1
|
Khare T, Seth CS, Kumar V. Sodium stress-induced oxidative damage and antioxidant responses during grain filling in Indica rice. PLANT CELL REPORTS 2024; 43:239. [PMID: 39317783 DOI: 10.1007/s00299-024-03319-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 09/06/2024] [Indexed: 09/26/2024]
Abstract
KEY MESSAGE Sodium treatment caused the sodium ion accumulation at the milk stage of immature rice grains which in turn triggered the overproduction of reactive oxygen species and oxidative damage. The tolerant cultivar showed an enhanced antioxidative response and induced expressions of OsNHX and OsHKT ion-transporters. Sodium chloride-(NaCl) induced soil salinity is a major constraint hindering global rice production. Amongst its constituent ions, sodium (Na+) is known to be the main driver of toxicity under salt stress. The present investigation aims to measure the impacts of excess Na+ during rice grain filling using two Indica rice cultivars with opposite tolerances to salt (salt tolerant: Panvel-3, salt-sensitive: Sahyadri-3) mainly via oxidative and responsive antioxidative pathways. Plants were treated with Na+-specific treatments and NaCl with equimolar Na+ levels (100 mM) at the initiation of the reproductive phase. Stressed and control plants were harvested at three different grain-filling stages- early milk, milk, and dough and assessed for ion accumulation and oxidative damage/antioxidant responses under Na+ stress. Na+ toxicity triggered reactive oxygen species (ROS) production and upregulated the responsive enzymatic antioxidants. Na+ stress also increased the nitric oxide (NO) levels and the activity of nitrate reductase in immature grains. Differential expression levels of OsNHX and OsHKT transporters were observed in response to Na+ stress. Mature grains displayed a high accumulation of Na+ along with reduced K+ content and elevated Na+/K+ under high Na+ availability. The alterations in mature grains' sugar, starch, and protein content were also observed in response to the Na+ stress. Overall, the salt-tolerant cultivar displayed higher antioxidant activities and a lower rate of ROS generation in response to the Na+ stress. Results suggested a link between Na+ accumulation, Na+-mediated stress responses via anti/-oxidant pathways, and the grain-filling process in both rice cultivars.
Collapse
Affiliation(s)
- Tushar Khare
- Department of Biotechnology, Modern College of Arts, Science and Commerce (Savitribai Phule Pune University), Ganeshkhind, Pune, 411016, India
| | | | - Vinay Kumar
- Department of Biotechnology, Modern College of Arts, Science and Commerce (Savitribai Phule Pune University), Ganeshkhind, Pune, 411016, India.
| |
Collapse
|
2
|
Zhu L, Zhang M, Yang X, Zi Y, Yin T, Li X, Wen K, Zhao K, Wan J, Zhang H, Luo X, Zhang H. Genome-wide identification of bZIP transcription factors in 12 Rosaceae species and modeling of novel mechanisms of EjbZIPs response to salt stress. THE PLANT GENOME 2024; 17:e20468. [PMID: 38840305 DOI: 10.1002/tpg2.20468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/18/2024] [Accepted: 05/02/2024] [Indexed: 06/07/2024]
Abstract
In plantae, basic leucine zipper (bZIP) transcription factors (TFs) are widespread and regulate a variety of biological processes under abiotic stress. However, it has not been extensively studied in Rosaceae, and the functional effects of bZIP on Eriobotrya japonica under salt stress are still unknown. Therefore, in this study, the bZIP TF family of 12 species of Rosaceae was analyzed by bioinformatics method, and the expression profile and quantitative real-time polymerase chain reaction of E. japonica under salt stress were analyzed. The results showed that a total of 869 bZIP TFs were identified in 12 species of Rosaceae and divided into nine subfamilies. Differences in promoter cis-elements between subfamilies vary depending on their role. Species belonging to the same subfamily have a similar number of chromosomes and the number of genes contained on each chromosome. Gene duplication analysis has found segmental duplication to be a prime force in the evolution of Rosaceae species. In addition, nine EjbZIPs were significantly different, including seven up-regulated and two down-regulated in E. japonica under salt stress. Especially, EjbZIP13 was involved in the expression of SA-responsive proteins by binding to the NPR1 gene. EjbZIP27, EjbZIP30, and EjbZIP38 were highly expressed in E. japonica under salt stress, thus improving the salt tolerance capacity of the plants. These results can provide a theoretical basis for exploring the characteristics and functions of the bZIP TF family in more species and breeding salt-tolerant E. japonica varieties. It also provides a reference for resolving the response mechanism of bZIP TF in 12 Rosaceae species under salt stress.
