1
|
Kanga KJW, Kanga LHB, Mendonca P, Soliman KFA, Ferguson DT, Reed SL, Darling-Reed S. Attenuative Effect of Diallyl Trisulfide on Caspase Activity in TNF-α-induced Triple Negative Breast Cancer Cells. Anticancer Res 2023; 43:2393-2405. [PMID: 37247921 PMCID: PMC10791149 DOI: 10.21873/anticanres.16407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 05/31/2023]
Abstract
BACKGROUND/AIM Diallyl trisulfide (DATS) has been shown to prevent and inhibit carcinogenesis in cancer cells. We have previously shown DATS's ability to decrease the percentage of viable cells, inhibit cell migration and modulate genes involved in the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-B) and mitogen-activated protein kinase (MAPK) signaling. MATERIALS AND METHODS This study aimed to compare the efficacy of DATS in tumor necrosis factor alpha (TNF-α) induced MDA-MB-231 and MDA-MB-468 cells and investigate its role in cell-death signaling via cell cycle, flow cytometry, and caspase assay. RESULTS DATS exhibit a time-dependent accumulation of G2/M phase cells in both cell lines, with higher effects in the MDA-MB-468 for all time points. DATS's ability to decrease the percentage of viable cells in both MDA-MB-231 and MDA-MB-468 cells was shown by a significant but slight increase of early and late apoptosis in the presence of DATS compared to control. Moreover, MDA-MB-468 cells showed more sensitivity to the DATS effect, evidenced by the higher percentage of apoptosis than MDA-MB-231 cells. The caspase studies showed a significant increase in caspase 3 and 8 activity in the presence of DATS, compared to control, in both cell lines. DATS showed no significant increase in caspase 9 activity in both cell lines compared to the control. CONCLUSION DATS-induced apoptosis in human breast cancer cells is mediated, at least in part, by cell cycle arrest and caspase activity. These findings provide information for future studies into the role of DATS in TNBC therapy and prevention.
Collapse
Affiliation(s)
- Konan J W Kanga
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL, U.S.A
| | - Lambert H B Kanga
- College of Agriculture and Food Sciences, Center for Biological Control, Florida A&M University, Tallahassee, FL, U.S.A
| | - Patricia Mendonca
- Biology Department, College of Science and Technology, Florida A&M University, Tallahassee, FL, U.S.A
| | - Karam F A Soliman
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL, U.S.A
| | - Dominique T Ferguson
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL, U.S.A
| | - Sarah L Reed
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL, U.S.A
| | - Selina Darling-Reed
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL, U.S.A.;
| |
Collapse
|
2
|
Kim H, Park H, Hwang B, Kim S, Choi YH, Kim WJ, Moon SK. Bisphenol A exposure inhibits vascular smooth muscle cell responses: Involvement of proliferation, migration, and invasion. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 98:104060. [PMID: 36610522 DOI: 10.1016/j.etap.2023.104060] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/05/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Previous studies have associated bisphenol A (BPA) with malignant tumor formation, infertility, and atherosclerosis in vitro and in vivo. However, the precise mechanisms through which BPA affects the cardiovascular system under normal conditions remain unclear. Therefore, this study investigated the biological mechanisms through which BPA affects the responses of aortic vascular smooth muscle cells (VSMCs). BPA treatment inhibited the proliferative activity of VSMCs and induced G2/M-phase cell cycle arrest via stimulation of the ATM-CHK2-Cdc25C-p21WAF1-Cdc2 cascade in VSMCs. Furthermore, BPA treatment upregulated the phosphorylation of mitogen-activated protein kinase (MAPK) pathways such as ERK, JNK, and p38 MAPK in VSMCs. However, the phosphorylation level of AKT was down-regulated by BPA treatment. Additionally, the phosphorylation of ERK, JNK, and p38 MAPK was suppressed when the cells were treated with their respective inhibitors (U0126, SP600125, and SB203580). BPA suppressed MMP-9 activity by reducing the binding activity of AP-1, Sp-1, and NF-κB, thus inhibiting the invasive and migratory ability of VSMCs. These data demonstrate that BPA interferes with the proliferation, migration, and invasion capacities of VSMCs. Therefore, our findings suggest that overexposure to BPA can lead to cardiovascular damage due to dysregulated VSMC responses.
