1
|
Dong J, Zhao X, Song X, Wang S, Zhao X, Liang B, Long Y, Xing Z. Identification of Eleutherococcus senticosus NAC transcription factors and their mechanisms in mediating DNA methylation of EsFPS, EsSS, and EsSE promoters to regulate saponin synthesis. BMC Genomics 2024; 25:536. [PMID: 38816704 PMCID: PMC11140872 DOI: 10.1186/s12864-024-10442-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/22/2024] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND The formation of pharmacologically active components in medicinal plants is significantly impacted by DNA methylation. However, the exact mechanisms through which DNA methylation regulates secondary metabolism remain incompletely understood. Research in model species has demonstrated that DNA methylation at the transcription factor binding site within functional gene promoters can impact the binding of transcription factors to target DNA, subsequently influencing gene expression. These findings suggest that the interaction between transcription factors and target DNA could be a significant mechanism through which DNA methylation regulates secondary metabolism in medicinal plants. RESULTS This research conducted a comprehensive analysis of the NAC family in E. senticosus, encompassing genome-wide characterization and functional analysis. A total of 117 EsNAC genes were identified and phylogenetically divided into 15 subfamilies. Tandem duplications and chromosome segment duplications were found to be the primary replication modes of these genes. Motif 2 was identified as the core conserved motif of the genes, and the cis-acting elements, gene structures, and expression patterns of each EsNAC gene were different. EsJUB1, EsNAC047, EsNAC098, and EsNAC005 were significantly associated with the DNA methylation ratio in E. senticosus. These four genes were located in the nucleus or cytoplasm and exhibited transcriptional self-activation activity. DNA methylation in EsFPS, EsSS, and EsSE promoters significantly reduced their activity. The methyl groups added to cytosine directly hindered the binding of the promoters to EsJUB1, EsNAC047, EsNAC098, and EsNAC005 and altered the expression of EsFPS, EsSS, and EsSE genes, eventually leading to changes in saponin synthesis in E. senticosus. CONCLUSIONS NAC transcription factors that are hindered from binding by methylated DNA are found in E. senticosus. The incapacity of these NACs to bind to the promoter of the methylated saponin synthase gene leads to subsequent alterations in gene expression and saponin synthesis. This research is the initial evidence showcasing the involvement of EsNAC in governing the impact of DNA methylation on saponin production in E. senticosus.
Collapse
Affiliation(s)
- Jing Dong
- College of Life Sciences, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Xuelei Zhao
- College of Life Sciences, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Xin Song
- College of Life Sciences, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Shuo Wang
- College of Life Sciences, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Xueying Zhao
- College of Life Sciences, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Baoxiang Liang
- College of Life Sciences, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Yuehong Long
- College of Life Sciences, North China University of Science and Technology, Tangshan, 063210, Hebei, China.
| | - Zhaobin Xing
- College of Life Sciences, North China University of Science and Technology, Tangshan, 063210, Hebei, China.