Collapse
Affiliation(s)
- Ling Zhu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agriculture Sciences, Bao Shan, China
| | | | - Xiuyao Yang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| | - Yinqiang Zi
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| | - Tuo Yin
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| | - Xulin Li
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| | - Ke Wen
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| | - Ke Zhao
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| | - Jiaqiong Wan
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| | - Huiyun Zhang
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agriculture Sciences, Bao Shan, China
| | - Xinping Luo
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agriculture Sciences, Bao Shan, China
| | - Hanyao Zhang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| |
Collapse
|
3
|
Dong H, Wang Y, Di Y, Qiu Y, Ji Z, Zhou T, Shen S, Du N, Zhang T, Dong X, Guo Z, Piao F, Li Y. Plant growth-promoting rhizobacteria Pseudomonas aeruginosa HG28-5 improves salt tolerance by regulating Na +/K + homeostasis and ABA signaling pathway in tomato. Microbiol Res 2024; 283:127707. [PMID: 38582011 DOI: 10.1016/j.micres.2024.127707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 03/19/2024] [Accepted: 03/27/2024] [Indexed: 04/08/2024]
Abstract
Salinity stress badly restricts the growth, yield and quality of vegetable crops. Plant growth-promoting rhizobacteria (PGPR) is a friendly and effective mean to enhance plant growth and salt tolerance. However, information on the regulatory mechanism of PGPR on vegetable crops in response to salt stress is still incomplete. Here, we screened a novel salt-tolerant PGPR strain Pseudomonas aeruginosa HG28-5 by evaluating the tomatoes growth performance, chlorophyll fluorescence index, and relative electrolyte leakage (REL) under normal and salinity conditions. Results showed that HG28-5 colonization improved seedling growth parameters by increasing the plant height (23.7%), stem diameter (14.6%), fresh and dry weight in the shoot (60.3%, 91.1%) and root (70.1%, 92.5%), compared to salt-stressed plants without colonization. Likewise, HG28-5 increased levels of maximum photochemical efficiency of PSII (Fv/Fm) (99.3%), the antioxidant enzyme activities as superoxide dismutase (SOD, 85.5%), peroxidase (POD, 35.2%), catalase (CAT, 20.6%), and reduced the REL (48.2%), MDA content (41.3%) and ROS accumulation in leaves of WT tomatoes under salt stress in comparison with the plants treated with NaCl alone. Importantly, Na+ content of HG28-5 colonized salt-stressed WT plants were decreased by15.5% in the leaves and 26.6% in the roots in the corresponding non-colonized salt-stressed plants, which may be attributed to the higher K+ concentration and SOS1, SOS2, HKT1;2, NHX1 transcript levels in leaves of colonized plants under saline condition. Interestingly, increased abscisic acid (ABA) content and upregulation of ABA pathway genes (ABA synthesis-related genes NCED1, NCED2, NCED4, NECD6 and signal genes ABF4, ABI5, and AREB) were observed in HG28-5 inoculated salt-stressed WT plants. ABA-deficient mutant (not) with NCED1 deficiency abolishes the effect of HG28-5 on alleviating salt stress in tomato, as exhibited by the substantial rise of REL and ROS accumulation and sharp drop of Fv/Fm in the leaves of not mutant plants. Notably, HG28-5 colonization enhances tomatoes fruit yield by 54.9% and 52.4% under normal and saline water irrigation, respectively. Overall, our study shows that HG28-5 colonization can significantly enhance salt tolerance and improved fruit yield by a variety of plant protection mechanism, including reducing oxidative stress, regulating plant growth, Na+/K+ homeostasis and ABA signaling pathways in tomato. The findings not only deepen our understanding of PGPR regulation plant growth and salt tolerance but also allow us to apply HG28-5 as a microbial fertilizer for agricultural production in high-salinity areas.
