metabolic Pathologies. Int J Mol Sci 2023; 24:ijms24021422. [PMID: 36674935 PMCID: PMC9860943 DOI: 10.3390/ijms24021422] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/05/2023] [Accepted: 01/07/2023] [Indexed: 01/13/2023] Open
Abstract
Excess body weight is frequently associated with low-grade inflammation. Evidence indicates a relationship between obesity and cancer, as well as with other diseases, such as diabetes and non-alcoholic fatty liver disease, in which inflammation and the actions of various adipokines play a role in the pathological mechanisms involved in these disorders. Leptin is mainly produced by adipose tissue in proportion to fat stores, but it is also synthesized in other organs, where leptin receptors are expressed. This hormone performs numerous actions in the brain, mainly related to the control of energy homeostasis. It is also involved in neurogenesis and neuroprotection, and central leptin resistance is related to some neurological disorders, e.g., Parkinson's and Alzheimer's diseases. In peripheral tissues, leptin is implicated in the regulation of metabolism, as well as of bone density and muscle mass. All these actions can be affected by changes in leptin levels and the mechanisms associated with resistance to this hormone. This review will present recent advances in the molecular mechanisms of leptin action and their underlying roles in pathological situations, which may be of interest for revealing new approaches for the treatment of diseases where the actions of this adipokine might be compromised.
Collapse
|
6
|
Li X, Qi L. Epigenetics in Precision Nutrition. J Pers Med 2022; 12:jpm12040533. [PMID: 35455649 PMCID: PMC9027461 DOI: 10.3390/jpm12040533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/14/2022] [Accepted: 03/24/2022] [Indexed: 02/01/2023] Open
Abstract
Precision nutrition is an emerging area of nutrition research, with primary focus on the individual variability in response to dietary and lifestyle factors, which are mainly determined by an individual’s intrinsic variations, such as those in genome, epigenome, and gut microbiome. The current research on precision nutrition is heavily focused on genome and gut microbiome, while epigenome (DNA methylation, non-coding RNAs, and histone modification) is largely neglected. The epigenome acts as the interface between the human genome and environmental stressors, including diets and lifestyle. Increasing evidence has suggested that epigenetic modifications, particularly DNA methylation, may determine the individual variability in metabolic health and response to dietary and lifestyle factors and, therefore, hold great promise in discovering novel markers for precision nutrition and potential targets for precision interventions. This review summarized recent studies on DNA methylation with obesity, diabetes, and cardiovascular disease, with more emphasis put in the relations of DNA methylation with nutrition and diet/lifestyle interventions. We also briefly reviewed other epigenetic events, such as non-coding RNAs, in relation to human health and nutrition, and discussed the potential role of epigenetics in the precision nutrition research.
Collapse
Affiliation(s)
- Xiang Li
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA;
| | - Lu Qi
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA;
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Correspondence: ; Tel.: +1-504-988-7259
| |
Collapse
|
7
|
Fontanella RA, Scisciola L, Rizzo MR, Surina S, Sardu C, Marfella R, Paolisso G, Barbieri M. Adiponectin Related Vascular and Cardiac Benefits in Obesity: Is There a Role for an Epigenetically Regulated Mechanism? Front Cardiovasc Med 2021; 8:768026. [PMID: 34869683 PMCID: PMC8639875 DOI: 10.3389/fcvm.2021.768026] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/22/2021] [Indexed: 12/23/2022] Open
Abstract
In obesity, several epigenetic modifications, including histones remodeling, DNA methylation, and microRNAs, could accumulate and determine increased expression of inflammatory molecules, the adipokines, that in turn might induce or accelerate the onset and development of cardiovascular and metabolic disorders. In order to better clarify the potential epigenetic mechanisms underlying the modulation of the inflammatory response by adipokines, the DNA methylation profile in peripheral leukocytes of the promoter region of IL-6 and NF-kB genes and plasma miRNA-21 levels were evaluated in 356 healthy subjects, using quantitative pyrosequencing-based analysis, and correlated with plasma adiponectin levels, body fat content and the primary pro-inflammatory markers. In addition, correlation analysis of DNA methylation profiles and miRNA-21 plasma levels with intima-media thickness (IMT), a surrogate marker for early atherosclerosis, left ventricular mass (LVM), left ventricular ejection fraction (LVEF), and cardiac performance index (MPI) was also performed to evaluate any potential clinical implication in terms of cardiovascular outcome. Results achieved confirmed the role of epigenetics in the obesity-related cardiovascular complications and firstly supported the potential role of plasma miRNA-21 and IL-6 and NF-kB DNA methylation changes in nucleated blood cells as potential biomarkers for predicting cardiovascular risk in obesity. Furthermore, our results, showing a role of adiponectin in preventing epigenetic modification induced by increased adipose tissue content in obese subjects, provide new evidence of an additional mechanism underlying the anti-inflammatory properties and the cardiovascular benefits of adiponectin. The exact mechanisms underlying the obesity-related epigenetic modifications found in the blood cells and whether similar epigenetic changes reflect adipose and myocardial tissue modifications need to be further investigated in future experiments.
