1
|
Dionisio-García DM, Genis-Mendoza AD, González-Castro TB, Tovilla-Zárate CA, Juarez-Rojop IE, López-Narváez ML, Hernández-Díaz Y, Nicolini H, Olvera-Hernández V. DNA Methylation of Genes Involved in the HPA Axis in Presence of Suicide Behavior: A Systematic Review. Brain Sci 2023; 13:brainsci13040584. [PMID: 37190549 DOI: 10.3390/brainsci13040584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
DNA methylation in genes of the hypothalamic–pituitary–adrenal (HPA) axis has been associated with suicide behavior. Through a systematic review, we aimed to evaluate DNA methylation levels of the genes involved in the HPA pathway and their association with suicide behavior. A search of articles was performed using PubMed and Science Direct, EBSCO. The terms included were “DNA methylation”, “suicide”, “epigenetics”, “HPA axis” and “suicide behavior”. This systematic review was performed by the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) statement. Six studies comprising 743 cases and 761 controls were included in this systematic review. The studies included individuals with suicide ideation, suicide attempts or completed suicide and childhood trauma, post-traumatic stress disorder (PTSD), or depression. One study reported hypermethylation in GR in childhood trauma, while two studies found hypermethylation of NR3C1 in childhood trauma and major depressive disorder (MDD). Only one study reported hypermethylation in BNDF in people with MDD. FKBP5 was found to be hypermethylated in people with MDD. Another study reported hypermethylation in CRHBP. SKA2 was reported to be hypermethylated in one study and another study found hypomethylated both in populations with PTSD. CRHR1 was found to be hypermethylated in people with MDD, and the last study found hypomethylation in CRH. Our result showed that patients with suicidal behavior showed a DNA methylation state of genes of the HPA axis in association with psychiatric comorbidity and with adverse events. Genes of the HPA axis could play a role in suicidal behavior associated with adverse events and pathologies. As a result, DNA methylation levels, proteins, and genes involved in the HPA axis could be considered for the search for biomarkers for the prevention of suicidal behavior in future studies.
Collapse
|
2
|
Xu B, Zhang X, He Y, Liu C, Li L, Liu Q, Huang Y, Chen M, Ren B, Guo Y, Chen Y. The impacts of early-life adversity on striatal and hippocampal memory functions. Neuroscience 2022; 490:11-24. [DOI: 10.1016/j.neuroscience.2022.02.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/02/2022] [Accepted: 02/25/2022] [Indexed: 12/15/2022]
|
3
|
Sontate KV, Rahim Kamaluddin M, Naina Mohamed I, Mohamed RMP, Shaikh MF, Kamal H, Kumar J. Alcohol, Aggression, and Violence: From Public Health to Neuroscience. Front Psychol 2022; 12:699726. [PMID: 35002823 PMCID: PMC8729263 DOI: 10.3389/fpsyg.2021.699726] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 11/17/2021] [Indexed: 12/16/2022] Open
Abstract
Alcohol has been associated with violent crimes and domestic violence across many nations. Various etiological factors were linked to chronic alcohol use and violence including psychiatric comorbidities of perpetrators such as personality disorders, mood disorders, and intermittent explosive disorders. Aggression is the precursor of violence and individuals prone to aggressive behaviors are more likely to commit impulsive violent crimes, especially under the influence of alcohol. Findings from brain studies indicate long-term alcohol consumption induced morphological changes in brain regions involved in self-control, decision-making, and emotional processing. In line with this, the inherent dopaminergic and serotonergic anomalies seen in aggressive individuals increase their susceptibility to commit violent crimes when alcohol present in their system. In relation to this, this article intends to investigate the influence of alcohol on aggression with sociopsychological and neuroscientific perspectives by looking into comorbidity of personality or mood disorders, state of the mind during alcohol consumption, types of beverages, environmental trigger, neurochemical changes, and gender differences that influence individual responses to alcohol intake and susceptibility to intoxicated aggression.