Collapse
Affiliation(s)
- Han Dong
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, PR China; College of Horticulture, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Yuanyuan Wang
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Yancui Di
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Yingying Qiu
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Zelin Ji
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Tengfei Zhou
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Shunshan Shen
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Nanshan Du
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Tao Zhang
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Xiaoxing Dong
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Zhixin Guo
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, PR China; International Joint Laboratory of Henan Horticultural Crop Biology, Henan Provincial Facility Horticulture Engineering Technology Research Center, Zhengzhou 450002, PR China.
| | - Fengzhi Piao
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, PR China; International Joint Laboratory of Henan Horticultural Crop Biology, Henan Provincial Facility Horticulture Engineering Technology Research Center, Zhengzhou 450002, PR China.
| | - Yonghua Li
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, PR China.
| |
Collapse
|
4
|
Chen SM, Zhang CM, Peng H, Qin YY, Li L, Li CG, Xing K, Liu LL, Qin S. Exopolysaccharides from endophytic Glutamicibacter halophytocota KLBMP 5180 functions as bio-stimulants to improve tomato plants growth and salt stress tolerance. Int J Biol Macromol 2023; 253:126717. [PMID: 37673153 DOI: 10.1016/j.ijbiomac.2023.126717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/06/2023] [Accepted: 09/03/2023] [Indexed: 09/08/2023]
Abstract
Microbial exopolysaccharides (EPSs) can promote plants growth and protect them against various abiotic stresses, but the role of actinobacteria-produced EPSs in plant growth promoting is still less known. Here, we aim to explore the effect of EPSs from an endophyte Glutamicibacter halophytocota KLBMP 5180 on tomato seeds germination and seedlings growth under salt stress. Our study revealed that 2.0 g/L EPSs resulted in increased seed germination rate by 23.5 % and 11.0 %, respectively, under 0 and 200 mM NaCl stress conditions. Further pot experiment demonstrated that EPSs significantly promoted seedlings growth under salt stress, with increased height, root length and fibrous roots number. Plant physiological traits revealed that EPSs increased chlorophyll content, enhanced the activity of antioxidant enzymes, soluble sugar, and K+ concentration in seedlings; malondialdehyde and Na+ contents were reduced. Additionally, auxin, abscisic acid, jasmonic acid, and salicylic acid were accumulated significantly in seedlings after EPSs treatment. Furthermore, we identified 1233 differentially expressed genes, and they were significantly enriched in phytohormone signal transmission, phenylpropanoid biosynthesis, and protein processing in endogenous reticulum pathways, etc. Our results suggest that KLBMP 5180-produced EPSs effectively ameliorated NaCl stress in tomato plants by triggering complex regulation mechanism, and showed application potentiality in agriculture.