| |
Collapse
|
2
|
Fuertes-Aguilar J, Matilla AJ. Transcriptional Control of Seed Life: New Insights into the Role of the NAC Family. Int J Mol Sci 2024; 25:5369. [PMID: 38791407 PMCID: PMC11121595 DOI: 10.3390/ijms25105369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Transcription factors (TFs) regulate gene expression by binding to specific sequences on DNA through their DNA-binding domain (DBD), a universal process. This update conveys information about the diverse roles of TFs, focusing on the NACs (NAM-ATAF-CUC), in regulating target-gene expression and influencing various aspects of plant biology. NAC TFs appeared before the emergence of land plants. The NAC family constitutes a diverse group of plant-specific TFs found in mosses, conifers, monocots, and eudicots. This update discusses the evolutionary origins of plant NAC genes/proteins from green algae to their crucial roles in plant development and stress response across various plant species. From mosses and lycophytes to various angiosperms, the number of NAC proteins increases significantly, suggesting a gradual evolution from basal streptophytic green algae. NAC TFs play a critical role in enhancing abiotic stress tolerance, with their function conserved in angiosperms. Furthermore, the modular organization of NACs, their dimeric function, and their localization within cellular compartments contribute to their functional versatility and complexity. While most NAC TFs are nuclear-localized and active, a subset is found in other cellular compartments, indicating inactive forms until specific cues trigger their translocation to the nucleus. Additionally, it highlights their involvement in endoplasmic reticulum (ER) stress-induced programmed cell death (PCD) by activating the vacuolar processing enzyme (VPE) gene. Moreover, this update provides a comprehensive overview of the diverse roles of NAC TFs in plants, including their participation in ER stress responses, leaf senescence (LS), and growth and development. Notably, NACs exhibit correlations with various phytohormones (i.e., ABA, GAs, CK, IAA, JA, and SA), and several NAC genes are inducible by them, influencing a broad spectrum of biological processes. The study of the spatiotemporal expression patterns provides insights into when and where specific NAC genes are active, shedding light on their metabolic contributions. Likewise, this review emphasizes the significance of NAC TFs in transcriptional modules, seed reserve accumulation, and regulation of seed dormancy and germination. Overall, it effectively communicates the intricate and essential functions of NAC TFs in plant biology. Finally, from an evolutionary standpoint, a phylogenetic analysis suggests that it is highly probable that the WRKY family is evolutionarily older than the NAC family.
Collapse
Affiliation(s)
| | - Angel J. Matilla
- Departamento de Biología Funcional, Universidad de Santiago de Compostela, 14971 Santiago de Compostela, Spain
| |
Collapse
|
3
|
Yang X, Zhang M, Xi D, Yin T, Zhu L, Yang X, Zhou X, Zhang H, Liu X. Genome-wide identification and expression analysis of the MADS gene family in sweet orange ( Citrus sinensis) infested with pathogenic bacteria. PeerJ 2024; 12:e17001. [PMID: 38436028 PMCID: PMC10909352 DOI: 10.7717/peerj.17001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 02/05/2024] [Indexed: 03/05/2024] Open
Abstract
The risk of pathogenic bacterial invasion in plantations has increased dramatically due to high environmental climate change and has seriously affected sweet orange fruit quality. MADS genes allow plants to develop increased resistance, but functional genes for resistance associated with pathogen invasion have rarely been reported. MADS gene expression profiles were analyzed in sweet orange leaves and fruits infested with Lecanicillium psalliotae and Penicillium digitatum, respectively. Eighty-two MADS genes were identified from the sweet orange genome, and they were classified into five prime subfamilies concerning the Arabidopsis MADS gene family, of which the MIKC subfamily could be subdivided into 13 minor subfamilies. Protein structure analysis showed that more than 93% of the MADS protein sequences of the same subfamily between sweet orange and Arabidopsis were very similar in tertiary structure, with only CsMADS8 and AG showing significant differences. The variability of MADS genes protein structures between sweet orange and Arabidopsis subgroups was less than the variabilities of protein structures within species. Chromosomal localization and covariance analysis showed that these genes were unevenly distributed on nine chromosomes, with the most genes on chromosome 9 and the least on chromosome 2, with 36 and two, respectively. Four pairs of tandem and 28 fragmented duplicated genes in the 82 MADS gene sequences were found in sweet oranges. GO (Gene Ontology) functional enrichment and expression pattern analysis showed that the functional gene CsMADS46 was strongly downregulated of sweet orange in response to biotic stress adversity. It is also the first report that plants' MADS genes are involved in the biotic stress responses of sweet oranges. For the first time, L. psalliotae was experimentally confirmed to be the causal agent of sweet orange leaf spot disease, which provides a reference for the research and control of pathogenic L. psalliotae.