Collapse
Affiliation(s)
- Rosaria Anna Fontanella
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Lucia Scisciola
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Maria Rosaria Rizzo
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Surina Surina
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Celestino Sardu
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.,Mediterrannea Cardiocentro, Naples, Italy
| | - Giuseppe Paolisso
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.,Mediterrannea Cardiocentro, Naples, Italy
| | - Michelangela Barbieri
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
8
|
Izquierdo AG, Boughanem H, Diaz-Lagares A, Arranz-Salas I, Esteller M, Tinahones FJ, Casanueva FF, Macias-Gonzalez M, Crujeiras AB. DNA methylome in visceral adipose tissue can discriminate patients with and without colorectal cancer. Epigenetics 2021; 17:665-676. [PMID: 34311674 DOI: 10.1080/15592294.2021.1950991] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Adipose tissue dysfunction, particularly the visceral (VAT) compartment, has been proposed to play a relevant role in colorectal cancer (CRC) development and progression. Epigenetic mechanisms could be involved in this association. The current study aimed to evaluate if specific epigenetic marks in VAT are associated with colorectal cancer (CRC) to identify epigenetic hallmarks of adipose tissue-related CRC. Epigenome-wide DNA methylation was evaluated in VAT from 25 healthy participants and 29 CRC patients, using the Infinium HumanMethylation450K BeadChip. The epigenome-wide methylation analysis identified 170,184 sites able to perfectly separate the CRC and healthy samples. The differentially methylated CpG sites (DMCpGs) showed a global trend for increased methylated levels in CRC with respect to healthy group. Most of the genes encoded by the DMCpGs belonged to metabolic pathways and cell cycle, insulin resistance, and adipocytokine signalling, as well as tumoural transformation processes. In gene-specific analyses, involved genes biologically relevant for the development of CRC include PTPRN2, MAD1L1, TNXB, DIP2C, INPP5A, HDCA4, PRDM16, RPTOR, ATP11A, TBCD, PABPC3, and IER2. The methylation level of some of them showed a discriminatory capacity for detecting CRC higher than 90%, showing IER2 to have the highest capacity. This study reveals that a specific methylation pattern of VAT is associated with CRC. Some of the epigenetic marks identified could provide useful tools for the prediction and personalized treatment of CRC connected to excess adiposity.
Collapse
Affiliation(s)
- Andrea G Izquierdo
- Epigenomics in Endocrinology and Nutrition Group, Epigenomics Unit, Instituto De Investigacion Sanitaria De Santiago De Compostela (IDIS), Complejo Hospitalario Universitario De Santiago De Compostela (CHUS/SERGAS), and Centro De Investigacion Biomedica En Red Fisiopatologia De La Obesidad Y Nutricion (Ciberobn), Spain
| | - Hatim Boughanem
- Department of Endocrinology and Nutrition, Virgen De La Victoria University Hospital, University of Malaga (IBIMA), Spain and Centro De Investigacion Biomedica En Red Physiopathology of Obesity and Nutrition (Ciberobn), Málaga, Spain
| | - Angel Diaz-Lagares
- Cancer Epigenetics, Translational Medical Oncology (Oncomet), Instituto De Investigacion Sanitaria De Santiago De Compostela (IDIS), Complejo Hospitalario Universitario De Santiago De Compostela (CHUS/SERGAS), and Centro De Investigacion Biomedica En Red Oncología (CIBERONC), Spain
| | - Isabel Arranz-Salas
- Unit of Anatomical Pathology, Virgen de la Victoria University Hospital, Málaga, Spain
| | - Manel Esteller
- Josep Carreras Leukemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain; Centro De Investigacion Biomedica En Red Oncologia (CIBERONC), Madrid, Spain; Institucio Catalana De Recerca I Estudis Avançats (ICREA), Barcelona, Catalonia, Spain; Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Catalonia, Spain
| | - Francisco J Tinahones
- Department of Endocrinology and Nutrition, Virgen De La Victoria University Hospital, University of Malaga (IBIMA), Spain and Centro De Investigacion Biomedica En Red Physiopathology of Obesity and Nutrition (Ciberobn), Málaga, Spain
| | - Felipe F Casanueva
- Molecular and Cellular Endocrinology Group. Instituto De Investigacion Sanitaria De Santiago De Compostela (IDIS), Complejo Hospitalario Universitario De Santiago De Compostela (CHUS), Santiago De Compostela University (USC) and Centro De Investigacion Biomedica En Red Fisiopatologia De La Obesidad Y Nutricion (Ciberobn), Spain
| | - Manuel Macias-Gonzalez
- Department of Endocrinology and Nutrition, Virgen De La Victoria University Hospital, University of Malaga (IBIMA), Spain and Centro De Investigacion Biomedica En Red Physiopathology of Obesity and Nutrition (Ciberobn), Málaga, Spain
| | - Ana B Crujeiras
- Epigenomics in Endocrinology and Nutrition Group, Epigenomics Unit, Instituto De Investigacion Sanitaria De Santiago De Compostela (IDIS), Complejo Hospitalario Universitario De Santiago De Compostela (CHUS/SERGAS), and Centro De Investigacion Biomedica En Red Fisiopatologia De La Obesidad Y Nutricion (Ciberobn), Spain
| |
Collapse
|