Collapse
Affiliation(s)
- Shu-Mei Chen
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, Jiangsu, PR China
| | - Chun-Mei Zhang
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, Jiangsu, PR China
| | - Hao Peng
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, Jiangsu, PR China
| | - Yue-Ying Qin
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, Jiangsu, PR China
| | - Li Li
- Jiangsu Runzhong Agricultural Technology Co., Ltd, Xinyi 221424, Jiangsu, PR China
| | - Cheng-Guo Li
- Xuzhou Kuaibang Biotechnology Development Co., Ltd, Xuzhou, Jiangsu, PR China
| | - Ke Xing
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, Jiangsu, PR China
| | - Lu-Lu Liu
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, Jiangsu, PR China.
| | - Sheng Qin
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, Jiangsu, PR China.
| |
Collapse
|
5
|
Hernández-Carranza P, Avila-Sosa R, Vera-López O, Navarro-Cruz AR, Ruíz-Espinosa H, Ruiz-López II, Ochoa-Velasco CE. Uncovering the Role of Hormones in Enhancing Antioxidant Defense Systems in Stressed Tomato ( Solanum lycopersicum) Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:3648. [PMID: 37896111 PMCID: PMC10610232 DOI: 10.3390/plants12203648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 10/29/2023]
Abstract
Tomato is one of the most important fruits worldwide. It is widely consumed due to its sensory and nutritional attributes. However, like many other industrial crops, it is affected by biotic and abiotic stress factors, reducing its metabolic and physiological processes. Tomato plants possess different mechanisms of stress responses in which hormones have a pivotal role. They are responsible for a complex signaling network, where the antioxidant system (enzymatic and non-enzymatic antioxidants) is crucial for avoiding the excessive damage caused by stress factors. In this sense, it seems that hormones such as ethylene, auxins, brassinosteroids, and salicylic, jasmonic, abscisic, and gibberellic acids, play important roles in increasing antioxidant system and reducing oxidative damage caused by different stressors. Although several studies have been conducted on the stress factors, hormones, and primary metabolites of tomato plants, the effect of endogenous and/or exogenous hormones on the secondary metabolism is still poorly studied, which is paramount for tomato growing management and secondary metabolites production. Thus, this review offers an updated overview of both endogenous biosynthesis and exogenous hormone application in the antioxidant system of tomato plants as a response to biotic and abiotic stress factors.
Collapse
Affiliation(s)
- Paola Hernández-Carranza
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur. Ciudad Universitaria, Puebla C.P. 72570, Mexico; (P.H.-C.); (R.A.-S.)
| | - Raúl Avila-Sosa
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur. Ciudad Universitaria, Puebla C.P. 72570, Mexico; (P.H.-C.); (R.A.-S.)
| | - Obdulia Vera-López
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur. Ciudad Universitaria, Puebla C.P. 72570, Mexico; (P.H.-C.); (R.A.-S.)
| | - Addí R. Navarro-Cruz
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur. Ciudad Universitaria, Puebla C.P. 72570, Mexico; (P.H.-C.); (R.A.-S.)
| | - Héctor Ruíz-Espinosa
- Facultad de Ingeniería Química, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur. Ciudad Universitaria, Puebla C.P. 72570, Mexico; (H.R.-E.); (I.I.R.-L.)
| | - Irving I. Ruiz-López
- Facultad de Ingeniería Química, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur. Ciudad Universitaria, Puebla C.P. 72570, Mexico; (H.R.-E.); (I.I.R.-L.)
| | - Carlos E. Ochoa-Velasco
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur. Ciudad Universitaria, Puebla C.P. 72570, Mexico; (P.H.-C.); (R.A.-S.)
