1
|
Wongkhammul N, Khamphikham P, Tongjai S, Tantiworawit A, Fanhchaksai K, Wongpalee SP, Tubsuwan A, Maneekesorn S, Charoenkwan P. Erythropoiesis and Gene Expression Analysis in Erythroid Progenitor Cells Derived from Patients with Hemoglobin H/Constant Spring Disease. Int J Mol Sci 2024; 25:11246. [PMID: 39457028 PMCID: PMC11508986 DOI: 10.3390/ijms252011246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Hemoglobin H/Constant Spring (Hb H/CS) disease represents a form of non-deletional Hb H disease characterized by chronic hemolytic anemia that ranges from moderate to severe and may lead to transfusion-dependent thalassemia. To study the underlying mechanisms of this disease, we conducted an analysis of erythropoiesis and gene expression in erythroid progenitor cells derived from CD34+ hematopoietic stem/progenitor cells from patients with Hb H/CS disease and normal controls. Twelve patients with Hb H/CS disease and five normal controls were enrolled. Peripheral blood samples were collected to isolate CD34+ hematopoietic stem/progenitor cells for the analysis of cell proliferation and differentiation. Six samples from patients with Hb H/CS disease and three controls were subsequently studied for gene expression by next generation sequencing analysis. Erythroid progenitor cells derived from patients with Hb H/CS disease exhibited a trend towards increased rates of erythroid proliferation and decreased cell viability compared to those from controls. Moreover, erythroid progenitor cells derived from patients with Hb H/CS disease demonstrated delayed terminal differentiation. Gene expression profiling revealed elevated levels of genes encoding molecular chaperones, including the heat shock protein genes (HSPs) and the chaperonin containing TCP-1 subunit genes (CCTs) in the Hb H/CS disease group. In summary, erythroid progenitor cells derived from patients with Hb H/CS disease exhibit a trend towards heightened erythroid proliferation, diminished cell viability, and delayed terminal differentiation. Additionally, the increased expression of genes encoding molecular chaperones was observed, providing information on potential underlying pathophysiological mechanisms.
Collapse
Affiliation(s)
- Narawich Wongkhammul
- Center of Multidisciplinary of Advanced Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pinyaphat Khamphikham
- Division of Clinical Microscopy, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand;
- Hematology and Health Technology Research Center, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Siripong Tongjai
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (S.T.); (S.P.W.)
| | - Adisak Tantiworawit
- Division of Hematology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
- Thalassemia and Hematology Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (K.F.); (S.M.)
| | - Kanda Fanhchaksai
- Thalassemia and Hematology Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (K.F.); (S.M.)
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Somsakul Pop Wongpalee
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (S.T.); (S.P.W.)
| | - Alisa Tubsuwan
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand;
| | - Supawadee Maneekesorn
- Thalassemia and Hematology Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (K.F.); (S.M.)
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pimlak Charoenkwan
- Thalassemia and Hematology Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (K.F.); (S.M.)
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
2
|
Gambari R, Waziri AD, Goonasekera H, Peprah E. Pharmacogenomics of Drugs Used in β-Thalassemia and Sickle-Cell Disease: From Basic Research to Clinical Applications. Int J Mol Sci 2024; 25:4263. [PMID: 38673849 PMCID: PMC11050010 DOI: 10.3390/ijms25084263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/30/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
In this short review we have presented and discussed studies on pharmacogenomics (also termed pharmacogenetics) of the drugs employed in the treatment of β-thalassemia or Sickle-cell disease (SCD). This field of investigation is relevant, since it is expected to help clinicians select the appropriate drug and the correct dosage for each patient. We first discussed the search for DNA polymorphisms associated with a high expression of γ-globin genes and identified this using GWAS studies and CRISPR-based gene editing approaches. We then presented validated DNA polymorphisms associated with a high HbF production (including, but not limited to the HBG2 XmnI polymorphism and those related to the BCL11A, MYB, KLF-1, and LYAR genes). The expression of microRNAs involved in the regulation of γ-globin genes was also presented in the context of pharmacomiRNomics. Then, the pharmacogenomics of validated fetal hemoglobin inducers (hydroxyurea, butyrate and butyrate analogues, thalidomide, and sirolimus), of iron chelators, and of analgesics in the pain management of SCD patients were considered. Finally, we discuss current clinical trials, as well as international research networks focusing on clinical issues related to pharmacogenomics in hematological diseases.