Collapse
Affiliation(s)
| | - Mohammad Rahim Kamaluddin
- Centre for Research in Psychology and Human Well-Being, Faculty of Social Sciences and Humanities, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Isa Naina Mohamed
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Rashidi Mohamed Pakri Mohamed
- Department of Family Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Mohd Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Malaysia
| | - Haziq Kamal
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| |
Collapse
|
4
|
Borinskaya SA, Rubanovich AV, Larin AK, Kazantseva AV, Davydova YD, Generozov EV, Khusnutdinova EK, Yankovsky NK. Epigenome-Wide Association Study of CpG Methylation in Aggressive Behavior. RUSS J GENET+ 2021. [DOI: 10.1134/s1022795421120048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Thumfart KM, Jawaid A, Bright K, Flachsmann M, Mansuy IM. Epigenetics of childhood trauma: Long term sequelae and potential for treatment. Neurosci Biobehav Rev 2021; 132:1049-1066. [PMID: 34742726 DOI: 10.1016/j.neubiorev.2021.10.042] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 10/17/2021] [Accepted: 10/29/2021] [Indexed: 12/17/2022]
Abstract
Childhood trauma (CT) can have persistent effects on the brain and is one of the major risk factors for neuropsychiatric diseases in adulthood. Recent advances in the field of epigenetics suggest that epigenetic factors such as DNA methylation and histone modifications, as well as regulatory processes involving non-coding RNA are associated with the long-term sequelae of CT. This narrative review summarizes current knowledge on the epigenetic basis of CT and describes studies in animal models and human subjects examining how the epigenome and transcriptome are modified by CT in the brain. It discusses psychological and pharmacological interventions that can counteract epigenetic changes induced by CT and the need to establish longitudinal assessment after CT for developing more effective diagnostics and treatment strategies based on epigenetic targets.
Collapse
Affiliation(s)
- Kristina M Thumfart
- Laboratory of Neuroepigenetics, Brain Research Institute, University of Zürich and Institute for Neuroscience of the Swiss Federal Institute of Technology, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland
| | - Ali Jawaid
- Laboratory of Neuroepigenetics, Brain Research Institute, University of Zürich and Institute for Neuroscience of the Swiss Federal Institute of Technology, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland; Laboratory for Translational Research in Neuropsychiatric Disorders (TREND), BRAINCITY: Center of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology, Ludwika Pasteura 3, Warsaw, 02-093, Poland
| | - Kristina Bright
- Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Marc Flachsmann
- Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Isabelle M Mansuy
- Laboratory of Neuroepigenetics, Brain Research Institute, University of Zürich and Institute for Neuroscience of the Swiss Federal Institute of Technology, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland.
| |
Collapse
|
6
|
Duclot F, Kabbaj M. Epigenetics of Aggression. Curr Top Behav Neurosci 2021; 54:283-310. [PMID: 34595741 DOI: 10.1007/7854_2021_252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Aggression is a complex behavioral trait modulated by both genetic and environmental influences on gene expression. By controlling gene expression in a reversible yet potentially lasting manner in response to environmental stimulation, epigenetic mechanisms represent prime candidates in explaining both individual differences in aggression and the development of elevated aggressive behaviors following life adversity. In this manuscript, we review the evidence for an epigenetic basis in the development and expression of aggression in both humans and related preclinical animal models. In particular, we discuss reports linking DNA methylation, histone post-translational modifications, as well as non-coding RNA, to the regulation of a variety of genes implicated in the neurobiology of aggression including neuropeptides, the serotoninergic and dopaminergic systems, and stress response related systems. While clinical reports do reveal interesting patterns of DNA methylation underlying individual differences and experience-induced aggressive behaviors, they do, in general, face the challenge of linking peripheral observations to central nervous system regulations. Preclinical studies, on the other hand, provide detailed mechanistic insights into the epigenetic reprogramming of gene expression following life adversities. Although the functional link to aggression remains unclear in most, these studies together do highlight the involvement of epigenetic events driven by DNA methylation, histone modifications, and non-coding RNA in the neuroadaptations underlying the development and expression of aggression.