| |
Collapse
|
6
|
Xiao S, Wan Y, Zheng Y, Wang Y, Fan J, Xu Q, Gao Z, Wu C. Halomonas ventosae JPT10 promotes salt tolerance in foxtail millet ( Setaria italica) by affecting the levels of multiple antioxidants and phytohormones. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2023; 4:275-290. [PMID: 37822729 PMCID: PMC10564379 DOI: 10.1002/pei3.10122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/31/2023] [Accepted: 08/05/2023] [Indexed: 10/13/2023]
Abstract
Plant growth-promoting bacterias (PGPBs) can increase crop output under normal and abiotic conditions. However, the mechanisms underlying the plant salt tolerance-promoting role of PGPBs still remain largely unknown. In this study, we demonstrated that Halomonas ventosae JPT10 promoted the salt tolerance of both dicots and monocots. Physiological analysis revealed that JPT10 reduced reactive oxygen species accumulation by improving the antioxidant capability of foxtail millet seedlings. The metabolomic analysis of JPT10-inoculated foxtail millet seedlings led to the identification of 438 diversely accumulated metabolites, including flavonoids, phenolic acids, lignans, coumarins, sugar, alkaloids, organic acids, and lipids, under salt stress. Exogenous apigenin and chlorogenic acid increased the salt tolerance of foxtail millet seedlings. Simultaneously, JPT10 led to greater amounts of abscisic acid (ABA), indole-3-acetic acid (IAA), salicylic acid (SA), and their derivatives but lower levels of 12-oxo-phytodienoic acid (OPDA), jasmonate (JA), and JA-isoleucine (JA-Ile) under salt stress. Exogenous JA, methyl-JA, and OPDA intensified, whereas ibuprofen or phenitone, two inhibitors of JA and OPDA biosynthesis, partially reversed, the growth inhibition of foxtail millet seedlings caused by salt stress. Our results shed light on the response of foxtail millet seedlings to H. ventosae under salt stress and provide potential compounds to increase salt tolerance in foxtail millet and other crops.
Collapse
Affiliation(s)
- Shenghui Xiao
- National Key Laboratory of Wheat Improvement, Shandong Engineering Research Center of Plant‐Microbial Restoration for Saline‐Alkali Land, College of Life SciencesShandong Agricultural UniversityTai'anShandong provinceChina
| | - Yiman Wan
- National Key Laboratory of Wheat Improvement, Shandong Engineering Research Center of Plant‐Microbial Restoration for Saline‐Alkali Land, College of Life SciencesShandong Agricultural UniversityTai'anShandong provinceChina
| | - Yue Zheng
- National Key Laboratory of Wheat Improvement, Shandong Engineering Research Center of Plant‐Microbial Restoration for Saline‐Alkali Land, College of Life SciencesShandong Agricultural UniversityTai'anShandong provinceChina
| | - Yongdong Wang
- National Key Laboratory of Wheat Improvement, Shandong Engineering Research Center of Plant‐Microbial Restoration for Saline‐Alkali Land, College of Life SciencesShandong Agricultural UniversityTai'anShandong provinceChina
| | - Jiayin Fan
- National Key Laboratory of Wheat Improvement, Shandong Engineering Research Center of Plant‐Microbial Restoration for Saline‐Alkali Land, College of Life SciencesShandong Agricultural UniversityTai'anShandong provinceChina
| | - Qian Xu
- National Key Laboratory of Wheat Improvement, Shandong Engineering Research Center of Plant‐Microbial Restoration for Saline‐Alkali Land, College of Life SciencesShandong Agricultural UniversityTai'anShandong provinceChina
| | - Zheng Gao
- National Key Laboratory of Wheat Improvement, Shandong Engineering Research Center of Plant‐Microbial Restoration for Saline‐Alkali Land, College of Life SciencesShandong Agricultural UniversityTai'anShandong provinceChina
| | - Changai Wu
- National Key Laboratory of Wheat Improvement, Shandong Engineering Research Center of Plant‐Microbial Restoration for Saline‐Alkali Land, College of Life SciencesShandong Agricultural UniversityTai'anShandong provinceChina
| |
Collapse
|
7
|
Zhu J, Du D, Li Y, Zhang Y, Hu WL, Chen L, He X, Xia L, Mo X, Xie F, Luo C. Isolation of three MiDi19-4 genes from mango, the ectopic expression of which confers early flowering and enhances stress tolerance in transgenic Arabidopsis. PLANTA 2023; 258:14. [PMID: 37310483 DOI: 10.1007/s00425-023-04172-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/01/2023] [Indexed: 06/14/2023]
Abstract