Collapse
Affiliation(s)
- Roberto Gambari
- Center “Chiara Gemmo and Elio Zago” for the Research on Thalassemia, Department of Life Sciences and Biotechnology, Ferrara University, 40124 Ferrara, Italy
| | - Aliyu Dahiru Waziri
- Department of Hematology and Blood Transfusion, Ahmadu Bello University Teaching Hospital Zaria, Kaduna 810001, Nigeria;
| | - Hemali Goonasekera
- Department of Anatomy, Genetics and Biomedical Informatics, Faculty of Medicine, University of Colombo, Colombo P.O. Box 271, Sri Lanka;
| | - Emmanuel Peprah
- Implementing Sustainable Evidence-Based Interventions through Engagement (ISEE) Lab, Department of Global and Environmental Health, School of Global Public Health, New York University, New York, NY 10003, USA;
| |
Collapse
|
3
|
Chen M, Lv A, Zhang S, Zheng J, Lin N, Xu L, Huang H. Peripheral blood circular RNA circ-0008102 may serve as a novel clinical biomarker in beta-thalassemia patients. Eur J Pediatr 2024; 183:1367-1379. [PMID: 38165465 PMCID: PMC10950970 DOI: 10.1007/s00431-023-05398-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
Circular RNA circ-0008102 has previously been found dysregulated in β-thalassemia (β-thal) in circRNAs microarray (GSE196682 and GSE241141). Our study is aimed at identifying whether circ-0008102 could be a novel biomarker in β-thal. The peripheral blood of pediatric β-thal patients with (n = 39) or without (n = 20) blood transfusion and healthy controls (n = 30) was selected. qRT-PCR, ROC curve analysis, Spearman correlation analysis, and FISH were used to analyze clinical value of circ-0008102. qRT-PCR confirmed that circ-0008102 expression in pediatric β-thal patients without blood transfusion was significantly higher. ROC curves analysis showed that the AUC of circ-0008102 for differentiating patients without blood transfusion from patients with blood transfusion and healthy controls with an AUC of 0.733 and 0.711. Furthermore, circ-0008102 expression was positively correlated with the levels of RBC, HbF, β-globin, and γ-globin mRNA, but was negatively corrected with the levels of HbA and Cr. circ-0008102 was mainly located in the cytoplasm. circ-0008102 could induce the activation of γ-globin and negatively regulate the expression of the five highest-ranking candidate miRNAs (miR-372-3p, miR-329-5p, miR-198, miR-152-5p, and miR-627-3p) in K562 cells. CONCLUSION We demonstrate that peripheral blood upregulated circ-0008102 may serve as a novel clinical biomarker for pediatric β-thal without blood transfusion. WHAT IS KNOWN • CircRNAs are known to be involved in various human diseases, and several circRNAs are regarded as a class of promising blood-based biomarkers for detection of β-thal. • CircRNAs exert biological functions by epigenetic modification and gene expression regulation, and dysregulated circRNAs in β-thal might be involved in the induction of HbF in β-thal. WHAT IS NEW • Peripheral blood circ-0008102 maybe serve as a novel clinical biomarker for detection of pediatric β-thal without blood transfusion. • Circ-0008102 participates in the pathogenesis of β-thal through regulating γ-globin expression, and negatively regulates the expression of miR-372-3p, miR-329-5p, miR-198, miR-152-5p and miR-627-3p.
Collapse
Affiliation(s)
- Meihuan Chen
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defect, Fuzhou, 350001, China
| | - Aixiang Lv
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defect, Fuzhou, 350001, China
| | - Siwen Zhang
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defect, Fuzhou, 350001, China
- The School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, 350001, China
| | - Junhao Zheng
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defect, Fuzhou, 350001, China
- The School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, 350001, China
| | - Na Lin
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defect, Fuzhou, 350001, China.
| | - Liangpu Xu
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defect, Fuzhou, 350001, China.
| | - Hailong Huang
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defect, Fuzhou, 350001, China.