Collapse
Affiliation(s)
- Hoon Kim
- Department of Food and Nutrition, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Hongbum Park
- Department of Food and Nutrition, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Byungdoo Hwang
- Department of Food and Nutrition, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Soobin Kim
- Department of Food and Nutrition, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Yung Hyun Choi
- Department of Biochemistry, College of Oriental Medicine, Dongeui University, Busan 47340, Republic of Korea
| | - Wun-Jae Kim
- Institute of Urotech, Cheongju, Chungbuk 28120, Republic of Korea
| | - Sung-Kwon Moon
- Department of Food and Nutrition, Chung-Ang University, Anseong 17546, Republic of Korea.
| |
Collapse
|
3
|
Elghezal H, Alfayez K, Ben Abdallah I, Alfares A, Almazyad A, Al Jasser A, Almobadel N, Alsuhaibani O, Alhashem A. Hypospadias in ring X syndrome. Eur J Med Genet 2021; 64:104225. [PMID: 33872775 DOI: 10.1016/j.ejmg.2021.104225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 03/19/2021] [Accepted: 04/12/2021] [Indexed: 11/25/2022]
Abstract
Ring X is a chromosomal anomaly mainly seen in females with turner syndrome and usually present in mosaic form with 45,X cells (45,X/46,X,r(X)) because of their mitotic instability. In males it is an extremely rare finding because large nullisomy for X chromosome material is likely not compatible with survival. Only two cases of male with ring chromosome X were previously reported. We report here a four-year-old male with ring chromosome X characterized using Karyotype, FISH and array CGH and presenting short stature, microcephaly and hypospadias. Molecular investigations showed 923 Kb terminal deletion on the pseudoautosomal region 1 (PAR1) including SHOX gene followed by a duplication of 2.4 Mb. The absence of functional nullisomy because of a second copy of deleted genes was present in chromosome Y PAR1 region may explain the compatibility with survival in our case of male with ring X. Short stature common with the two previously reported cases is likely related to SHOX gene deletion but also to the effect of "ring syndrome". However, hypospadias was not reported in the previous cases and can be due to the associated duplication outside PAR1 region including in particular PRKX gene coding for a protein involved in urogenital system morphogenesis.
Collapse
Affiliation(s)
- Hatem Elghezal
- Cytogenetics and Molecular Genetics Division, Prince Sultan Military Medical City, Riyadh, Saudi Arabia.
| | - Khowla Alfayez
- Cytogenetics and Molecular Genetics Division, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Inesse Ben Abdallah
- Cytogenetics and Molecular Genetics Division, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Ahmed Alfares
- Division of Genetic and Metabolic Medicine, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Ayesh Almazyad
- Cytogenetics and Molecular Genetics Division, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Abdullah Al Jasser
- Division of Endocrinology, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Nasser Almobadel
- Cytogenetics and Molecular Genetics Division, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Omar Alsuhaibani
- Central Military Laboratory and Blood Bank Department, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Amal Alhashem
- Division of Genetic and Metabolic Medicine, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Ngowi EE, Afzal A, Sarfraz M, Khattak S, Zaman SU, Khan NH, Li T, Jiang QY, Zhang X, Duan SF, Ji XY, Wu DD. Role of hydrogen sulfide donors in cancer development and progression. Int J Biol Sci 2021; 17:73-88. [PMID: 33390834 PMCID: PMC7757040 DOI: 10.7150/ijbs.47850] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023] Open
Abstract
In recent years, a vast number of potential cancer therapeutic targets have emerged. However, developing efficient and effective drugs for the targets is of major concern. Hydrogen sulfide (H2S), one of the three known gasotransmitters, is involved in the regulation of various cellular activities such as autophagy, apoptosis, migration, and proliferation. Low production of H2S has been identified in numerous cancer types. Treating cancer cells with H2S donors is the common experimental technique used to improve H2S levels; however, the outcome depends on the concentration/dose, time, cell type, and sometimes the drug used. Both natural and synthesized donors are available for this purpose, although their effects vary independently ranging from strong cancer suppressors to promoters. Nonetheless, numerous signaling pathways have been reported to be altered following the treatments with H2S donors which suggest their potential in cancer treatment. This review will analyze the potential of H2S donors in cancer therapy by summarizing key cellular processes and mechanisms involved.