MAIN CONCLUSION Three Di19-4 genes were identified in mango. Overexpression of MiDi19-4B in A. thaliana promoted earlier flowering and enhanced drought, salt, and ABA resistance. Drought-induced protein 19 (Di19) is a drought-induced protein that is mainly involved in multiple stress responses. Here, three Di19-4 genes (MiDi19-4A/B/C) in mango (Mangifera indica L.) were identified, and the coding sequences (CDS) had lengths of 684, 666, and 672 bp and encoded proteins with 228, 222, and 224 amino acids, respectively. The promoters of the MiDi19-4 genes contained phytohormone-, light-, and abiotic stress-responsive elements. The MiDi19-4 genes were expressed in every tissue and highly expressed in leaves. Moreover, MiDi19-4 genes were highly correlated with the vegetative growth period and induced by polyethylene glycol (PEG) or salt stress. MiDi19-4B displayed the highest expression during the vegetative growth period and then showed decreased expression, and MiDi19-4B was highly expressed at both the late stage of the vegetative growth period and the initial stage of the flowering induction period. The 35S::GFP-MiDi19-4B fusion protein was located in the cell nucleus. The transgenic plants ectopically expressing MiDi19-4B exhibited earlier flowering and increased expression patterns of FRUITFULL (AtFUL), APETALA1 (AtAP1), and FLOWERING LOCUS T (AtFT). The drought and salt tolerance of MiDi19-4B transgenic plants was significantly increased, and these plants showed decreased sensitivity to abscisic acid (ABA) and considerably increased expression levels of drought- and salt-related genes and ABA signalling pathway genes. Additionally, bimolecular fluorescence complementation (BiFC) experiments revealed that the MiDi19-4B protein interacted with CAULIFLOWER (MiCAL1), MiCAL2, MiAP1-1, and MiAP1-2. Taken together, these results highlighted the important regulatory roles of MiDi19-4B in tolerance to multiple abiotic stresses and in flowering.
Collapse
Affiliation(s)
- Jiawei Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-BioresourcesGuangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China
| | - Daiyan Du
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-BioresourcesGuangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China
| | - Yuze Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-BioresourcesGuangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China
| | - Yili Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-BioresourcesGuangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China
| | - Wan Li Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-BioresourcesGuangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China
| | - Linghe Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-BioresourcesGuangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China
| | - Xinhua He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-BioresourcesGuangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China.
| | - Liming Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-BioresourcesGuangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China
| | - Xiao Mo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-BioresourcesGuangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China
| | - Fangfang Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-BioresourcesGuangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China
| | - Cong Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-BioresourcesGuangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China.
| |
Collapse
|
8
|
Apon TA, Ahmed SF, Bony ZF, Chowdhury MR, Asha JF, Biswas A. Sett priming with salicylic acid improves salinity tolerance of sugarcane ( Saccharum officinarum L.) during early stages of crop development. Heliyon 2023; 9:e16030. [PMID: 37215815 PMCID: PMC10192769 DOI: 10.1016/j.heliyon.2023.e16030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/04/2023] [Accepted: 05/03/2023] [Indexed: 05/24/2023] Open
Abstract
Sugarcane (Saccharum officinarum L.), a globally cultivated carbohydrate producing crop of industrial importance is being challenged by soil salinity due to its glycophytic nature. Water stress coupled with cellular and metabolic alterations resulting from excess sodium (Na+) ion accumulation is irreversibly damaging during early crop developmental stages that often results in complete crop failure. This study therefore aimed to explore the potential of salicylic acid as a sett priming material to mitigate the negative effects of salt stress on sugarcane during germination and early growth stages. Five doses of salicylic acid (0 [hydropriming] [control], 0.5 mM, 1 mM, 1.5 mM and 2 mM) were tested against three levels of salinity (0.5 dS m-1 [control], 4 dS m-1, and 8 dS m-1) within a polyhouse environment. Results revealed 11.2%, 18.5%, 25.4%, and 38.6%, average increase in final germination, germination energy, seedling length and seedling vigor index respectively with a subsequent reduction of 21% mean germination time. Investigations during early seedling growth revealed 21.6%, 17.5%, 27.0%, 39.9%, 10.7%, 11.5%, 17.5%, 47.9%, 35.3% and 20.5% overall increase in plant height, total leaf area, shoot dry matter, root dry matter, leaf greenness, relative water content, membrane stability index, proline content, total antioxidant activity and potassium (K+) ion accumulation respectively with a subsequent reduction of 24.9% Na+ ion accumulation and 35.8% Na+/K+ ratio due to salicylic acid priming. Germination, seedling growth and recovery of physiochemical traits were highly satisfactory in primed setts than non-primed ones even under 8 dS m-1 salinity level. This study should provide useful information for strategizing salinity management approaches for better productivity of sugarcane.