- The School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, 350001, China.
| |
Collapse
|
4
|
AbdAllah NB, Al Ageeli E, Shbeer A, Abdulhakim JA, Toraih EA, Salman DO, Fawzy MS, Nassar SS. Long Non-Coding RNAs ANRIL and HOTAIR Upregulation is Associated with Survival in Neonates with Sepsis in a Neonatal Intensive Care Unit. Int J Gen Med 2022; 15:6237-6247. [PMID: 35898301 PMCID: PMC9309290 DOI: 10.2147/ijgm.s373434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/12/2022] [Indexed: 11/23/2022] Open
Abstract
Background Recently, long non-coding RNAs (lncRNAs) have emerged as potential molecular biomarkers for sepsis. We aimed to profile the expression signature of three inflammation-related lncRNAs, MALAT1, ANRIL, and HHOTAIR, in the plasma of neonates with sepsis and correlate these signatures with the phenotype. Patients and Methods This case–control study included 124 neonates with sepsis (88 survivors/36 non-survivors) admitted to the neonatal ICU and 17 healthy neonates. The relative expressions were quantified by real-time PCR and correlated to the clinic-laboratory data. Results The three circulating lncRNAs were upregulated in the cases; the median levels were MALAT1 (median = 1.71, IQR: −0.5 to 3.27), ANRIL (median = 1.09, IQR: 0.89 to 1.30), and HOTAIR (median = 1.83, IQR: 1.44 to 2.41). Co-expression analysis showed that the three studied lncRNAs were directly correlated (all p-values <0.001). Overall and stratification by sex analyses revealed significantly higher levels of the three lncRNAs in non-survivors compared to the survivor group (all p-values <0.001). Principal component analysis showed a clear demarcation between the two study cohorts in males and females. Cohorts with upregulated ANRIL (hazard ratio; HR = 4.21, 95% CI = 1.15–10.4, p=0.030) and HOTAIR (HR = 2.49, 95% CI = 1.02–6.05, p=0.044) were at a higher risk of mortality. Conclusion Circulatory MALAT1, ANRIL, and HOTAIR were upregulated in neonatal sepsis, and the latter two may have the potential as prognostic biomarkers for survival in neonatal sepsis.
Collapse
Affiliation(s)
- Nouran B AbdAllah
- Department of Pediatrics, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Essam Al Ageeli
- Department of Clinical Biochemistry (Medical Genetics), Faculty of Medicine, Jazan University, Jazan, Saudi Arabia
| | - Abdullah Shbeer
- Anesthesiology and Intensive Care, Department of Surgery, Faculty of Medicine, Jazan University, Jazan, Saudi Arabia
| | - Jawaher A Abdulhakim
- Medical Laboratory Department, College of Applied Medical Sciences, Taibah University, Yanbu, Saudi Arabia
| | - Eman A Toraih
- Division of Endocrine and Oncologic Surgery, Department of Surgery, School of Medicine, Tulane University, New Orleans, LA, USA.,Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Doaa O Salman
- Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Manal S Fawzy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.,Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
| | - Sanaa S Nassar
- Department of Pediatrics, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
5
|
Exploring the crosstalk between long non-coding RNAs and microRNAs to unravel potential prognostic and therapeutic biomarkers in β-thalassemia. Mol Biol Rep 2022; 49:7057-7068. [PMID: 35717472 DOI: 10.1007/s11033-022-07629-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/19/2022] [Indexed: 10/18/2022]
Abstract
β-thalassemia is a prevalent monogenic disorder characterized by reduced or absent synthesis of the β-globin chain. Although great effort has been made to ameliorate the disease severity of β-thalassemic patients, progress has been stymied due to limited understanding of the detailed molecular mechanism of disease pathogenesis. Recently, non-coding RNAs have been established as key players in regulating various physiological and pathological processes. Many ncRNAs are involved in hematopoiesis and erythroid development. Furthermore, various studies have also reported the complex interplay between different ncRNAs, such as miRNA, lncRNAs, etc. in regulating disease progression and pathogenesis. Both lncRNAs and miRNAs have been identified as independent regulators of globin gene expression and are intricately involved in disease pathogenesis; yet accumulating evidence suggests that the cross-talk between lncRNAs and miRNAs is intricately involved in the underlying globin gene expression, fine-tuning the effect of their independent regulation. In this review, we summarize the current progress of research on the roles of lncRNAs and miRNAs implicated in β-thalassemia disease, including their interactions and regulatory networks. This can provide important insights into the detailed epigenetic regulation of globin gene switching and has the potential to develop novel therapeutic approaches against β-thalassemia.