Collapse
Affiliation(s)
- Florian Duclot
- Department of Biomedical Sciences and Program in Neuroscience, Florida State University, Tallahassee, FL, USA.
| | - Mohamed Kabbaj
- Department of Biomedical Sciences and Program in Neuroscience, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
7
|
Bernhard A, Kirchner M, Martinelli A, Ackermann K, Kohls G, Gonzalez-Madruga K, Wells A, Fernández-Rivas A, De Artaza-Lavesa MG, Raschle NM, Konsta A, Siklósi R, Hervás A, Herpertz-Dahlmann B, De Brito SA, Popma A, Stadler C, Konrad K, Fairchild G, Freitag CM. Sex-specific associations of basal steroid hormones and neuropeptides with Conduct Disorder and neuroendocrine mediation of environmental risk. Eur Neuropsychopharmacol 2021; 49:40-53. [PMID: 33813055 DOI: 10.1016/j.euroneuro.2021.03.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 02/22/2021] [Accepted: 03/18/2021] [Indexed: 01/15/2023]
Abstract
Conduct Disorder (CD) is characterized by severe aggressive and antisocial behavior. The stress hormone system has frequently been investigated as a neurobiological correlate of CD, while other interacting neuroendocrine biomarkers of sex hormone or neuropeptide systems have rarely been studied, especially in females. We examined multiple basal neuroendocrine biomarkers in female and male adolescents with CD compared to healthy controls (HCs), and explored whether they mediate effects of environmental risk factors on CD. Within the FemNAT-CD study, salivary cortisol, alpha-amylase, testosterone, dehydroepiandrosterone-sulfate (DHEA-S), estradiol, progesterone, oxytocin, and arginine-vasopressin were measured under basal conditions in 166 pubertal adolescents with CD, and 194 sex-, age-, and puberty-matched HCs (60% females, 9-18 years). Further, environmental risk factors were assessed. Single hormone analyses showed higher DHEA-S, and lower estradiol and progesterone levels in both females and males with CD relative to HCs. When accounting for interactions between neuroendocrine systems, a male-specific sex hormone factor (testosterone/DHEA-S) predicted male CD, while estradiol and a stress-system factor (cortisol/alpha-amylase) interacting with oxytocin predicted female CD. Estradiol, progesterone, and oxytocin partly explained associations between early environmental risk and CD. Findings provide evidence for sex-specific associations between basal neuroendocrine measures and CD. Especially altered sex hormones (androgen increases in males, estrogen reductions in females) robustly related to CD, while basal stress-system measures did not. Early environmental risk factors for CD may act partly through their effects on the neuroendocrine system, especially in females. Limitations (e.g., basal neuroendocrine assessment, different sample sizes per sex, pubertal participants, exploratory mediation analyses) are discussed.
Collapse
Affiliation(s)
- Anka Bernhard
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt am Main, Goethe University, Frankfurt am Main, Germany.
| | - Marietta Kirchner
- Institute of Medical Biometry and Informatics, University Hospital Heidelberg, Heidelberg, Germany
| | - Anne Martinelli
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt am Main, Goethe University, Frankfurt am Main, Germany
| | - Katharina Ackermann
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt am Main, Goethe University, Frankfurt am Main, Germany
| | - Gregor Kohls
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH Aachen, Aachen, Germany
| | | | - Amy Wells
- School of Psychology, Cardiff University, Cardiff, United Kingdom
| | | | | | - Nora Maria Raschle
- Jacobs Center for Productive Youth Development at the University of Zurich, Zurich, Switzerland; University of Basel Psychiatric Hospital, Department of Child and Adolescent Psychiatry, Basel, Switzerland
| | - Angeliki Konsta
- Child and Adolescent Unit of the 1st Department of Psychiatry, National and Kapodistrian University of Athens, Athens, Greece
| | - Réka Siklósi
- Faculty of Medicine, Child and Adolescent Psychiatry, Department of the Child Health Center, Szeged University, Szeged, Hungary
| | - Amaia Hervás
- Child and Adolescent Mental Health Unit, University Hospital Mutua Terrassa, Barcelona, Spain; AGAUR Clinical and Genetic Research Group, Global Institute of Neurodevelopment Integrated Care (IGAIN), Barcelona, Spain
| | - Beate Herpertz-Dahlmann
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH Aachen, Aachen, Germany
| | - Stephane A De Brito