Collapse
Affiliation(s)
- Tasfiqure Amin Apon
- Pathology Division, Bangladesh Sugarcrop Research Institute (BSRI), Ishurdi, 6620, Pabna, Bangladesh
| | - Sheikh Faruk Ahmed
- Department of Crop Botany, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, 1706, Bangladesh
| | - Zannatul Ferdaous Bony
- Department of Agroforestry and Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, 1706, Bangladesh
| | - Md. Rizvi Chowdhury
- Department of Plant Pathology, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, 1706, Bangladesh
| | - Jannatul Ferdoushi Asha
- Department of Agricultural Chemistry, Hajee Mohammad Danesh Science and Technology University (HSTU), Dinajpur 5200, Bangladesh
| | - Arindam Biswas
- Bangladesh Agricultural Research Institute (BARI), Joydebpur, Gazipur, 1701, Bangladesh
| |
Collapse
|
9
|
Emerging Roles of Salicylic Acid in Plant Saline Stress Tolerance. Int J Mol Sci 2023; 24:ijms24043388. [PMID: 36834798 PMCID: PMC9961897 DOI: 10.3390/ijms24043388] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/18/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
One of the most important phytohormones is salicylic acid (SA), which is essential for the regulation of plant growth, development, ripening, and defense responses. The role of SA in plant-pathogen interactions has attracted a lot of attention. Aside from defense responses, SA is also important in responding to abiotic stimuli. It has been proposed to have great potential for improving the stress resistance of major agricultural crops. On the other hand, SA utilization is dependent on the dosage of the applied SA, the technique of application, and the status of the plants (e.g., developmental stage and acclimation). Here, we reviewed the impact of SA on saline stress responses and the associated molecular pathways, as well as recent studies toward understanding the hubs and crosstalk between SA-induced tolerances to biotic and saline stress. We propose that elucidating the mechanism of the SA-specific response to various stresses, as well as SA-induced rhizosphere-specific microbiome modeling, may provide more insights and support in coping with plant saline stress.
Collapse
|
10
|
Li H, Mu Y, Chang X, Li G, Dong Z, Sun J, Jin S, Wang X, Zhang L, Jin S. Functional verification and screening of protein interacting with the slPHB3. PLANT SIGNALING & BEHAVIOR 2022; 17:2025678. [PMID: 35112644 PMCID: PMC9176260 DOI: 10.1080/15592324.2022.2025678] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/31/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
slPHB3 was cloned from Salix linearistipularis, the amino acid sequence blast and phylogenetic tree analysis showed that slPHB3 has the most similarity with PHB3 from Populus trichocarpa using DNAMAN software and MEGA7 software. RT-qPCR results confirmed that the expression of slPHB3 was induced obviously under stress treatments. The growth of recombinant yeast cells was better than that of the control group under the stress treatment, indicating that slPHB3 may be involved in the stress response of yeast cells. The transgenic tobacco was treated with different concentrations of NaCl, NaHCO3 and H2O2, fresh weigh of overexpression tobacco were heavier than wild-types. The results showed that transgenic tobacco was more tolerant to salt and oxidation than wild-type tobacco. Expression of important genes including NHX1 and SOS1 in salt stress response pathways are steadily higher in overexpression tobacco than that in wild-types. We identified 17 proteins interacting with slPHB3 by yeast two-hybrid technique, most of these proteins were relation to the stresses. The salt tolerance of slPHB3 expressing yeast and slPHB3 overexpressing plants were better than that of the control. Ten stress-related proteins may interact with slPHB3, which preliminarily indicated that slPHB3 had a certain response relationship with salt stress. The study of slPHB3 under abiotic stress can improve our understanding of PHB3 gene function.