Collapse
Affiliation(s)
- Ebenezeri Erasto Ngowi
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- Department of Biological Sciences, Faculty of Science, Dar es Salaam University College of Education, Dar es Salaam 2329, Tanzania
- Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Henan University, Kaifeng, Henan 475004, China
| | - Attia Afzal
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- Faculty of Pharmacy, The University of Lahore, Lahore, Punjab 56400, Pakistan
| | - Muhammad Sarfraz
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Henan University, Kaifeng, Henan 475004, China
- Faculty of Pharmacy, The University of Lahore, Lahore, Punjab 56400, Pakistan
| | - Saadullah Khattak
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Shams Uz Zaman
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Nazeer Hussain Khan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Tao Li
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Qi-Ying Jiang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Xin Zhang
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, Henan 475004, China
| | - Shao-Feng Duan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, Henan 475004, China
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- School of Stomatology, Henan University, Kaifeng, Henan 475004, China
| |
Collapse
|
5
|
Transcriptomic Response of Breast Cancer Cells MDA-MB-231 to Docosahexaenoic Acid: Downregulation of Lipid and Cholesterol Metabolism Genes and Upregulation of Genes of the Pro-Apoptotic ER-Stress Pathway. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17103746. [PMID: 32466294 PMCID: PMC7277693 DOI: 10.3390/ijerph17103746] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/20/2020] [Accepted: 05/22/2020] [Indexed: 12/18/2022]
Abstract
Despite considerable efforts in prevention and therapy, breast cancer remains a major public health concern worldwide. Numerous studies using breast cancer cell lines have shown the antiproliferative and pro-apoptotic effects of docosahexaenoic acid (DHA). Some studies have also demonstrated the inhibitory effect of DHA on the migration and invasion of breast cancer cells, making DHA a potential anti-metastatic agent. Thus, DHA has shown its potential as a chemotherapeutic adjuvant. However, the molecular mechanisms triggering DHA effects remain unclear, and the aim of this study was to provide a transcriptomic basis for further cellular and molecular investigations. Therefore, MDA-MB-231 cells were treated with 100 µM DHA for 12 h or 24 h before RNA-seq analysis. The results show the great impact of DHA-treatment on the transcriptome, especially after 24 h of treatment. The impact of DHA is particularly visible in genes involved in the cholesterol biosynthesis pathway that is strongly downregulated, and the endoplasmic reticulum (ER)-stress response that is, conversely, upregulated. This ER-stress and unfolded protein response could explain the pro-apoptotic effect of DHA. The expression of genes related to migration and invasion (especially SERPINE1, PLAT, and MMP11) is also impacted by DHA. In conclusion, this transcriptomic analysis supports the antiproliferative, pro-apoptotic and anti-invasive effects of DHA, and provides new avenues for understanding its molecular mechanisms.
Collapse
|
6
|
Silva-Islas CA, Chánez-Cárdenas ME, Barrera-Oviedo D, Ortiz-Plata A, Pedraza-Chaverri J, Maldonado PD. Diallyl Trisulfide Protects Rat Brain Tissue against the Damage Induced by Ischemia-Reperfusion through the Nrf2 Pathway. Antioxidants (Basel) 2019; 8:antiox8090410. [PMID: 31540440 PMCID: PMC6770608 DOI: 10.3390/antiox8090410] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 12/15/2022] Open
Abstract
Stroke is a public health problem due to its high mortality and disability rates; despite these, the pharmacological treatments are limited. Oxidative stress plays an important role in cerebral damage in stroke and the activation of the nuclear factor erythroid 2-related factor 2 (Nrf2) confers protection against oxidative stress. Different compounds, such as diallyl trisulfide (DATS), have the ability to activate Nrf2. DATS protects against the damage induced in oxygen-glucose deprivation in neuronal cells; however, in in vivo models of cerebral ischemia, DATS has not been evaluated. Male Wistar rats were subjected to 1 h of ischemia and seven days of reperfusion and the protective effect of DATS was evaluated. DATS administration (IR + DATS) decreased the infarct area and brain damage in the striatum and cortex; improved neurological function; decreased malondialdehyde and metalloproteinase-9 levels; increased Nrf2 activation in the cortex and the expression of superoxide dismutase 1 (SOD1) in the nucleus, SOD2 and glutathione S-transferase (GST) in the striatum and cortex; and increased the activity of catalase (CAT) in the striatum and glutathione peroxidase (GPx) in the cortex. Our results demonstrate the protective effect of DATS in an in vivo model of cerebral ischemia that involves Nrf2 activation.
