1
|
Kuenzel E, Al-Saoud S, Fang M, Duerden EG. Early childhood stress and amygdala structure in children and adolescents with neurodevelopmental disorders. Brain Struct Funct 2025; 230:29. [PMID: 39797953 DOI: 10.1007/s00429-025-02890-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/01/2025] [Indexed: 01/13/2025]
Abstract
Children and adolescents with neurodevelopmental disorders such as autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD) may be more susceptible to early life stress compared to their neurotypical peers. This increased susceptibility may be linked to regionally-specific changes in the striatum and amygdala, brain regions sensitive to stress and critical for shaping maladaptive behavioural responses. This study examined early life stress and its impact on striatal and amygdala development in 62 children and adolescents (35 males, mean age = 10.12 years, SD = 3.6) with ASD (n = 14), ADHD (n = 28), or typical development (TD, n = 20) across two cohorts. We assessed stress from various sources, including from the family environment, loss of loved ones, social stress, and illness/injury. We further examined parenting styles as potential moderators of the effects of early life stress. Volumes of the striatum and amygdala were extracted using an automatic segmentation algorithm. Significant group differences in childhood stress exposure were observed (F = 3.29, df = 8, p = 0.002), with autistic children facing more early life stressors (social stress, illness/injury) compared to those with ADHD and neurotypical peers (both, p < 0.002). In autistic children, amygdala volumes were significantly associated with early life stress related to the familial environment, experiences of significant loss, and illness/injury (all, p < 0.03). Positive parenting moderated these effects. These findings suggest that autistic children are more likely to experience early life stress and exhibit region-specific changes in the amygdala, a key brain region implicated in emotional processing and stress responses. This underscores the need for targeted interventions to support autistic children in managing early life stress to potentially mitigate its impact on brain development.
Collapse
Affiliation(s)
- Elizabeth Kuenzel
- Applied Psychology, Faculty of Education, University of Western Ontario, 1137 Western Rd, London, ON, N6G 1G7, Canada
| | - Sarah Al-Saoud
- Applied Psychology, Faculty of Education, University of Western Ontario, 1137 Western Rd, London, ON, N6G 1G7, Canada
| | - Michelle Fang
- Applied Psychology, Faculty of Education, University of Western Ontario, 1137 Western Rd, London, ON, N6G 1G7, Canada
| | - Emma G Duerden
- Applied Psychology, Faculty of Education, University of Western Ontario, 1137 Western Rd, London, ON, N6G 1G7, Canada.
- Paediatrics, Faculty of Medicine and Dentistry, University of Western Ontario, 1137 Western Rd, London, ON, N6G 1G7, Canada.
- Psychiatry, Faculty of Medicine and Dentistry, University of Western Ontario, 1137 Western Rd, London, ON, N6G 1G7, Canada.
| |
Collapse
|
2
|
Capuozzo A, Rizzato S, Grossi G, Strappini F. A Systematic Review on Social Cognition in ADHD: The Role of Language, Theory of Mind, and Executive Functions. Brain Sci 2024; 14:1117. [PMID: 39595880 PMCID: PMC11592136 DOI: 10.3390/brainsci14111117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024] Open
Abstract
Background: In this systematic review, conducted according to the PRISMA 2020 guidelines, we aimed to assess differences in the cognitive processes associated with social cognition-namely language, theory of mind (ToM), and executive functions (EFs)-between ADHD and control groups. Methods: The review included studies indexed in PubMed, Google Scholar, and PsycINFO up until May 2024. Eligible original peer-reviewed articles met the following criteria: they were written in English, included a clinical group with a current primary ADHD diagnosis, were empirical, included quantitative data, and utilized standardized and validated measures with adequate psychometric properties to assess social cognitive processes. Results and Discussion: A total of 1215 individuals with ADHD participated in the selected studies. Out of the 22 articles reviewed, 17 reported significant differences between ADHD and the controls across several cognitive processes related to language and EF rather than ToM. These processes included pragmatic skills, verbal and nonverbal communication, emotional prosody, interaction skills, sarcasm, paradoxical sarcasm recognition, ambiguous situations, emotion recognition, false belief, social problem solving, social behaviors, and gesture codification. We also discuss the limitations of the research and the implications of our findings. Systematic review registration: PROSPERO ID: CRD42023474681.
Collapse
Affiliation(s)
- Alessandra Capuozzo
- Italian Society of Behavioral and Cognitive Therapy, SITCC, Viale Antonio Gramsci, 13, 80122 Naples, Italy
| | - Salvatore Rizzato
- Dipartimento Salute Mentale, Asl Roma 4, Via Trento, 20, 62, 00062 Bracciano, Italy;
| | - Giuseppe Grossi
- Center for Psychotherapy and Rehabilitation “InMovimento”, Via Andrea Doria, 19-21, 04022 Fondi, Italy;
- Association School of Cognitive Psychology (APC-SPC), Viale Castro Pretorio 116, 00185 Rome, Italy
| | - Francesca Strappini
- Association School of Cognitive Psychology (APC-SPC), Viale Castro Pretorio 116, 00185 Rome, Italy
- Dipartiment of Systems Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy
| |
Collapse
|
3
|
Long Y, Pan N, Yu Y, Zhang S, Qin K, Chen Y, Sweeney JA, DelBello MP, Gong Q. Shared and Distinct Neurobiological Bases of Bipolar Disorder and Attention-Deficit/Hyperactivity Disorder in Children and Adolescents: A Comparative Meta-Analysis of Structural Abnormalities. J Am Acad Child Adolesc Psychiatry 2024; 63:586-604. [PMID: 38072245 DOI: 10.1016/j.jaac.2023.09.551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/14/2023] [Accepted: 12/01/2023] [Indexed: 01/02/2024]
Abstract
OBJECTIVE Pediatric bipolar disorder (PBD) and attention-deficit/hyperactivity disorder (ADHD) frequently co-occur and share dysfunctions in affective and cognitive domains. As the neural substrates underlying their overlapping and dissociable symptomatology have not been well delineated, a meta-analysis of whole-brain voxel-based morphometry studies in PBD and ADHD was conducted. METHOD A systematic literature search was performed in PubMed, Web of Science, and Embase. The seed-based d mapping toolbox was used to identify altered clusters of PBD or ADHD and obtain their conjunctive and comparative abnormalities. Suprathreshold patterns were subjected to large-scale network analysis to identify affected brain networks. RESULTS The search revealed 10 PBD studies (268 patients) and 32 ADHD studies (1,333 patients). Decreased gray matter volumes in the right insula and anterior cingulate cortex relative to typically developing individuals were conjunctive in PBD and ADHD. Reduced volumes in the right inferior frontal gyrus, left orbitofrontal cortex, and hippocampus were more substantial in PBD, while decreased volumes in the left precentral gyrus, left inferior frontal gyrus, and right superior frontal gyrus were more pronounced in ADHD. Neurodevelopmental effects modulated patterns of the left hippocampus in PBD and those of the left inferior frontal gyrus in ADHD. CONCLUSION These findings suggest that PBD and ADHD are characterized by both common and distinct patterns of gray matter volume alterations. Their overlapping abnormalities may represent a transdiagnostic problem of attention and emotion regulation shared by PBD and ADHD, whereas the disorder-differentiating substrates may contribute to the relative differences in cognitive and affective features that define the 2 disorders. PLAIN LANGUAGE SUMMARY Pediatric bipolar disorder (BD) and attention-deficit/hyperactivity disorder (ADHD) frequently co-occur, with overlapping changes in emotional and cognitive functioning. This meta-analysis summarizes findings from 10 articles on BD and 32 articles on ADHD to identify similarities and differences in brain structure between youth with BD and youth with ADHD. The authors found that both disorders share decreased gray matter volumes in the right insula and anterior cingulate cortex, which play important roles in emotion processing and attention, respectively. Youth with BD had decreased gray matter volume in the right inferior frontal gyrus, left orbitofrontal gyrus, and left hippocampus, while youth with ADHD had decreased volumes in the left precentral gyrus, left inferior frontal gyrus, and right superior frontal gyrus. STUDY PREREGISTRATION INFORMATION Structural Brain Abnormalities of Attention-Deficit/Hyperactivity Disorder and Bipolar Disorder in Children/Adolescents: An Overlapping Meta-analysis; https://osf.io; trg4m.
