1
|
Huang L, Guo J, Li Y, Yang W, Ni W, Jia Y, Yu M, Zhang J. Improve Solubility and Develop Personalized Itraconazole Dosages via Forming Amorphous Solid Dispersions with Hydrophilic Polymers Utilizing HME and 3D Printing Technologies. Polymers (Basel) 2024; 16:3302. [PMID: 39684047 DOI: 10.3390/polym16233302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/11/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Itraconazole (ITZ), a broad-spectrum triazole antifungal agent, exhibits remarkable pharmacodynamic and pharmacokinetic properties. However, the low solubility of ITZ significantly reduces its oral bioavailability. Furthermore, it has been reported that this medication can result in dose-related adverse effects. Therefore, the objective of this study was to enhance the solubility of ITZ through the utilization of various polymers and to manufacture personalized and programmable release ITZ tablets. Five different polymers were selected as water-soluble carriers. Thirty percent w/w ITZ was mixed with seventy percent w/w of the polymers, which were then extruded. A series of physical and chemical characterization studies were conducted, including DSC, PXRD, PLM, and in vitro drug release studies. The results demonstrated that ITZ was dispersed within the polymers, forming ASDs that markedly enhanced its solubility and dissolution rate. Consequently, soluplus® was employed as the polymer for the extrusion of ITZ-loaded filaments, which were subsequently designed and printed. The in vitro drug release studies indicated that the release of ITZ could be regulated by modifying the 3D structure design. Overall, this study found that the combination of HME and 3D printing technologies could represent an optimal approach for the development of personalized and precise drug delivery dosages.
Collapse
Affiliation(s)
- Lianghao Huang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Pharmaceutical Products Research and Development Center, Marine Biomedical Research Institute of Qingdao, Qingdao 266137, China
| | - Jingjing Guo
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Pharmaceutical Products Research and Development Center, Marine Biomedical Research Institute of Qingdao, Qingdao 266137, China
| | - Yusen Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Pharmaceutical Products Research and Development Center, Marine Biomedical Research Institute of Qingdao, Qingdao 266137, China
| | - Weiwei Yang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Wen Ni
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Pharmaceutical Products Research and Development Center, Marine Biomedical Research Institute of Qingdao, Qingdao 266137, China
| | - Yaru Jia
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Pharmaceutical Products Research and Development Center, Marine Biomedical Research Institute of Qingdao, Qingdao 266137, China
| | - Mingchao Yu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Pharmaceutical Products Research and Development Center, Marine Biomedical Research Institute of Qingdao, Qingdao 266137, China
| | - Jiaxiang Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Pharmaceutical Products Research and Development Center, Marine Biomedical Research Institute of Qingdao, Qingdao 266137, China
| |
Collapse
|
2
|
Uboldi M, Gelain A, Buratti G, Chiappa A, Gazzaniga A, Melocchi A, Zema L. Polyvinyl alcohol-based capsule shells manufactured by injection molding as ready-to-use moisture barriers for the development of delivery systems. Int J Pharm 2024; 661:124373. [PMID: 38909921 DOI: 10.1016/j.ijpharm.2024.124373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
In this work, feasibility of injection molding was demonstrated for manufacturing capsule shells. 600 µm-thick prototypes were successfully molded with pharmaceutical-grade low-viscosity polyvinyl alcohols (PVAs), possibly added with a range of different fillers. They showed reproducible weight and thickness (CV < 2 and 5, respectively), compliant behavior upon piercing (holes diameter analogous to the reference), tunable release performance (immediate and pulsatile), and moisture protection capability. To assess the latter, an on-line method relying on near infrared spectroscopy measurements was set-up and validated. Based on the data collected and considering the versatility IM would provide for product shape/thickness/composition, PVA-based molded shells could help widening the portfolio of ready-to-use capsules, representing an interesting alternative to those commercially available. Indeed, these capsules could be filled with various formulations, even those with stability issues, and intended either for oral administration or for pulmonary delivery via single-dose dry powder inhalers.
Collapse
Affiliation(s)
- Marco Uboldi
- Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via G. Colombo 71, 20133 Milano, MI, Italy
| | - Andrea Gelain
- Freund-Vector Corporation European Lab, via E. Mattei 2, 20852, Villasanta, MB, Italy
| | - Giuseppe Buratti
- Freund-Vector Corporation European Lab, via E. Mattei 2, 20852, Villasanta, MB, Italy
| | - Arianna Chiappa
- Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via G. Colombo 71, 20133 Milano, MI, Italy; Dipartimento di Chimica, Materiali e Ingegneria Chimica "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, MI, Italy(1)
| | - Andrea Gazzaniga
- Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via G. Colombo 71, 20133 Milano, MI, Italy
| | - Alice Melocchi
- Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via G. Colombo 71, 20133 Milano, MI, Italy.