Collapse
Affiliation(s)
- Xiuyao Yang
- Southwest Forestry University, Kunming, China
| | | | - Dengxian Xi
- Southwest Forestry University, Kunming, China
| | - Tuo Yin
- Southwest Forestry University, Kunming, China
| | - Ling Zhu
- Southwest Forestry University, Kunming, China
| | - Xiujia Yang
- Southwest Forestry University, Kunming, China
| | - Xianyan Zhou
- Institute of Tropical and Subtropical Economic Crops, Institute of Tropical and Subtropical Economic Crops, Yunnan Academy of Agricultural Sciences, Ruili, China
| | | | | |
Collapse
|
4
|
Fu C, Liu M. Genome-wide identification and molecular evolution of NAC gene family in Dendrobium nobile. FRONTIERS IN PLANT SCIENCE 2023; 14:1232804. [PMID: 37670854 PMCID: PMC10475575 DOI: 10.3389/fpls.2023.1232804] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/31/2023] [Indexed: 09/07/2023]
Abstract
NAC transcription factors are an important genes that regulate plant growth and development, and can regulate functions such as fruit ripening in plants. Based on genome data of Dendrobium nobile, the NAC gene family was identified and analyzed by bioinformatics methods. In this study, we identified 85 NAC genes in Dendrobium nobile genome, and systematically analyzed the NAC gene family. We found that they were distributed unevenly in the nineteen chromosomes. The amino acid length of D. nobile NAC gene family (DnoNACs) ranged from 80 to 1065, molecular weight ranged from 22.17 to 119.02 kD, and isoelectric point ranged from 4.61~9.26. Its promoter region contains multiple stress responsive elements, including light responsive, gibberellin-responsive, abscisic acid responsiveness, MeJA-responsiveness and drought-inducibility elements. Phylogenetic analysis indicates that the D. nobile NAC gene family is most closely related to Dendrobium catenatum and Dendrobium chrysotoxum. Analysis of SSR loci indicates that the fraction of mononucleotide repeats was the largest, as was the frequency of A/T. Non-coding RNA analysis showed that these 85 NAC genes contain 397 miRNAs. The collinearity analysis shows that 9 collinear locis were found on the chromosomes of D. nobile with Arabidopsis thaliana, and 75 collinear locis with D.chrysotoxum. QRT-PCR experiment under different salt concentration and temperature conditions verified the response mechanism of DnoNAC gene family under stress conditions. Most DnoNAC genes are sensitive to salt stress and temperature stress. The results of this study provide a reference for further understanding the function of NAC gene in D. nobile.
Collapse
|
5
|
Liu C, Zhao M, Ma H, Zhang Y, Liu Q, Liu S, Wang Y, Wang K, Zhang M, Wang Y. The NAC Transcription Factor PgNAC41-2 Gene Involved in the Regulation of Ginsenoside Biosynthesis in Panax ginseng. Int J Mol Sci 2023; 24:11946. [PMID: 37569353 PMCID: PMC10418625 DOI: 10.3390/ijms241511946] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/21/2023] [Accepted: 07/23/2023] [Indexed: 08/13/2023] Open
Abstract
Ginseng (Panax ginseng C.A. Meyer) is a perennial herb of the Araliaceae family, a traditional and valuable Chinese herb in China. The main active component of ginseng is ginsenoside. The NAC transcription factors belong to a large family of plant-specific transcription factors, which are involved in growth and development, stress response and secondary metabolism. In this study, we mapped the NAC gene family on 24 pairs of ginseng chromosomes and found numerous gene replications in the genome. The NAC gene PgNAC41-2, found to be highly related to ginsenoside synthesis, was specifically screened. The phylogeny and expression pattern of the PgNAC41-2 gene were analyzed, along with the derived protein sequence, and a structure model was generated. Furthermore, the PgNAC41-2 gene was cloned and overexpressed by a Rhizobium rhizogenes mediated method, using ginseng petioles as receptor material. The saponin content of the transformed material was analyzed to verify the function of the NAC transcription factor in ginseng. Our results indicate that the PgNAC41-2 gene positively regulates the biosynthesis of saponins.
Collapse
Affiliation(s)
- Chang Liu
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (C.L.); (H.M.); (Y.Z.); (Q.L.); (S.L.); (K.W.); (M.Z.)
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun 130118, China
| | - Mingzhu Zhao
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (C.L.); (H.M.); (Y.Z.); (Q.L.); (S.L.); (K.W.); (M.Z.)