Collapse
Affiliation(s)
- Yajing Long
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Nanfang Pan
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China; University of Cincinnati, Cincinnati, Ohio
| | - Yifan Yu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Shufang Zhang
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Kun Qin
- University of Cincinnati, Cincinnati, Ohio; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Ying Chen
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - John A Sweeney
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China; University of Cincinnati, Cincinnati, Ohio
| | | | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China; West China Xiamen Hospital of Sichuan University, Xiamen, China.
| |
Collapse
|
4
|
Koppelmaa K, Yde Ohki CM, Walter NM, Walitza S, Grünblatt E. Stress as a mediator of brain alterations in attention-deficit hyperactivity disorder: A systematic review. Compr Psychiatry 2024; 130:152454. [PMID: 38281339 DOI: 10.1016/j.comppsych.2024.152454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/18/2024] [Accepted: 01/20/2024] [Indexed: 01/30/2024] Open
Abstract
OBJECTIVE Stress is a known risk factor for numerous psychopathologies, whereas evidence is lacking regarding the specific consequences of stress on the neural basis of attention-deficit hyperactivity disorder (ADHD). A systematic literature review was thus conducted to clarify the role of stress in the association between the resulting alterations of brain structure, connectivity, and function in ADHD. METHODS The study was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and the protocol was registered in the International Prospective Register of Systematic Reviews (PROSPERO) under identifier CRD42023379809. A systematic search of the PubMed and CINAHL databases was conducted for articles published prior to December 22nd, 2022. Retrieved literature was screened in Rayyan and data extraction was performed with respect to neuroimaging, stress exposure, and ADHD outcomes. The Quality in Prognosis Studies (QUIPS) tool was adapted based on the Conducting Systematic Reviews and Meta-Analyses of Observational Studies of Etiology (COSMOS-E) guidance article to assess risk of bias and quality of studies. Strength of the evidence was assessed under the guidance of the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) system. RESULTS Screening 25,026 non-duplicate articles yielded 20 eligible studies for inclusion. Exposure to early life trauma, institutionalization, prenatal smoking or alcohol consumption, air pollution, low socioeconomic status, or low birth weight were associated with alterations in brain structure, function, and connectivity in ADHD. However, most studies did not provide strong evidence due to small sample sizes and lack of statistical approaches to determine a direct mediation of the association between stress and ADHD by neural outcomes. CONCLUSION This systematic review was the first to summarize evidence of structural and functional stress-associated alterations in the brain, which were found to be directly and indirectly associated with ADHD outcomes. Overall, stress requires consideration as a significant determinant of neurodevelopmental outcomes in ADHD. However, extensive further research is warranted due to little available evidence and the difficulty of obtaining clear results. In light of such a complex research question, in order to confirm findings, provide further evidence, and establish causality systematic longitudinal studies would be required. Investigating the topic may provide invaluable information when it comes to tailoring prevention and treatment strategies in ADHD, and should be pursued in order to integrate the factor of stress into a more comprehensive understanding of ADHD.
Collapse
Affiliation(s)
- Kristin Koppelmaa
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland; Department of Health Sciences and Technology, ETH, Zurich, Zurich, Switzerland
| | - Cristine Marie Yde Ohki
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Natalie Monet Walter
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Susanne Walitza
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and the ETH, Zurich, Zurich, Switzerland; Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Edna Grünblatt
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and the ETH, Zurich, Zurich, Switzerland; Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
5
|
Custodio RJP, Hengstler JG, Cheong JH, Kim HJ, Wascher E, Getzmann S. Adult ADHD: it is old and new at the same time - what is it? Rev Neurosci 2024; 35:225-241. [PMID: 37813870 DOI: 10.1515/revneuro-2023-0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/25/2023] [Indexed: 10/11/2023]
Abstract
Even though the number of studies aiming to improve comprehension of ADHD pathology has increased in recent years, there still is an urgent need for more effective studies, particularly in understanding adult ADHD, both at preclinical and clinical levels, due to the increasing evidence that adult ADHD is highly distinct and a different entity from childhood ADHD. This review paper outlines the symptoms, diagnostics, and neurobiological mechanisms of ADHD, with emphasis on how adult ADHD could be different from childhood-onset. Data show a difference in the environmental, genetic, epigenetic, and brain structural changes, when combined, could greatly impact the behavioral presentations and the severity of ADHD in adults. Furthermore, a crucial aspect in the quest to fully understand this disorder could be through longitudinal analysis. In this way, we will determine if and how the pathology and pharmacology of ADHD change with age. This goal could revolutionize our understanding of the disorder and address the weaknesses in the current clinical classification systems, improving the characterization and validity of ADHD diagnosis, specifically those in adults.
Collapse
Affiliation(s)
- Raly James Perez Custodio
- Networking Group Aging, Department of Ergonomics, Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Ardeystrasse 67, Dortmund 44139, Germany
| | - Jan G Hengstler
- Systems Toxicology, Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Ardeystrasse 67, Dortmund 44139, Germany
| | - Jae Hoon Cheong
- Institute for New Drug Development, School of Pharmacy, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, South Korea
| | - Hee Jin Kim
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarangro, Nowon-gu, Seoul 01795, South Korea
| | - Edmund Wascher
- Experimental Ergonomics, Department of Ergonomics, Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Ardeystrasse 67, Dortmund 44139, Germany
| | - Stephan Getzmann
- Networking Group Aging, Department of Ergonomics, Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Ardeystrasse 67, Dortmund 44139, Germany
| |
Collapse
|
6
|
Geuens S, Van Dessel J, Govaarts R, Ikelaar NA, Meijer OC, Kan HE, Niks EH, Goemans N, Lemiere J, Doorenweerd N, De Waele L. Comparison of two corticosteroid regimens on brain volumetrics in patients with Duchenne muscular dystrophy. Ann Clin Transl Neurol 2023; 10:2324-2333. [PMID: 37822297 PMCID: PMC10723242 DOI: 10.1002/acn3.51922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 10/13/2023] Open
Abstract
OBJECTIVE Duchenne muscular dystrophy (DMD) is a neuromuscular disorder in which many patients also have neurobehavioral problems. Corticosteroids, the primary pharmacological treatment for DMD, have been shown to affect brain morphology in other conditions, but data in DMD are lacking. This study aimed to investigate the impact of two corticosteroid regimens on brain volumetrics in DMD using magnetic resonance imaging (MRI). METHODS In a cross-sectional, two-center study, T1-weighted MRI scans were obtained from three age-matched groups (9-18 years): DMD patients treated daily with deflazacort (DMDd, n = 20, scan site: Leuven), DMD patients treated intermittently with prednisone (DMDi, n = 20, scan site: Leiden), and healthy controls (n = 40, both scan sites). FSL was used to perform voxel-based morphometry analyses and to calculate intracranial, total brain, gray matter, white matter, and cerebrospinal fluid volumes. A MANCOVA was employed to compare global volumetrics between groups, with site as covariate. RESULTS Both patient groups displayed regional differences in gray matter volumes compared to the control group. The DMDd group showed a wider extent of brain regions affected and a greater difference overall. This was substantiated by the global volume quantification: the DMDd group, but not the DMDi group, showed significant differences in gray matter, white matter, and cerebrospinal fluid volumes compared to the control group, after correction for intracranial volume. INTERPRETATION Volumetric differences in the brain are considered part of the DMD phenotype. This study suggests an additional impact of corticosteroid treatment showing a contrast between pronounced alterations seen in patients receiving daily corticosteroid treatment and more subtle differences in those treated intermittently.