Collapse
Affiliation(s)
- Carlos A Silva-Islas
- Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía, CDMX 14269, Mexico.
| | - María E Chánez-Cárdenas
- Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía, CDMX 14269, Mexico.
| | - Diana Barrera-Oviedo
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX 04510, Mexico.
| | - Alma Ortiz-Plata
- Laboratorio de Patología Experimental, Instituto Nacional de Neurología y Neurocirugía, CDMX 14269, Mexico.
| | - José Pedraza-Chaverri
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, CDMX 04510, Mexico.
| | - Perla D Maldonado
- Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía, CDMX 14269, Mexico.
| |
Collapse
|
7
|
Yang X, Cheng Y, Su G. A review of the multifunctionality of angiopoietin-like 4 in eye disease. Biosci Rep 2018; 38:BSR20180557. [PMID: 30049845 PMCID: PMC6137252 DOI: 10.1042/bsr20180557] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 07/02/2018] [Accepted: 07/18/2018] [Indexed: 12/12/2022] Open
Abstract
Angiopoietin-like protein 4 (ANGPTL4) is a multifunctional cytokine regulating vascular permeability, angiogenesis, and inflammation. Dysregulations in these responses contribute to the pathogenesis of ischemic retinopathies such as diabetic retinopathy (DR), age-related macular degeneration (AMD), retinal vein occlusion, and sickle cell retinopathy (SCR). However, the role of ANGPTL4 in these diseases remains controversial. Here, we summarize the functional mechanisms of ANGPTL4 in several diseases. We highlight original studies that provide detailed data about the mechanisms of action for ANGPTL4, its applications as a diagnostic or prognostic biomarker, and its use as a potential therapeutic target. Taken together, the discussions in this review will help us gain a better understanding of the molecular mechanisms by which ANGPTL4 functions in eye disease and will provide directions for future research.
Collapse
Affiliation(s)
- Xinyue Yang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Yan Cheng
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Guanfang Su
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130041, China
| |
Collapse
|
8
|
Pan J, Zhang L, Xu S, Cheng X, Yu H, Bao J, Lu R. Induction of Apoptosis in Human Papillary-Thyroid-Carcinoma BCPAP Cells by Diallyl Trisulfide through Activation of the MAPK Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:5871-5878. [PMID: 29786427 DOI: 10.1021/acs.jafc.8b02243] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This study aimed to elucidate the potential effects of diallyl trisulfide (DATS) on human papillary-thyroid-carcinoma BCPAP cells and its underlying mechanisms. DATS is an organosulfur compound derived from garlic. In this study, we demonstrated that compared with the solvent control, DATS treatment at concentrations of 5, 10, and 20 μΜ decreased cell survival rates of BCPAP cells to 84.51 ± 2.67, 57.16 ± 1.18, and 41.22 ± 1.19% respectively. DATS also caused cell-cycle arrest at G0/G1 phase, and the proportion of cells arrested in G0/G1 phase rose from 68.8 ± 8.38 to 80.4 ± 8.38%, which eventually resulted in cell apoptosis through a mitochondrial apoptotic pathway in BCPAP cells. Further evidence showed that DATS activated ERK, JNK, and p38, members of the MAPK family. Moreover, ERK and JNK inhibitors partially reversed apoptosis in BCPAP cells induced by DATS treatment. Taken together, our results demonstrated that DATS exerted an apoptosis-inducing effect on papillary-thyroid-cancer cells via activation of the MAPK signaling pathway, which shed light on a prospective therapeutic target for thyroid-cancer treatment.
Collapse
Affiliation(s)
- Jie Pan
- School of Food Science and Technology , Jiangnan University , 1800 Lihu Avenue , Wuxi , Jiangsu 214122 , China
- Key Laboratory of Nuclear Medicine, Ministry of Health , Jiangsu Institute of Nuclear Medicine , 20 Qian Rong Road , Wuxi , Jiangsu 214063 , China
| | - Li Zhang
- Key Laboratory of Nuclear Medicine, Ministry of Health , Jiangsu Institute of Nuclear Medicine , 20 Qian Rong Road , Wuxi , Jiangsu 214063 , China
| | - Shichen Xu
- Key Laboratory of Nuclear Medicine, Ministry of Health , Jiangsu Institute of Nuclear Medicine , 20 Qian Rong Road , Wuxi , Jiangsu 214063 , China
| | - Xian Cheng
- Key Laboratory of Nuclear Medicine, Ministry of Health , Jiangsu Institute of Nuclear Medicine , 20 Qian Rong Road , Wuxi , Jiangsu 214063 , China
| | - Huixin Yu
- Key Laboratory of Nuclear Medicine, Ministry of Health , Jiangsu Institute of Nuclear Medicine , 20 Qian Rong Road , Wuxi , Jiangsu 214063 , China
| | - Jiandong Bao
- Key Laboratory of Nuclear Medicine, Ministry of Health , Jiangsu Institute of Nuclear Medicine , 20 Qian Rong Road , Wuxi , Jiangsu 214063 , China
| | - Rongrong Lu
- School of Food Science and Technology , Jiangnan University , 1800 Lihu Avenue , Wuxi , Jiangsu 214122 , China
| |
Collapse
|