Collapse
|
6
|
Fawzy MS, Abdelghany AA, Toraih EA, Mohamed AM. Circulating long noncoding RNAs H19 and GAS5 are associated with type 2 diabetes but not with diabetic retinopathy: A preliminary study. Bosn J Basic Med Sci 2020; 20:365-371. [PMID: 31999937 PMCID: PMC7416173 DOI: 10.17305/bjbms.2019.4533] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 12/14/2019] [Indexed: 12/11/2022] Open
Abstract
Recently, a wide range of biological and pathological roles of long noncoding RNAs (lncRNAs) have been discovered. However, the potential role of circulating lncRNAs H19 and GAS5 in type 2 diabetes mellitus (T2DM) and diabetic retinopathy (DR) is not clear. Here, we assessed the plasma levels of H19 and GAS5 lncRNAs in T2DM patients with/without DR and evaluated if H19 and GAS5 pre-treatment plasma levels are a predictor of early response to a single aflibercept dose in DR subgroup. Plasma lncRNA expression profiles of 119 T2DM patients (66 with DR and 53 without DR) and 110 healthy controls were determined by quantitative reverse transcription PCR. The association of lncRNA expression profiles with clinical features and aflibercept early response in DR patients was investigated. Relative H19 expression levels were significantly increased in T2DM group (including DR and non-DR subgroups) vs. controls, while GAS5 levels were decreased in T2DM group (p < 0.001). There was no significant difference in H19 and GAS5 expression levels between DR and non-DR subgroups. H19 and GAS5 expression profiles were not significantly correlated with clinical parameters or response to aflibercept therapy in DR subgroup. Our findings indicate that the circulating lncRNAs H19 and GAS5 may be associated with T2DM prevalence but may not have an important diagnostic/prognostic role in DR or early response to aflibercept intravitreal injection in DR patients. Large-scale transcriptomic studies are warranted to validate our results and investigate other lncRNA candidates in T2DM.
Collapse
Affiliation(s)
- Manal S Fawzy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt; Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
| | - Ahmed A Abdelghany
- Department of Ophthalmology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Eman A Toraih
- Department of Surgery, School of Medicine, Tulane University, New Orleans, Louisiana, USA; Department of Histology and Cell Biology (Genetics Unit), Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Abeer M Mohamed
- Department of Clinical Pathology and Clinical Chemistry, Faculty of Medicine, Sohag University, Sohag, Egypt; Department of Clinical Laboratory Sciences, Al-Ghad International College for Applied Medical Sciences, Abha, Saudi Arabia
| |
Collapse
|
7
|
Li C, Pan S, Song Y, Li Y, Qu J. Silence of lncRNA MIAT protects ATDC5 cells against lipopolysaccharides challenge via up-regulating miR-132. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:2521-2527. [PMID: 31204523 DOI: 10.1080/21691401.2019.1626410] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The over-expanding role of lncRNA myocardial infarction associated transcript (MIAT) in various human diseases has been recently revealed. This study attempted to see the role of MIAT in a cell model of osteoarthritis (OA). ATDC5 cells were subjected to lipopolysaccharides (LPS) to mimic a cell model of OA. The effects of MIAT on the model were tested by performing CCK-8 assay, flow cytometry, qRT-PCR, western blot and ELISA. The downstream miRNA and signalling pathways were studied by utilizing qRT-PCR and western blot. Transfection of ATDC5 cells with the shRNA specific against MIAT significantly attenuated LPS-evoked apoptosis and cytokines release. At the meantime, the viability loss and the cleavage of caspases were ameliorated as well. MIAT overexpressed lead to the opposite result. Further, miR-132 was found to be negatively regulated by MIAT. The protective effects of MIAT silence were flattened when miR-132 expression was suppressed. Besides that the inhibitory effects of MIAT silence on LPS-evoked NF-κB and JNK activation were eliminated by miR-132 silence. This study illustrated that silence of MIAT protected ATDC5 cells against LPS challenge. The chondroprotective effects of MIAT silence may be via up-regulation of miR-132 and inhibition of NF-κB and JNK pathways.