Collapse
Affiliation(s)
- Sam Geuens
- Child NeurologyUniversity Hospitals LeuvenLeuvenBelgium
- Department of Development and RegenerationKU LeuvenLeuvenBelgium
| | - Jeroen Van Dessel
- Department of Neurosciences, Center for Developmental PsychiatryUPC‐KU LeuvenLeuvenBelgium
| | - Rosanne Govaarts
- C.J. Gorter MRI Center, RadiologyLeiden University Medical CenterLeidenNetherlands
- Duchenne Center NetherlandsLeidenNetherlands
| | - Nadine A. Ikelaar
- Duchenne Center NetherlandsLeidenNetherlands
- Department of NeurologyLeiden University Medical CenterLeidenNetherlands
| | - Onno C. Meijer
- Department of MedicineLeiden University Medical CenterLeidenNetherlands
| | - Hermien E. Kan
- C.J. Gorter MRI Center, RadiologyLeiden University Medical CenterLeidenNetherlands
- Duchenne Center NetherlandsLeidenNetherlands
| | - Erik H. Niks
- Duchenne Center NetherlandsLeidenNetherlands
- Department of NeurologyLeiden University Medical CenterLeidenNetherlands
| | | | - Jurgen Lemiere
- Pediatric Hemato‐OncologyUniversity Hospitals LeuvenLeuvenBelgium
- Department Oncology, Pediatric OncologyKU LeuvenLeuvenBelgium
| | - Nathalie Doorenweerd
- C.J. Gorter MRI Center, RadiologyLeiden University Medical CenterLeidenNetherlands
| | - Liesbeth De Waele
- Child NeurologyUniversity Hospitals LeuvenLeuvenBelgium
- Department of Development and RegenerationKU LeuvenLeuvenBelgium
| |
Collapse
|
7
|
Liang S, Huang L, Zhan S, Zeng Y, Zhang Q, Zhang Y, Wang X, Peng L, Lin B, Xu H. Altered morphological characteristics and structural covariance connectivity associated with verbal working memory performance in ADHD children. Br J Radiol 2023; 96:20230409. [PMID: 37750842 PMCID: PMC10607391 DOI: 10.1259/bjr.20230409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/24/2023] [Accepted: 08/10/2023] [Indexed: 09/27/2023] Open
Abstract
OBJECTIVES Deficits in verbal working memory (VWM) observed in attention deficit hyperactivity disorder (ADHD) children can persist into adulthood. Although previous studies have identified brain regions that are activated during VWM tasks, the neural mechanisms underlying the relationship between VWM deficits remain unclear. The objective of this study was to investigate the structural covariance network connectivity and brain morphology changes that are associated with VWM performance in ADHD children. METHODS For this study, we selected 26 ADHD children and 26 healthy control (HC) participants. Participants were instructed to perform an n-back VWM task and their accuracy and response times were subsequently recorded. This research utilised voxel-based morphometry to measure the grey matter (GM) volume and conducted structural covariance connectivity network analysis to explore the changes of brain in ADHD. RESULTS Voxel-based morphometry analysis showed that lower GM volume in the right cerebellum lobule VI and the left parahippocampal gryus in ADHD children. Moreover, a positive correlation was found between the GM volume in the right cerebellum lobule VI and the accuracy of 2-back VWM task with verbal, small reward, and delayed feedback (VSD). Structural covariance network analysis found decreased structural connectivity between right cerebellum lobule VI and right precentral gyrus, right postcentral gyrus, left paracentral lobule, right superior parietal gyrus, and left hippocampus in ADHD children. CONCLUSIONS The low GM volume and altered structural covariance connectivity in the right cerebellum lobule VI might potentially affect VWM performance in ADHD children. ADVANCES IN KNOWLEDGE The innovation of this study lies in its more focused discussion on the morphological characteristics and structural covariance connectivity of VWM deficits in ADHD children, and the innovative finding of a positive correlation between grey matter volume in the right cerebellum lobule VI and accuracy in completing the 2-back VWM task with verbal instructions, small reward, and delayed feedback (VSD). This expands upon previous research by elucidating the specific brain structures involved in VWM deficits in ADHD children and highlights the potential importance of the cerebellum in this cognitive process. Overall, these innovative findings advance our understanding of the neural basis of ADHD and may have important implications for the development of targeted interventions for VWM deficits.
Collapse
Affiliation(s)
| | - Li Huang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Shiqi Zhan
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yi Zeng
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Qingqing Zhang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yusi Zhang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xiuxiu Wang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Lixin Peng
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Bohong Lin
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Hui Xu
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
8
|
Chen MH, Lin HM, Sue YR, Yu YC, Yeh PY. Meta-analysis reveals a reduced surface area of the amygdala in individuals with attention deficit/hyperactivity disorder. Psychophysiology 2023; 60:e14308. [PMID: 37042481 DOI: 10.1111/psyp.14308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 02/15/2023] [Accepted: 03/03/2023] [Indexed: 04/13/2023]
Abstract
Despite the reported lack of structural alterations in the amygdala of individuals with attention deficit/hyperactivity disorder (ADHD) in previous meta-analyses, subsequent observational studies produced conflicting results. Through incorporating the updated data from observational studies on structural features of the amygdala in ADHD, the primary goal of this study was to examine the anatomical differences in amygdala between subjects with ADHD and their neurotypical controls. Using the appropriate keyword strings, we searched the PubMed, Embase, and Web of Science databases for English articles from inception to February 2022. Eligibility criteria included observational studies comparing the structure of the amygdala between ADHD subjects and their comparators using magnetic resonance imaging (MRI). Subgroup analyses were conducted focusing on the amygdala side, as well as the use of different scanners and approach to segmentation. The effects of other continuous variables, such as age, intelligence quotient, and male percentage, on amygdala size were also investigated. Of the 5703 participants in 16 eligible studies, 2928 were diagnosed with ADHD. Compared with neurotypical controls, subjects with ADHD had a smaller amygdala surface area (particularly in the left hemisphere) but without a significant difference in volume between the two groups. Subgroup analysis of MRI scanners and different approaches to segmentation showed no statistically significant difference. There was no significant correlation between continuous variables and amygdala size. Our results showed consistent surface morphological alterations of the amygdala, in particular on the left side, in subjects with ADHD. However, the preliminary findings based on the limited data available for analysis warrant future studies for verification.
Collapse
Affiliation(s)
- Meng-Hsiang Chen
- Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- College of Medicine, Chang Gung University, Kaohsiung, Taiwan
| | - Hsiu-Man Lin
- Division of Child and Adolescent Psychiatry & Division of Developmental and Behavioral Pediatrics, China Medical University Children's Hospital, Taichung, Taiwan
| | - Yu-Ru Sue
- Department of Psychology, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Yun-Chen Yu
- Department of Psychology, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Pin-Yang Yeh
- Department of Psychology, College of Medical and Health Science, Asia University, Taichung, Taiwan
- Clinical Psychology Center, Asia University Hospital, Taichung, Taiwan
| |
Collapse
|
9
|
Laing BT, Anderson MS, Bonaventura J, Jayan A, Sarsfield S, Gajendiran A, Michaelides M, Aponte Y. Anterior hypothalamic parvalbumin neurons are glutamatergic and promote escape behavior. Curr Biol 2023; 33:3215-3228.e7. [PMID: 37490921 PMCID: PMC10529150 DOI: 10.1016/j.cub.2023.06.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 05/19/2023] [Accepted: 06/28/2023] [Indexed: 07/27/2023]
Abstract
The anterior hypothalamic area (AHA) is a critical structure for defensive responding. Here, we identified a cluster of parvalbumin-expressing neurons in the AHA (AHAPV) that are glutamatergic with fast-spiking properties and send axonal projections to the dorsal premammillary nucleus (PMD). Using in vivo functional imaging, optogenetics, and behavioral assays, we determined the role of these AHAPV neurons in regulating behaviors essential for survival. We observed that AHAPV neuronal activity significantly increases when mice are exposed to a predator, and in a real-time place preference assay, we found that AHAPV neuron photoactivation is aversive. Moreover, activation of both AHAPV neurons and the AHAPV → PMD pathway triggers escape responding during a predator-looming test. Furthermore, escape responding is impaired after AHAPV neuron ablation, and anxiety-like behavior as measured by the open field and elevated plus maze assays does not seem to be affected by AHAPV neuron ablation. Finally, whole-brain metabolic mapping using positron emission tomography combined with AHAPV neuron photoactivation revealed discrete activation of downstream areas involved in arousal, affective, and defensive behaviors including the amygdala and the substantia nigra. Our results indicate that AHAPV neurons are a functional glutamatergic circuit element mediating defensive behaviors, thus expanding the identity of genetically defined neurons orchestrating fight-or-flight responses. Together, our work will serve as a foundation for understanding neuropsychiatric disorders triggered by escape such as post-traumatic stress disorder (PTSD).