Collapse
Affiliation(s)
- Haining Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Yitong Mu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Xu Chang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - GuanRong Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Zhongquan Dong
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Jun Sun
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Shengxuan Jin
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
- College of Forestry, Northeast Forestry University, Harbin, China
| | - Xiaolu Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Ling Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Shumei Jin
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| |
Collapse
|
11
|
Dong Y, Zhang L, Chang X, Wang X, Li G, Chen S, Jin S. Overexpression of LpCPC from Lilium pumilum confers saline-alkali stress (NaHCO 3) resistance. PLANT SIGNALING & BEHAVIOR 2022; 17:2057723. [PMID: 35403568 PMCID: PMC9009912 DOI: 10.1080/15592324.2022.2057723] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/21/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Lilium Pumilum with wide distribution is highly tolerant to salinity. The blue copper protein LpCPC (Lilium pumilum Cucumber Peeling Cupredoxin) gene was cloned from Lilium pumilum, which has the conserved regions of type I copper protein. Moreover, LpCPC has the closest relation to CPC from Actinidia chinensis using DNAMAN software and MEGA7 software. qRT-PCR indicated that LpCPC expression was higher in root and bulb of Lilium pumilum, and the expression of the LpCPC gene increased and reached the highest level at 12 h in bulbs under 20 mM NaHCO3. The transgenic yeast was more tolerant compared with the control under NaHCO3 stress. Compared with the wild type, overexpressing plants indicated a relatively lower degree of wilting. In addition, the chlorophyll content, soluble phenol content, and lignin content of overexpressing lines were higher than that of wild-type, whereas the relative conductivity of overexpressing plants was significantly lower than that of wild-type plants. Expression of essential genes including NHX1 and SOS1 in salt stress response pathways are steadily higher in overexpression tobacco than that in wild-types. Transgenic lines had much higher levels of CCR1 and CAD, which are involved in lignin production, compared with wild-type lines. The yeast two-hybrid technique was applied to screen probable interacting proteins interacting with LpCPC. Eight proteins interacted with LpCPC were screened, and five of which were demonstrated to be associated with plant salinity resistance. Overall, the role of gene LpCPC is mediating molecule responses in increasing saline-alkali stress resistance, indicating that it is an essential gene to enhance salt tolerance in Lilium pumilum.
Collapse
Affiliation(s)
- Yi Dong
- Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry UniversityKey Laboratory of Saline-alkali, Harbin, Heilongjiang, China
- Aulin College, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Ling Zhang
- Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry UniversityKey Laboratory of Saline-alkali, Harbin, Heilongjiang, China
| | - Xu Chang
- Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry UniversityKey Laboratory of Saline-alkali, Harbin, Heilongjiang, China
| | - Xiaolu Wang
- Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry UniversityKey Laboratory of Saline-alkali, Harbin, Heilongjiang, China
| | - Guanrong Li
- Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry UniversityKey Laboratory of Saline-alkali, Harbin, Heilongjiang, China
| | - Shiya Chen
- Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry UniversityKey Laboratory of Saline-alkali, Harbin, Heilongjiang, China
| | - Shumei Jin
- Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry UniversityKey Laboratory of Saline-alkali, Harbin, Heilongjiang, China
| |
Collapse
|