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, United Kingdom
| | - Arne Popma
- Department of Child and Adolescent Psychiatry, VU University Medical Center, Amsterdam, Netherlands
| | - Christina Stadler
- University of Basel Psychiatric Hospital, Department of Child and Adolescent Psychiatry, Basel, Switzerland
| | - Kerstin Konrad
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH Aachen, Aachen, Germany
| | - Graeme Fairchild
- Department of Psychology, University of Bath, Bath, United Kingdom
| | - Christine M Freitag
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt am Main, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
8
|
Carmel M, Michaelovsky E, Weinberger R, Frisch A, Mekori-Domachevsky E, Gothelf D, Weizman A. Differential methylation of imprinting genes and MHC locus in 22q11.2 deletion syndrome-related schizophrenia spectrum disorders. World J Biol Psychiatry 2021; 22:46-57. [PMID: 32212948 DOI: 10.1080/15622975.2020.1747113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVES 22q11.2 deletion syndrome (DS) is the strongest known genetic risk for schizophrenia. Methylome screening was conducted to elucidate possible involvement of epigenetic alterations in the emergence of schizophrenia spectrum disorders (SZ-SD) in 22q11.2DS. METHODS Sixteen adult men with/without SZ-SD were recruited from a 22q11.2DS cohort and underwent genome-wide DNA methylation profile analysis. Differentially methylated probes (DMPs) and regions (DMRs) were analysed using the ChAMP software. RESULTS The DMPs (p-value <10-6) and DMRs (p-valueArea <0.01) were enriched in two gene sets, 'imprinting genes' and 'chr6p21', a region overlapping the MHC locus. Most of the identified imprinting genes are involved in neurodevelopment and located in clusters under imprinting control region (ICR) regulation, including PEG10, SGCE (7q21.3), GNAS, GNAS-AS1 (20q13.32) and SNHG14, SNURF-SNRPN, SNORD115 (15q11.2). The differentially methylated genes from the MHC locus included immune HLA-genes and non-immune genes, RNF39, PPP1R18 and NOTCH4, implicated in neurodevelopment and synaptic plasticity. The most significant DMR is located in MHC locus and covered the transcription regulator ZFP57 that is required for control and maintenance of gene imprinting at multiple ICRs. CONCLUSIONS The differential methylation in imprinting genes and in chr6p21-22 indicate the neurodevelopmental nature of 22q11.2DS-related SZ and the major role of MHC locus in the risk to develop SZ.
Collapse
Affiliation(s)
- Miri Carmel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Felsenstein Medical Research Center, Petach Tikva, Israel
| | - Elena Michaelovsky
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Felsenstein Medical Research Center, Petach Tikva, Israel
| | - Ronnie Weinberger
- The Behavioral Neurogenetics Center and Child Psychiatry Division, Sheba Medical Center, Ramat Gan, Israel
| | - Amos Frisch
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Felsenstein Medical Research Center, Petach Tikva, Israel
| | - Ehud Mekori-Domachevsky
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,The Behavioral Neurogenetics Center and Child Psychiatry Division, Sheba Medical Center, Ramat Gan, Israel
| | - Doron Gothelf
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,The Behavioral Neurogenetics Center and Child Psychiatry Division, Sheba Medical Center, Ramat Gan, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Abraham Weizman
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Felsenstein Medical Research Center, Petach Tikva, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.,Geha Mental Health Center, Petach Tikva, Israel
| |
Collapse
|
9
|
Lazebny OE, Kulikov AM, Butovskaya PR, Proshakov PA, Fokin AV, Butovskaya ML. Analysis of Aggressive Behavior in Young Russian Males Using 250 SNP Markers. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420080098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
10
|
Rybakowski JK. The psychopathological potential of early life stress. World J Biol Psychiatry 2020; 21:491-492. [PMID: 33170056 DOI: 10.1080/15622975.2020.1816702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Janusz K Rybakowski
- Department of Adult Psychiatry, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
11
|
Reshetnikov VV, Ryabushkina YA, Bondar NP. Impact of mothers’ experience and early‐life stress on aggression and cognition in adult male mice. Dev Psychobiol 2019; 62:36-49. [DOI: 10.1002/dev.21887] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/26/2019] [Accepted: 05/22/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Vasiliy V. Reshetnikov