Collapse
Affiliation(s)
- Brenton T Laing
- Neuronal Circuits and Behavior Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD 21224-6823, USA
| | - Megan S Anderson
- Neuronal Circuits and Behavior Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD 21224-6823, USA
| | - Jordi Bonaventura
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD 21224-6823, USA
| | - Aishwarya Jayan
- Neuronal Circuits and Behavior Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD 21224-6823, USA
| | - Sarah Sarsfield
- Neuronal Circuits and Behavior Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD 21224-6823, USA
| | - Anjali Gajendiran
- Neuronal Circuits and Behavior Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD 21224-6823, USA
| | - Michael Michaelides
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD 21224-6823, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yeka Aponte
- Neuronal Circuits and Behavior Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD 21224-6823, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
10
|
Baselmans B, Hammerschlag AR, Noordijk S, Ip H, van der Zee M, de Geus E, Abdellaoui A, Treur JL, van ’t Ent D. The Genetic and Neural Substrates of Externalizing Behavior. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2022; 2:389-399. [PMID: 36324656 PMCID: PMC9616240 DOI: 10.1016/j.bpsgos.2021.09.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 11/16/2022] Open
Abstract
Background To gain more insight into the biological factors that mediate vulnerability to display externalizing behaviors, we leveraged genome-wide association study summary statistics on 13 externalizing phenotypes. Methods After data classification based on genetic resemblance, we performed multivariate genome-wide association meta-analyses and conducted extensive bioinformatic analyses, including genetic correlation assessment with other traits, Mendelian randomization, and gene set and gene expression analyses. Results The genetic data could be categorized into disruptive behavior (DB) and risk-taking behavior (RTB) factors, and subsequent genome-wide association meta-analyses provided association statistics for DB and RTB (N eff = 523,150 and 1,506,537, respectively), yielding 50 and 257 independent genetic signals. The statistics of DB, much more than RTB, signaled genetic predisposition to adverse cognitive, mental health, and personality outcomes. We found evidence for bidirectional causal influences between DB and substance use behaviors. Gene set analyses implicated contributions of neuronal cell development (DB/RTB) and synapse formation and transcription (RTB) mechanisms. Gene-brain mapping confirmed involvement of the amygdala and hypothalamus and highlighted other candidate regions (cerebellar dentate, cuneiform nucleus, claustrum, paracentral cortex). At the cell-type level, we noted enrichment of glutamatergic neurons for DB and RTB. Conclusions This bottom-up, data-driven study provides new insights into the genetic signals of externalizing behaviors and indicates that commonalities in genetic architecture contribute to the frequent co-occurrence of different DBs and different RTBs, respectively. Bioinformatic analyses supported the DB versus RTB categorization and indicated relevant biological mechanisms. Generally similar gene-brain mappings indicate that neuroanatomical differences, if any, escaped the resolution of our methods.
Collapse
Affiliation(s)
- Bart Baselmans
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Anke R. Hammerschlag
- Child Health Research Centre, The University of Queensland, Brisbane, Queensland, Australia
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Public Health research institute, Amsterdam University Medical Centre, Amsterdam, the Netherlands
| | - Stephany Noordijk
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Hill Ip
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Public Health research institute, Amsterdam University Medical Centre, Amsterdam, the Netherlands
| | - Matthijs van der Zee
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Public Health research institute, Amsterdam University Medical Centre, Amsterdam, the Netherlands
| | - Eco de Geus
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Public Health research institute, Amsterdam University Medical Centre, Amsterdam, the Netherlands
| | - Abdel Abdellaoui
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Jorien L. Treur
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Dennis van ’t Ent
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Public Health research institute, Amsterdam University Medical Centre, Amsterdam, the Netherlands
- Address correspondence to Dennis van ’t Ent, Ph.D.
| |
Collapse
|
11
|
Wang R, Fan Y, Wu Y, Zang YF, Zhou C. Lifespan associations of resting-state brain functional networks with ADHD symptoms. iScience 2022; 25:104673. [PMID: 35832890 PMCID: PMC9272385 DOI: 10.1016/j.isci.2022.104673] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/26/2022] [Accepted: 06/21/2022] [Indexed: 12/04/2022] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is increasingly being diagnosed in both children and adults, but the neural mechanisms that underlie its distinct symptoms and whether children and adults share the same mechanism remain poorly understood. Here, we used a nested-spectral partition approach to study resting-state brain networks of ADHD patients (n = 97) and healthy controls (HCs, n = 97) across the lifespan (7-50 years). Compared to the linear lifespan associations of brain segregation and integration with age in HCs, ADHD patients have a quadratic association in the whole-brain and in most functional systems, whereas the limbic system dominantly affected by ADHD has a linear association. Furthermore, the limbic system better predicts hyperactivity, and the salient attention system better predicts inattention. These predictions are shared in children and adults with ADHD. Our findings reveal a lifespan association of brain networks with ADHD and provide potential shared neural bases of distinct ADHD symptoms in children and adults.
Collapse
Affiliation(s)
- Rong Wang
- State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi’an Jiaotong University, Xi’an 710049, China
- Department of Physics, Centre for Nonlinear Studies, Beijing-Hong Kong-Singapore Joint Centre for Nonlinear and Complex Systems (Hong Kong), Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Hong Kong
- College of Science, Xi’an University of Science and Technology, Xi’an 710054, China
| | - Yongchen Fan
- College of Science, Xi’an University of Science and Technology, Xi’an 710054, China
| | - Ying Wu
- College of Science, Xi’an University of Science and Technology, Xi’an 710054, China
| | - Yu-Feng Zang
- Center for Cognition and Brain Disorders, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
- Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang, China
| | - Changsong Zhou
- Department of Physics, Centre for Nonlinear Studies, Beijing-Hong Kong-Singapore Joint Centre for Nonlinear and Complex Systems (Hong Kong), Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Hong Kong
- Department of Physics, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
12
|
Seguin D, Pac S, Wang J, Nicolson R, Martinez-Trujillo J, Anagnostou E, Lerch JP, Hammill C, Schachar R, Crosbie J, Kelley E, Ayub M, Brian J, Liu X, Arnold PD, Georgiades S, Duerden EG. Amygdala subnuclei volumes and anxiety behaviors in children and adolescents with autism spectrum disorder, attention deficit hyperactivity disorder, and obsessive-compulsive disorder. Hum Brain Mapp 2022; 43:4805-4816. [PMID: 35819018 PMCID: PMC9582362 DOI: 10.1002/hbm.26005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/11/2022] [Accepted: 06/26/2022] [Indexed: 12/14/2022] Open
Abstract
Alterations in the structural maturation of the amygdala subnuclei volumes are associated with anxiety behaviors in adults and children with neurodevelopmental and associated disorders. This study investigated the relationship between amygdala subnuclei volumes and anxiety in 233 children and adolescents (mean age = 11.02 years; standard deviation = 3.17) with autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD), and children with obsessive compulsive disorder (OCD), as well as typically developing (TD) children. Parents completed the Child Behavior Checklist (CBCL), and the children underwent structural MRI at 3 T. FreeSurfer software was used to automatically segment the amygdala subnuclei. A general linear model revealed that children and adolescents with ASD, ADHD, and OCD had higher anxiety scores compared to TD children (p < .001). A subsequent interaction analysis revealed that children with ASD (B = 0.09, p < .0001) and children with OCD (B = 0.1, p < .0001) who had high anxiety had larger right central nuclei volumes compared with TD children. Similar results were obtained for the right anterior amygdaloid area. Amygdala subnuclei volumes may be key to identifying children with neurodevelopmental disorders or those with OCD who are at high risk for anxiety. Findings may inform the development of targeted behavioral interventions to address anxiety behaviors and to assess the downstream effects of such interventions.