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun 130118, China
| | - Hedan Ma
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (C.L.); (H.M.); (Y.Z.); (Q.L.); (S.L.); (K.W.); (M.Z.)
| | - Yu Zhang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (C.L.); (H.M.); (Y.Z.); (Q.L.); (S.L.); (K.W.); (M.Z.)
| | - Qian Liu
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (C.L.); (H.M.); (Y.Z.); (Q.L.); (S.L.); (K.W.); (M.Z.)
| | - Sizhang Liu
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (C.L.); (H.M.); (Y.Z.); (Q.L.); (S.L.); (K.W.); (M.Z.)
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun 130118, China
| | - Yanfang Wang
- Laboratory for Cultivation and Breeding of Medicinal Plants of National Administration of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China;
| | - Kangyu Wang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (C.L.); (H.M.); (Y.Z.); (Q.L.); (S.L.); (K.W.); (M.Z.)
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun 130118, China
| | - Meiping Zhang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (C.L.); (H.M.); (Y.Z.); (Q.L.); (S.L.); (K.W.); (M.Z.)
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun 130118, China
| | - Yi Wang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (C.L.); (H.M.); (Y.Z.); (Q.L.); (S.L.); (K.W.); (M.Z.)
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun 130118, China
| |
Collapse
|
6
|
Zhou T, Cao L, Hu K, Yu X, Qu S. miR164-NAC21/22 module regulates the resistance of Malus hupehensis against Alternaria alternata by controlling jasmonic acid signaling. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 330:111635. [PMID: 36787851 DOI: 10.1016/j.plantsci.2023.111635] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/06/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Apple leaf spot disease caused by Alternaria alternata apple pathotype (A. alternata AP) is one of the most severe fungal diseases affecting apple cultivation. Transcription factors are involved in various disease-resistance responses, and many of them are regulated by miRNAs. Here, we performed RNA-Seq to investigate gene expression changes during the defense response of Malus hupehensis against A. alternata AP. NAC21/22 was induced upon A. alternata AP infection and silenced by miR164 via direct mRNA cleavage. Contrasting expression patterns were noted between mature miR164 and NAC21/22 during infection. Contrary to NAC21/22 silencing, transiently overexpressing NAC21/22 in M. hupehensis alleviated disease symptoms on 'gala' leaves, impeded A. alternata AP growth, and promoted jasmonic acid (JA) signaling-related gene expression. Importantly, transient miR164f overexpression in 'gala' leaves enhanced A. alternata AP sensitivity, due perhaps to NAC21/22 downregulation, whereas miR164 suppression produced an opposite effect. In summary, the miR164-NAC21/22 module plays a pivotal role in apple resistance against A. alternata AP by regulating JA signaling.
Collapse
Affiliation(s)
- Tingting Zhou
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| | - Lifang Cao
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| | - Kaixu Hu
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| | - Xinyi Yu
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| | - Shenchun Qu
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| |
Collapse
|
7
|
Shen QQ, Wang TJ, Wang JG, He LL, Zhao TT, Zhao XT, Xie LY, Qian ZF, Wang XH, Liu LF, Chen SY, Zhang SZ, Li FS. The SsWRKY1 transcription factor of Saccharum spontaneum enhances drought tolerance in transgenic Arabidopsis thaliana and interacts with 21 potential proteins to regulate drought tolerance in S. spontaneum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 199:107706. [PMID: 37119548 DOI: 10.1016/j.plaphy.2023.107706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/28/2023] [Accepted: 04/13/2023] [Indexed: 05/01/2023]
Abstract
In this study, we characterized a WRKY family member gene, SsWRKY1, which is located in the nucleus and contains multiple stress-related cis-acting elements. In addition, constructed SsWRKY1-overexpressing Arabidopsis thaliana had higher antioxidant enzyme activity and proline content under drought stress conditions, with lower malondialdehyde content and reactive oxygen species (ROS) accumulation, and the expression levels of six stress-related genes were significantly upregulated. This indicates that the overexpression of SsWRKY1 in Arabidopsis thaliana improves resistance to drought stress. SsWRKY1 does not have transcriptional autoactivation activity in yeast cells. The yeast two-hybrid (Y2H) system and the S. spontaneum cDNA library were used to screen 21 potential proteins that interact with SsWRKY1, and the interaction between SsWRKY1 and ATAF2 was verified by GST pull-down assay. In summary, our results indicate that SsWRKY1 plays an important role in the response to drought stress and provide initial insights into the molecular mechanism of SsWRKY1 in response to drought stress.