Collapse
Affiliation(s)
- Chen Li
- a Orthopaedic Medical Center, The Second Hospital of Jilin University , Changchun , China
| | - Su Pan
- a Orthopaedic Medical Center, The Second Hospital of Jilin University , Changchun , China
| | - Yan Song
- b Changchun University of Chinese Medicine , Changchun , China
| | - Yinqing Li
- b Changchun University of Chinese Medicine , Changchun , China
| | - Ji Qu
- a Orthopaedic Medical Center, The Second Hospital of Jilin University , Changchun , China
| |
Collapse
|
8
|
Toraih EA, Abdelghany AA, Abd El Fadeal NM, Al Ageeli E, Fawzy MS. Deciphering the role of circulating lncRNAs: RNCR2, NEAT2, CDKN2B-AS1, and PVT1 and the possible prediction of anti-VEGF treatment outcomes in diabetic retinopathy patients. Graefes Arch Clin Exp Ophthalmol 2019; 257:1897-1913. [DOI: 10.1007/s00417-019-04409-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/17/2019] [Accepted: 06/29/2019] [Indexed: 12/13/2022] Open
|
9
|
Li X, Wang Q, Rui Y, Zhang C, Wang W, Gu J, Tang J, Ding Y. HOXC13-AS promotes breast cancer cell growth through regulating miR-497-5p/PTEN axis. J Cell Physiol 2019; 234:22343-22351. [PMID: 31066051 DOI: 10.1002/jcp.28800] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/18/2019] [Accepted: 04/22/2019] [Indexed: 12/23/2022]
Abstract
Dysregulated long noncoding RNAs (lncRNAs) remains to be explored in tumorigenesis. LncRNA HOXC13 antisense RNA (HOXC13-AS) has been found as an oncogene in many cancers; however, the role of HOXC13-AS in breast cancer still elusive. In this study, the HOXC13-AS levels and its role in cell proliferation was first measured by real-time quantitative polymerase chain reaction, Cell Counting Kit-8 assay, and colony formation assay. It showed that HOXC13-AS was increased in breast cancer tissues compared with the adjacent normal tissues and upregulated HOXC13-AS promoted the growth of breast cancer cells. Then, we found that the miR-497-5p levels were downregulated in cancer tissues compared with the adjacent tissues and miR-497-5p suppressed breast cancer cell proliferation. Further study showed that HOXC13-AS could function as a "sponge" for miR-497-5p then suppress miR-497-5p expression. Moreover, we next identified that Phosphatase and Tensin homolog (PTEN) is the target of miR-497-5p. Overexpression of miR-497-5p by chemical mimics decreased the expression of PTEN, while downregulation of miR-497-5p by HOXC13-AS rescued the expression of PTEN. Finally, we showed that HOXC13-AS promoted the proliferation of breast cancer cells and tumor growth through miR-497-5p/PTEN axis in vitro and in vivo. Hence, we conclude that HOXC13-AS, which is significantly upregulated in breast cancers, promoted cell proliferation through the suppressed miR-497-5p and further upregulated PTEN.
Collapse
Affiliation(s)
- Xiaowei Li
- Department of General Surgery, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Qiang Wang
- Department of General Surgery, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Yiqi Rui
- Department of General Surgery, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Chuanqiang Zhang
- Department of General Surgery, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Wenwen Wang
- Department of General Surgery, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Jianchun Gu
- Department of General Surgery, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Jinhai Tang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yongbin Ding
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|