Collapse
Affiliation(s)
- Diane Seguin
- Physiology & Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Sara Pac
- Neuroscience, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Jianan Wang
- Biomedical Engineering, Faculty of Engineering, Western University, London, Canada
| | - Rob Nicolson
- Psychiatry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Canada
| | - Julio Martinez-Trujillo
- Physiology & Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Evdokia Anagnostou
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, University of Toronto, Toronto, Canada
| | - Jason P Lerch
- The Hospital for Sick Children, Toronto, Canada.,Wellcome Centre for Integrative Neuroimaging, University of Oxford, FMRIB, Nuffield Department of Clinical Neurosciences, Oxford, UK.,Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | | | | | | | | | - Muhammad Ayub
- Department of Psychiatry, Queen's University, Kingston, Canada
| | - Jessica Brian
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, University of Toronto, Toronto, Canada
| | - Xudong Liu
- Department of Psychiatry, Queen's University, Kingston, Canada.,Queen's Genomics Lab at Ongwanada (QGLO), Ongwanada Resource Center, Kingston, Canada
| | - Paul D Arnold
- Department of Psychiatry Cumming School of Medicine, University of Calgary, Calgary, Canada.,Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Stelios Georgiades
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Canada
| | - Emma G Duerden
- Psychiatry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Canada.,Applied Psychology, Faculty of Education, Western University, London, Canada
| |
Collapse
|
13
|
Campez M, Raiker JS, Little K, Altszuler AR, Merrill BM, Macphee FL, Gnagy EM, Greiner AR, Musser ED, Coles EK, Pelham WE. An evaluation of the effect of methylphenidate on working memory, time perception, and choice impulsivity in children with ADHD. Exp Clin Psychopharmacol 2022; 30:209-219. [PMID: 33475395 PMCID: PMC8406432 DOI: 10.1037/pha0000446] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Individuals with Attention-Deficit Hyperactivity Disorder (ADHD) consistently exhibit a stronger preference for immediate rewards than for larger rewards available following a delay on tasks measuring choice impulsivity (CI). Despite this, however, there remains a dearth of studies examining the impact of stimulant treatment on CI as well as associated higher order (e.g., working memory [WM]) and perceptual (e.g., time perception) cognitive processes. The present study examines the effect of osmotic release oral system methylphenidate (OROS-MPH) on CI, WM and time perception processes as well as the relation among these processes before and after taking a regimen of OROS-MPH. Thirty-five children (aged 7-12 years) with a diagnosis of ADHD participating in a concurrent stimulant medication study were recruited to complete computerized assessments of CI, WM, and time perception. Children completed the assessments after administration of a placebo as well as their lowest effective dose of OROS-MPH following a 2-week titration period. The results from one-sample t-tests indicated that OROS-MPH improves both CI and WM in youth with ADHD but does not impact time perception. Further, results revealed no significant association among the various indices of cognitive performance while taking placebo or OROS-MPH. Overall, the findings suggest that while OROS-MPH improves both CI and WM in youth with ADHD, improvements in CI as a result of OROS-MPH are unlikely to be associated with the improvements in WM given the lack of association among the two. Future studies should consider alternate cognitive, emotional, and motivational mechanisms that may account for the impact of OROS-MPH on CI. (PsycInfo Database Record (c) 2022 APA, all rights reserved).
Collapse
Affiliation(s)
- Mileini Campez
- Florida International University, Center for Children and Families
| | - Joseph S. Raiker
- Florida International University, Center for Children and Families
| | | | - Amy R. Altszuler
- Florida International University, Center for Children and Families
| | | | - Fiona L. Macphee
- Florida International University, Center for Children and Families
| | | | | | - Erica D. Musser
- Florida International University, Center for Children and Families
| | - Erika K. Coles
- Florida International University, Center for Children and Families
| | | |
Collapse
|
14
|
Connaughton M, Whelan R, O'Hanlon E, McGrath J. White matter microstructure in children and adolescents with ADHD. Neuroimage Clin 2022; 33:102957. [PMID: 35149304 PMCID: PMC8842077 DOI: 10.1016/j.nicl.2022.102957] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 12/31/2022]
Abstract
A systematic review of diffusion MRI studies in children and adolescents with ADHD. 46 studies included, encompassing multiple diffusion MRI techniques. Reduced white matter microstructure was reported in several studies. Mixed evidence linking white matter differences with specific cognitive processes. Common limitations included sample size, head motion and medication status.
Attention deficit hyperactivity disorder (ADHD) is a common neurodevelopmental disorder. Advances in diffusion magnetic resonance imaging (MRI) acquisition sequences and analytic techniques have led to growing body of evidence that abnormal white matter microstructure is a core pathophysiological feature of ADHD. This systematic review provides a qualitative assessment of research investigating microstructural organisation of white matter amongst children and adolescents with ADHD. This review included 46 studies in total, encompassing multiple diffusion MRI imaging techniques and analytic approaches, including whole-brain, region of interest and connectomic analyses. Whole-brain and region of interest analyses described atypical organisation of white matter microstructure in several white matter tracts: most notably in frontostriatal tracts, corpus callosum, superior longitudinal fasciculus, cingulum bundle, thalamic radiations, internal capsule and corona radiata. Connectomic analyses, including graph theory approaches, demonstrated global underconnectivity in connections between functionally specialised networks. Although some studies reported significant correlations between atypical white matter microstructure and ADHD symptoms or other behavioural measures there was no clear pattern of results. Interestingly however, many of the findings of disrupted white matter microstructure were in neural networks associated with key neuropsychological functions that are atypical in ADHD. Limitations to the extant research are outlined in this review and future studies in this area should carefully consider factors such as sample size, sex balance, head motion and medication status.