- Institute of Cytology and Genetics Siberian Branch of Russian Academy of Sciences (SB RAS) Novosibirsk Russia
| | - Yulia A. Ryabushkina
- Institute of Cytology and Genetics Siberian Branch of Russian Academy of Sciences (SB RAS) Novosibirsk Russia
- Novosibirsk State University Novosibirsk Russia
| | - Natalia P. Bondar
- Institute of Cytology and Genetics Siberian Branch of Russian Academy of Sciences (SB RAS) Novosibirsk Russia
- Novosibirsk State University Novosibirsk Russia
| |
Collapse
|
12
|
Cecil CAM, Walton E, Pingault JB, Provençal N, Pappa I, Vitaro F, Côté S, Szyf M, Tremblay RE, Tiemeier H, Viding E, McCrory EJ. DRD4 methylation as a potential biomarker for physical aggression: An epigenome-wide, cross-tissue investigation. Am J Med Genet B Neuropsychiatr Genet 2018; 177:746-764. [PMID: 30411855 DOI: 10.1002/ajmg.b.32689] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 08/23/2018] [Accepted: 09/21/2018] [Indexed: 12/13/2022]
Abstract
Epigenetic processes that regulate gene expression, such as DNA methylation (DNAm), have been linked to individual differences in physical aggression. Yet, it is currently unclear whether: (a) DNAm patterns in humans associate with physical aggression independently of other co-occurring psychiatric and behavioral symptoms; (b) whether these patterns are observable across multiple tissues; and (c) whether they may function as a causal versus noncausal biomarker of physical aggression. Here, we used a multisample, cross-tissue design to address these questions. First, we examined genome-wide DNAm patterns (buccal swabs; Illumina 450k) associated with engagement in physical fights in a sample of high-risk youth (n = 119; age = 16-24 years; 53% female). We identified one differentially methylated region in DRD4, which survived genome-wide correction, associated with physical aggression above and beyond co-occurring symptomatology (e.g., ADHD, substance use), and showed strong cross-tissue concordance with both blood and brain. Second, we found that DNAm sites within this region were also differentially methylated in an independent sample of young adults, between individuals with a history of chronic-high versus low physical aggression (peripheral T cells; ages 26-28). Finally, we ran a Mendelian randomization analysis using GWAS data from the EAGLE consortium to test for a causal association of DRD4 methylation with physical aggression. Only one genetic instrument was eligible for the analysis, and results provided no evidence for a causal association. Overall, our findings lend support for peripheral DRD4 methylation as a potential biomarker of physically aggressive behavior, with no evidence yet of a causal relationship.
Collapse
Affiliation(s)
- Charlotte A M Cecil
- Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,Department of Child and Adolescent Psychiatry/Psychology, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, Netherlands
| | - Esther Walton
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
| | - Jean-Baptiste Pingault
- Division of Psychology and Language Sciences, University College London, London, United Kingdom
| | - Nadine Provençal
- Faculty of Health Sciences, Simon Fraser University, Burnaby and BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Irene Pappa
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, Netherlands
| | - Frank Vitaro
- Department of Psychoeducation, Université de Montréal, Montréal, Québec, Canada
| | - Sylvana Côté
- Department of Pediatrics, Université de Montréal, Montréal, Québec, Canada.,Department of Psychology, Université de Montréal, Montréal, Québec, Canada
| | - Moshe Szyf
- Department of Pharmacology & Therapeutics, McGill University, Montréal, Québec, Canada
| | - Richard E Tremblay
- Department of Pediatrics, Université de Montréal, Montréal, Québec, Canada.,Department of Psychology, Université de Montréal, Montréal, Québec, Canada
| | - Henning Tiemeier
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, Netherlands.,Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, United States of America
| | - Essi Viding
- Division of Psychology and Language Sciences, University College London, London, United Kingdom
| | - Eamon J McCrory
- Division of Psychology and Language Sciences, University College London, London, United Kingdom
| |
Collapse
|