Collapse
Affiliation(s)
- Qing-Qing Shen
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, 650201, People's Republic of China
| | - Tian-Ju Wang
- Institute for Bio-resources Research and Development of Central Yunnan Plateau, Chuxiong Normal University, Chuxiong, Yunnan, 675000, People's Republic of China
| | - Jun-Gang Wang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, People's Republic of China
| | - Li-Lian He
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, 650201, People's Republic of China
| | - Ting-Ting Zhao
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, People's Republic of China
| | - Xue-Ting Zhao
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, 650201, People's Republic of China
| | - Lin-Yan Xie
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, 650201, People's Republic of China
| | - Zhen-Feng Qian
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, 650201, People's Republic of China
| | - Xian-Hong Wang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, 650201, People's Republic of China
| | - Lu-Feng Liu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, 650201, People's Republic of China
| | - Shu-Ying Chen
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, 650201, People's Republic of China
| | - Shu-Zhen Zhang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, People's Republic of China.
| | - Fu-Sheng Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, 650201, People's Republic of China; Key Laboratory for Crop Production and Smart Agriculture of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, 650201, People's Republic of China.
| |
Collapse
|
8
|
Zhao X, Zhao J, Yang Q, Huang M, Song Y, Li M, Sui S, Liu D. Functional Characterization of the CpNAC1 Promoter and Gene from Chimonanthus praecox in Arabidopsis. Int J Mol Sci 2022; 24:ijms24010542. [PMID: 36613984 PMCID: PMC9820485 DOI: 10.3390/ijms24010542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 12/30/2022] Open
Abstract
The NAC (NAM, ATAF, and CUC) gene family is one of the largest plant-specific transcription factor families. Its members have various biological functions that play important roles in regulating plant growth and development and in responding to biotic and abiotic stresses. However, their functions in woody plants are not fully understood. In this study, we isolated an NAC family member, the CpNAC1 promoter and gene, from wintersweet. CpNAC1 was localized to the nucleus and showed transcriptional activation activity. qRT-PCR analyses revealed that the gene was expressed in almost all tissues tested, with the highest levels found in mature leaves and flower buds. Moreover, its expression was induced by various abiotic stresses and ABA treatment. Its expression patterns were further confirmed in CpNAC1pro:GUS (β-glucuronidase) plants. Among all the transgenic lines, CpNAC1pro-D2 showed high GUS histochemical staining and activity in different tissues of Arabidopsis. Furthermore, its GUS activity significantly increased in response to various abiotic stresses and ABA treatment. This may be related to the stress-related cis-elements, such as ABRE and MYB, which clustered in the CpNAC1pro-D2 segment, suggesting that CpNAC1pro-D2 is the core segment that responds to abiotic stresses and ABA. In addition, CpNAC1-overexpressed Arabidopsis plants had weaker osmosis tolerance than the wild-type plants, demonstrating that CpNAC1 may negatively regulate the drought stress response in transgenic Arabidopsis. Our results provide a foundation for further analyses of NAC family genes in wintersweet, and they broaden our knowledge of the roles that NAC family genes may play in woody plants.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shunzhao Sui
- Correspondence: (S.S.); (D.L.); Tel.: +86-23-6825-0086 (S.S.); +86-23-6825-0086 (D.L.)
| | - Daofeng Liu
- Correspondence: (S.S.); (D.L.); Tel.: +86-23-6825-0086 (S.S.); +86-23-6825-0086 (D.L.)
| |
Collapse
|