Collapse
Affiliation(s)
| | - Robert Whelan
- Dept of Psychiatry, School of Medicine, Trinity College Dublin, Ireland; School of Psychology, Trinity Dublin, Ireland
| | - Erik O'Hanlon
- Trinity College Institute of Neuroscience, Trinity Dublin, Ireland; Dept of Psychiatry, School of Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Jane McGrath
- Dept of Psychiatry, School of Medicine, Trinity College Dublin, Ireland
| |
Collapse
|
15
|
Chen Y, Lei D, Cao H, Niu R, Chen F, Chen L, Zhou J, Hu X, Huang X, Guo L, Sweeney JA, Gong Q. Altered single-subject gray matter structural networks in drug-naïve attention deficit hyperactivity disorder children. Hum Brain Mapp 2022; 43:1256-1264. [PMID: 34797010 PMCID: PMC8837581 DOI: 10.1002/hbm.25718] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/09/2021] [Accepted: 11/04/2021] [Indexed: 02/05/2023] Open
Abstract
Altered topological organization of brain structural covariance networks has been observed in attention deficit hyperactivity disorder (ADHD). However, results have been inconsistent, potentially related to confounding medication effects. In addition, since structural networks are traditionally constructed at the group level, variabilities in individual structural features remain to be well characterized. Structural brain imaging with MRI was performed on 84 drug-naïve children with ADHD and 83 age-matched healthy controls. Single-subject gray matter (GM) networks were obtained based on areal similarities of GM, and network topological properties were analyzed using graph theory. Group differences in each topological metric were compared using nonparametric permutation testing. Compared with healthy subjects, GM networks in ADHD patients demonstrated significantly altered topological characteristics, including higher global and local efficiency and clustering coefficient, and shorter path length. In addition, ADHD patients exhibited abnormal centrality in corticostriatal circuitry including the superior frontal gyrus, orbitofrontal gyrus, medial superior frontal gyrus, precentral gyrus, middle temporal gyrus, and pallidum (all p < .05, false discovery rate [FDR] corrected). Altered global and nodal topological efficiencies were associated with the severity of hyperactivity symptoms and the performance on the Stroop and Wisconsin Card Sorting Test tests (all p < .05, FDR corrected). ADHD combined and inattention subtypes were differentiated by nodal attributes of amygdala (p < .05, FDR corrected). Alterations in GM network topologies were observed in drug-naïve ADHD patients, in particular in frontostriatal loops and amygdala. These alterations may contribute to impaired cognitive functioning and impulsive behavior in ADHD.
Collapse
Affiliation(s)
- Ying Chen
- Huaxi MR Research Center (HMRRC), Department of RadiologyWest China Hospital of Sichuan UniversityChengduChina
- Department of PsychiatryWest China Hospital of Sichuan UniversityChengduChina
| | - Du Lei
- Department of Psychiatry and Behavioral NeuroscienceUniversity of CincinnatiCincinnatiOhioUSA
| | - Hengyi Cao
- Huaxi MR Research Center (HMRRC), Department of RadiologyWest China Hospital of Sichuan UniversityChengduChina
- Center for Psychiatric NeuroscienceFeinstein Institute for Medical ResearchManhassetNew YorkUSA
- Division of Psychiatry ResearchZucker Hillside HospitalGlen OaksNew YorkUSA
- Department of PsychiatryUniversity of CincinnatiCincinnatiOhioUSA
| | - Running Niu
- Huaxi MR Research Center (HMRRC), Department of RadiologyWest China Hospital of Sichuan UniversityChengduChina
| | - Fuqin Chen
- Huaxi MR Research Center (HMRRC), Department of RadiologyWest China Hospital of Sichuan UniversityChengduChina
| | - Lizhou Chen
- Huaxi MR Research Center (HMRRC), Department of RadiologyWest China Hospital of Sichuan UniversityChengduChina
| | - Jinbo Zhou
- Department of PsychiatryWest China Hospital of Sichuan UniversityChengduChina
| | - Xinyu Hu
- Huaxi MR Research Center (HMRRC), Department of RadiologyWest China Hospital of Sichuan UniversityChengduChina
| | - Xiaoqi Huang
- Huaxi MR Research Center (HMRRC), Department of RadiologyWest China Hospital of Sichuan UniversityChengduChina
| | - Lanting Guo
- Department of PsychiatryWest China Hospital of Sichuan UniversityChengduChina
| | - John A. Sweeney
- Huaxi MR Research Center (HMRRC), Department of RadiologyWest China Hospital of Sichuan UniversityChengduChina
- Department of Psychiatry and Behavioral NeuroscienceUniversity of CincinnatiCincinnatiOhioUSA
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of RadiologyWest China Hospital of Sichuan UniversityChengduChina
- Research Unit of PsychoradiologyChinese Academy of Medical SciencesChengduChina
- Functional and Molecular Imaging Key Laboratory of Sichuan ProvinceHuaxi Xiamen Hospital of Sichuan UniversityXiamenFujianChina
| |
Collapse
|
16
|
Targeting working memory to modify emotional reactivity in adult attention deficit hyperactivity disorder: a functional magnetic resonance imaging study. Brain Imaging Behav 2021; 16:680-691. [PMID: 34524649 PMCID: PMC9010388 DOI: 10.1007/s11682-021-00532-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2021] [Indexed: 11/10/2022]
Abstract
Understanding the neural mechanisms of emotional reactivity in Attention-Deficit/Hyperactivity Disorder (ADHD) may help develop more effective treatments that target emotion dysregulation. In adult ADHD, emotion regulation problems cover a range of dimensions, including emotional reactivity (ER). One important process that could underlie an impaired ER in ADHD might be impaired working memory (WM) processing. We recently demonstrated that taxing WM prior to the exposure of emotionally salient stimuli reduced physiological and subjective reactivity to such cues in heavy drinkers, suggesting lasting effects of WM activation on ER. Here, we investigated neural mechanisms that could underlie the interaction between WM and ER in adult ADHD participants. We included 30 male ADHD participants and 30 matched controls. Participants performed a novel functional magnetic resonance imaging paradigm in which active WM-blocks were alternated with passive blocks of negative and neutral images. We demonstrated group-independent significant main effects of negative emotional images on amygdala activation, and WM-load on paracingulate gyrus and dorsolateral prefrontal cortex activation. Contrary to earlier reports in adolescent ADHD, no impairments were found in neural correlates of WM or ER. Moreover, taxing WM did not alter the neural correlates of ER in either ADHD or control participants. While we did find effects on the amygdala, paCG, and dlPFC activation, we did not find interactions between WM and ER, possibly due to the relatively unimpaired ADHD population and a well-matched control group. Whether targeting WM might be effective in participants with ADHD with severe ER impairments remains to be investigated.
Collapse
|
17
|
Zhou X, Lin Q, Gui Y, Wang Z, Liu M, Lu H. Multimodal MR Images-Based Diagnosis of Early Adolescent Attention-Deficit/Hyperactivity Disorder Using Multiple Kernel Learning. Front Neurosci 2021; 15:710133. [PMID: 34594183 PMCID: PMC8477011 DOI: 10.3389/fnins.2021.710133] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 07/30/2021] [Indexed: 11/13/2022] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is one of the most common brain diseases among children. The current criteria of ADHD diagnosis mainly depend on behavior analysis, which is subjective and inconsistent, especially for children. The development of neuroimaging technologies, such as magnetic resonance imaging (MRI), drives the discovery of brain abnormalities in structure and function by analyzing multimodal neuroimages for computer-aided diagnosis of brain diseases. This paper proposes a multimodal machine learning framework that combines the Boruta based feature selection and Multiple Kernel Learning (MKL) to integrate the multimodal features of structural and functional MRIs and Diffusion Tensor Images (DTI) for the diagnosis of early adolescent ADHD. The rich and complementary information of the macrostructural features, microstructural properties, and functional connectivities are integrated at the kernel level, followed by a support vector machine classifier for discriminating ADHD from healthy children. Our experiments were conducted on the comorbidity-free ADHD subjects and covariable-matched healthy children aged 9-10 chosen from the Adolescent Brain and Cognitive Development (ABCD) study. This paper is the first work to combine structural and functional MRIs with DTI for early adolescents of the ABCD study. The results indicate that the kernel-level fusion of multimodal features achieves 0.698 of AUC (area under the receiver operating characteristic curves) and 64.3% of classification accuracy for ADHD diagnosis, showing a significant improvement over the early feature fusion and unimodal features. The abnormal functional connectivity predictors, involving default mode network, attention network, auditory network, and sensorimotor mouth network, thalamus, and cerebellum, as well as the anatomical regions in basal ganglia, are found to encode the most discriminative information, which collaborates with macrostructure and diffusion alterations to boost the performances of disorder diagnosis.
Collapse
Affiliation(s)
- Xiaocheng Zhou
- Shanghai Jiao Tong University-Yale Joint Center for Biostatistics and Data Science, Shanghai Jiao Tong University, Shanghai, China
- Department of Bioinformatics and Biostatistics, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Qingmin Lin
- Department of Bioinformatics and Biostatistics, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuanyuan Gui
- Shanghai Jiao Tong University-Yale Joint Center for Biostatistics and Data Science, Shanghai Jiao Tong University, Shanghai, China
- Department of Bioinformatics and Biostatistics, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zixin Wang
- Shanghai Jiao Tong University-Yale Joint Center for Biostatistics and Data Science, Shanghai Jiao Tong University, Shanghai, China
- Department of Bioinformatics and Biostatistics, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Manhua Liu
- MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University, Shanghai, China
- Department of Instrument Science and Engineering, School of EIEE, Shanghai Jiao Tong University, Shanghai, China
| | - Hui Lu
- Shanghai Jiao Tong University-Yale Joint Center for Biostatistics and Data Science, Shanghai Jiao Tong University, Shanghai, China
- Department of Bioinformatics and Biostatistics, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Center for Biomedical Informatics, Shanghai Engineering Research Center for Big Data in Pediatric Precision Medicine, Shanghai Children's Hospital, Shanghai, China
| |
Collapse
|
18
|
Neuroimaging in Attention-Deficit/Hyperactivity Disorder: Recent Advances. AJR. AMERICAN JOURNAL OF ROENTGENOLOGY 2021; 218:321-332. [PMID: 34406053 DOI: 10.2214/ajr.21.26316] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a common neurodevelopmental condition, leading to impaired attention and impulsive behaviors diagnosed in, but not limited to, children. ADHD can cause symptoms throughout life. This article summarizes structural (conventional, volumetric, and diffusion tensor imaging MRI) and functional [task-based functional MRI (fMRI), resting state fMRI, PET, and MR spectroscopy] brain findings in patients with ADHD. Consensus is lacking regarding altered anatomic or functional imaging findings of the brain in children with ADHD, likely because of the disorder's heterogeneity. Most anatomic studies report abnormalities in the frontal lobes, basal ganglia, and corpus callosum; decreased surface area in the left ventral frontal and right prefrontal cortex; thinner medial temporal lobes; and smaller caudate nuclei. Using fMRI, researchers have focused on the prefrontal and temporal regions, reflecting perception-action mapping alterations. Artificial intelligence models evaluating brain anatomy have highlighted changes in cortical thickness and shape of the inferior frontal cortex, bilateral sensorimotor cortex, left temporal lobe, and insula. Early intervention and/or normal brain maturation can alter imaging patterns and convert functional imaging studies to a normal pattern. While the imaging findings provide insight into the disease's neuropathophysiology, no definitive structural or functional pattern defines the disorder from a neuroradiologic perspective.
Collapse
|
19
|
McNeill RV, Palladino VS, Brunkhorst-Kanaan N, Grimm O, Reif A, Kittel-Schneider S. Expression of the adult ADHD-associated gene ADGRL3 is dysregulated by risk variants and environmental risk factors. World J Biol Psychiatry 2021; 22:335-349. [PMID: 32787626 DOI: 10.1080/15622975.2020.1809014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVES ADGRL3 is a well-replicated risk gene for adult ADHD, encoding the G protein-coupled receptor latrophilin-3 (LPHN3). However, LPHN3's potential role in pathogenesis is unclear. We aimed to determine whether ADGRL3 expression could be dysregulated by genetic risk variants and/or ADHD-associated environmental risk factors. METHODS Eighteen adult ADHD patients and healthy controls were genotyped for rs734644, rs1397547, rs1397548, rs2271338, rs2305339, rs2345039 and rs6551665 ADGRL3 SNPs, and fibroblast cells were derived from skin punches. The environmental ADHD risk factors 'low birthweight' and 'maternal smoking' were modelled in fibroblast cell culture using starvation and nicotine exposure, respectively. Quantitative real-time PCR and western blotting were performed to quantify ADGRL3 gene and protein expression under control, starvation and nicotine-exposed conditions. RESULTS Starvation was found to significantly decrease ADGRL3 expression, whereas nicotine exposure significantly increased ADGRL3 expression. rs1397547 significantly elevated ADGRL3 transcription and protein expression. rs6551665 and rs2345039 interacted with environment to modulate ADGRL3 transcription. ADGRL3 SNPs were significantly able to predict its transcription under both baseline and starvation conditions, and rs1397547 was identified as a significant independent predictor. CONCLUSIONS ADGRL3 SNPs and environmental risk factors can regulate ADGRL3 expression, providing a potential functional mechanism by which LPHN3 may play a role in ADHD pathogenesis.
Collapse
Affiliation(s)
- Rhiannon V McNeill
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, University Hospital Frankfurt, Frankfurt, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Viola Stella Palladino
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, University Hospital Frankfurt, Frankfurt, Germany
| | - Nathalie Brunkhorst-Kanaan
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, University Hospital Frankfurt, Frankfurt, Germany
| | - Oliver Grimm
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, University Hospital Frankfurt, Frankfurt, Germany
| | - Andreas Reif
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, University Hospital Frankfurt, Frankfurt, Germany
| | - Sarah Kittel-Schneider
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, University Hospital Frankfurt, Frankfurt, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
20
|
Holz NE, Häge A, Plichta MM, Boecker-Schlier R, Jennen-Steinmetz C, Baumeister S, Meyer-Lindenberg A, Laucht M, Banaschewski T, Brandeis D. Early Maternal Care and Amygdala Habituation to Emotional Stimuli in Adulthood. Soc Cogn Affect Neurosci 2021; 16:1100-1110. [PMID: 33963390 PMCID: PMC8483279 DOI: 10.1093/scan/nsab059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 03/25/2021] [Accepted: 05/07/2021] [Indexed: 11/13/2022] Open
Abstract
Evidence suggests that maternal care constitutes a protective factor for psychopathology which may be conditional on the level of family adversity. Given that psychopathology is frequently linked with social deficits, and the amygdala with social functioning, we investigated the impact of early maternal care on amygdala function under high versus low familial risk for psychopathology. Amygdala activity and habituation during an emotional face-matching paradigm was analyzed in participants of an epidemiological cohort study followed since birth (N=172, 25 years). Early mother-infant interaction was assessed during a standardized nursing and play setting at the age of 3 months. Information on familial risk during the offspring's childhood and on the participants' lifetime psychopathology was obtained with diagnostic interviews. An interaction between maternal stimulation and familial risk was found on amygdala habituation but not on activation, with higher maternal stimulation predicting stronger amygdala habituation in the familial risk group only. Furthermore, amygdala habituation correlated inversely with ADHD diagnoses. The findings underline the long-term importance of early maternal care on the offspring´s socioemotional neurodevelopment and of interventions targeting maternal sensitivity early in life, particularly by increasing maternal interactive behavior in those with familial risk.
Collapse
Affiliation(s)
- Nathalie E Holz
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Mannheim, Baden-Württemberg, Germany
| | - Alexander Häge
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Mannheim, Baden-Württemberg, Germany
| | - Michael M Plichta
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Mannheim, Baden-Württemberg, Germany.,Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Mannheim, Baden-Württemberg, Germany.,Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe-Universität Frankfurt am Main, Hoffmann-Str. 10, Frankfurt am Main 60528, Germany
| | - Regina Boecker-Schlier
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Mannheim, Baden-Württemberg, Germany
| | - Christine Jennen-Steinmetz
- Department of Biostatistics, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, J5, Mannheim 68159, Germany
| | - Sarah Baumeister
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Mannheim, Baden-Württemberg, Germany
| | - Andreas Meyer-Lindenberg
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Mannheim, Baden-Württemberg, Germany
| | - Manfred Laucht
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Mannheim, Baden-Württemberg, Germany.,Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, Neumünsterallee 9, Zurich 8032, Switzerland
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Mannheim, Baden-Württemberg, Germany
| | - Daniel Brandeis
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Mannheim, Baden-Württemberg, Germany.,Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, Neumünsterallee 9, Zurich 8032, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland.,Center for Integrative Human Physiology, Winterthurerstrasse 190, Zurich 8057, Switzerland
| |
Collapse
|
21
|
Song S, Qiu J, Lu W. Predicting disease severity in children with combined attention deficit hyperactivity disorder using quantitative features from structural MRI of amygdaloid and hippocampal subfields. J Neural Eng 2021; 18. [PMID: 33706290 DOI: 10.1088/1741-2552/abeddf] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 03/11/2021] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Volumetric changes in the amygdaloid and hippocampal subfields have been observed in children with combined attention deficit hyperactivity disorder (ADHD-C). The purpose of this study was to investigate whether volumetric changes in the amygdaloid and hippocampal subfields could be used to predict disease severity in children with ADHD-C. APPROACH The data used in this study was from ADHD-200 datasets, a total of 76 ADHD-C patients were included in this study. T1 structural MRI data were used and 64 structural features from the amygdala and hippocampus were extracted. Three ADHD rating scales were used as indicators of ADHD severity. Sequential backward elimination (SBE) algorithm was used for feature selection. A linear support vector regression (SVR) was configured to predict disease severity in children with ADHD-C. MAIN RESULTS The three ADHD rating scales could be accurately predicted with the use of SBE-SVR. SBE-SVR achieved the highest accuracy in predicting ADHD index with a correlation of 0.7164 (p < 0.001, tested with 1000-time permutation test). Mean squared error of the SVR was 43.6868, normalized mean squared error was 0.0086, mean absolute error was 3.2893. Several amygdaloid and hippocampal subregions were significantly related to ADHD severity, as revealed by the absolute weight from the SVR model. SIGNIFICANCE The proposed SBE-SVR could accurately predict the severity of patients with ADHD-C based on quantitative features extracted from the amygdaloid and hippocampal structures. The results also demonstrated that the two subcortical nuclei could be used as potential biomarkers in the progression and evaluation of ADHD.
Collapse
Affiliation(s)
- Shanghu Song
- Department of Radiology, Shandong First Medical University, No. 619 Changcheng Road, Taian, Shandong, 271016, CHINA
| | - Jianfeng Qiu
- Shandong Medical University, No. 6699 Qingdao Road, Jinan, 250100, CHINA
| | - Weizhao Lu
- Department of Radiology, Shandong First Medical University, No. 6699 Qingdao Road, Jinan, Shandong, 250000, CHINA
| |
Collapse
|
22
|
Lawrie SM. Translational neuroimaging of ADHD and related neurodevelopmental disorders. World J Biol Psychiatry 2020; 21:659-661. [PMID: 33135584 DOI: 10.1080/15622975.2020.1823694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
23
|
Multimodal neuroimaging-based prediction of adult outcomes in childhood-onset ADHD using ensemble learning techniques. NEUROIMAGE-CLINICAL 2020; 26:102238. [PMID: 32182578 PMCID: PMC7076568 DOI: 10.1016/j.nicl.2020.102238] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 11/22/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a highly prevalent and heterogeneous neurodevelopmental disorder, which is diagnosed using subjective symptom reports. Machine learning classifiers have been utilized to assist in the development of neuroimaging-based biomarkers for objective diagnosis of ADHD. However, existing basic model-based studies in ADHD report suboptimal classification performances and inconclusive results, mainly due to the limited flexibility for each type of basic classifier to appropriately handle multi-dimensional source features with varying properties. This study applied ensemble learning techniques (ELTs), a meta-algorithm that combine several basic machine learning models into one predictive model in order to decrease variance, bias, or improve predictions, in multimodal neuroimaging data collected from 72 young adults, including 36 probands (18 remitters and 18 persisters of childhood ADHD) and 36 group-matched controls. All currently available optimization strategies for ELTs (i.e., voting, bagging, boosting and stacking techniques) were tested in a pool of semifinal classification results generated by seven basic classifiers. The high-dimensional neuroimaging features for classification included regional cortical gray matter (GM) thickness and surface area, GM volume of subcortical structures, volume and fractional anisotropy of major white matter fiber tracts, pair-wise regional connectivity and global/nodal topological properties of the functional brain network for cue-evoked attention process. As a result, the bagging-based ELT with the base model of support vector machine achieved the best results, with significant improvement of the area under the receiver of operating characteristic curve (0.89 for ADHD vs. controls and 0.9 for ADHD persisters vs. remitters). Features of nodal efficiency in right inferior frontal gyrus, right middle frontal (MFG)-inferior parietal (IPL) functional connectivity, and right amygdala volume significantly contributed to accurate discrimination between ADHD probands and controls; higher nodal efficiency of right MFG greatly contributed to inattentive and hyperactive/impulsive symptom remission, while higher right MFG-IPL functional connectivity strongly linked to symptom persistence in adults with childhood ADHD. Considering their improved robustness than the commonly implemented basic classifiers, findings suggest that ELTs may have the potential to identify more reliable neurobiological markers for neurodevelopmental disorders.
Collapse
|
24
|
Wang Y, Qin Y, Li H, Yao D, Sun B, Li Z, Li X, Dai Y, Wen C, Zhang L, Zhang C, Zhu T, Luo C. Abnormal Functional Connectivity in Cognitive Control Network, Default Mode Network, and Visual Attention Network in Internet Addiction: A Resting-State fMRI Study. Front Neurol 2019; 10:1006. [PMID: 31620077 PMCID: PMC6759465 DOI: 10.3389/fneur.2019.01006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 09/03/2019] [Indexed: 01/01/2023] Open
Abstract
Internet addiction (IA) has become a global mental and social problem, which may lead to a series of psychiatric symptoms including uncontrolled use of internet, and lack of concentration. However, the exact pathophysiology of IA remains unclear. Most of functional connectivity studies were based on pre-selected regions of interest (ROI), which could not provide a comprehensive picture of the communication abnormalities in IA, and might lead to limited or bias observations. Using local functional connectivity density (lFCD), this study aimed to explore the whole-brain abnormalities of functional connectivity in IA. We evaluated the whole-brain lFCD resulting from resting-state fMRI data in 28 IA individuals and 30 demographically matched healthy control subjects (HCs). The correlations between clinical characteristics and aberrant lFCD were also assessed. Compared with HCs, subjects with IA exhibited heightened lFCD values in the right dorsolateral prefrontal cortex (DLPFC), left parahippocampal gyrus (PHG), and cerebellum, and the bilateral middle cingulate cortex (MCC) and superior temporal pole (STP), as well as decreased lFCD values in the right inferior parietal lobe (IPL), and bilateral calcarine and lingual gyrus. Voxel-based correlation analysis revealed the significant correlations between the Young's Internet Addiction Test (IAT) score and altered lFCD values in the left PHG and bilateral STP. These findings revealed the hyper-connectivity in cognitive control network and default mode network as well as the hypo-connectivity in visual attention network, verifying the common mechanism in IA and substance addiction, and the underlying association between IA, and attention deficit/hyperactivity disorder in terms of neurobiology.
Collapse
Affiliation(s)
- Yang Wang
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Rehabilitation, Shuangliu Maternal and Child Health Care Hospital, Chengdu, China
| | - Yun Qin
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Hui Li
- School of Medicine, Chengdu University, Chengdu, China
| | - Dezhong Yao
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Bo Sun
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhiliang Li
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Xin Li
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yu Dai
- School of Rehabilitation and Health Preservation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chao Wen
- Department of Rehabilitation, Zigong Fifth People's Hospital, Zigong, China
| | - Lingrui Zhang
- School of Rehabilitation and Health Preservation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chenchen Zhang
- School of Rehabilitation and Health Preservation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tianmin Zhu
- School of Rehabilitation and Health Preservation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Luo
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|