| | - Lucia Zema
- Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via G. Colombo 71, 20133 Milano, MI, Italy
| |
Collapse
|
3
|
Gupta A, Dahima R, Panda SK, Gupta A, Singh GD, Wani TA, Hussain A, Rathore D. QbD-Based Development and Evaluation of Pazopanib Hydrochloride Extrudates Prepared by Hot-Melt Extrusion Technique: In Vitro and In Vivo Evaluation. Pharmaceutics 2024; 16:764. [PMID: 38931886 PMCID: PMC11206766 DOI: 10.3390/pharmaceutics16060764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Pazopanib hydrochloride (PZB) is a protein kinase inhibitor approved by the United States Food and Drug Administration and European agencies for the treatment of renal cell carcinoma and other renal malignancies. However, it exhibits poor aqueous solubility and inconsistent oral drug absorption. In this regard, the current research work entails the development and evaluation of the extrudates of pazopanib hydrochloride by the hot-melt extrusion (HME) technique for solubility enhancement and augmenting oral bioavailability. RESULTS Solid dispersion of the drug was prepared using polymers such as Kollidon VA64, hydroxypropylmethylcellulose (HPMC), Eudragit EPO, and Affinisol 15LV in a 1:2 ratio by the HME process through a lab-scale 18 mm extruder. Systematic optimization of the formulation variables was carried out with the help of custom screening design (JMP Software by SAS, Version 14.0) to study the impact of polymer type and plasticizer level on the quality of extrudate processability by measuring the torque value, appearance, and disintegration time as the responses. The polymer blends containing Kollidon VA64 and Affinisol 15LV resulted in respective clear transparent extrudates, while Eudragit EPO and HPMC extrudates were found to be opaque white and brownish, respectively. Furthermore, evaluation of the impact of process parameters such as screw rpm and barrel temperature was measured using a definitive screening design on the extrude appearance, torque, disintegration time, and dissolution profile. Based on the statistical outcomes, it can be concluded that barrel temperature has a significant impact on torque, disintegration time, and dissolution at 30 min, while screw speed has an insignificant impact on the response variables. Affinisol extrudates showed less moisture uptake and faster dissolution in comparison to Kollidon VA64 extrudates. Affinisol extrudates were evaluated for polymorphic stability up to a 3-month accelerated condition and found no recrystallization. PZB-Extrudates using the Affinisol polymer (Test formulation A) revealed significantly higher bioavailability (AUC) in comparison to the free Pazopanib drug and marketed formulation.
Collapse
Affiliation(s)
- Amit Gupta
- School of Pharmacy, Devi Ahilya Vishwavidyalaya, Takshashila Campus, Ring Road, Indore 452001, India; (R.D.); (D.R.)
| | - Rashmi Dahima
- School of Pharmacy, Devi Ahilya Vishwavidyalaya, Takshashila Campus, Ring Road, Indore 452001, India; (R.D.); (D.R.)
| | - Sunil K. Panda
- Research & Development, GM Pharmaceutical Inc., 0114 Tbilisi, Georgia;
| | - Annie Gupta
- Amity Institute of Pharmacy, Amity University, Sector 125, Noida 201303, India
| | - Gaurav Deep Singh
- Department of Chemistry, Radha Govind University, Ramgarh 829122, India
| | - Tanveer A. Wani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Devashish Rathore
- School of Pharmacy, Devi Ahilya Vishwavidyalaya, Takshashila Campus, Ring Road, Indore 452001, India; (R.D.); (D.R.)
| |
Collapse
|
4
|
Hess F, Kipping T, Weitschies W, Krause J. Understanding the Interaction of Thermal, Rheological, and Mechanical Parameters Critical for the Processability of Polyvinyl Alcohol-Based Systems during Hot Melt Extrusion. Pharmaceutics 2024; 16:472. [PMID: 38675133 PMCID: PMC11055164 DOI: 10.3390/pharmaceutics16040472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Hot melt extrusion (HME) is a common manufacturing process used in the pharmaceutical industry to improve the solubility of poorly soluble active pharmaceutical ingredients (API). The goal is to create an amorphous solid dispersion (ASD) where the amorphous form of the API is stabilized within a polymer matrix. Traditionally, the development of pharmaceutically approved polymers has focused on requirements such as thermal properties, solubility, drug-polymer interactions, and biocompatibility. The mechanical properties of the material have often been neglected in the design of new polymers. However, new downstream methods require more flexible polymers or suitable plasticizer polymer combinations. In this study, two grades of the polymer polyvinyl alcohol (PVA), which is already established for HME, are investigated in terms of their mechanical, rheological, and thermal properties. The mechanical properties of the extruded filaments were tested by the three-point bending test. The rheological behavior was analyzed by oscillating plate measurements. Thermal analysis was performed by differential scanning calorimetry (DSC). In addition, the solid and liquid plasticizers mannitol, sorbitol, triacetin, triethyl citrate, polyethylene glycol, and glycerol were evaluated for use with PVA and their impact on the polymer properties was elaborated. Finally, the effects of the plasticizers are compared to each other, and the correlations are analyzed statistically using principal component analysis (PCA). Thereby, a clear ranking of the plasticizer effects was established, and a deeper understanding of the polymer-plasticizer interactions was created.
Collapse
Affiliation(s)
- Florian Hess
- Merck Life Science KGaA, Frankfurter Straße 250, 64293 Darmstadt, Germany
- Department of Biopharmaceutic and Pharmaceutical Technology, Institute of Pharmacy, University of Greifswald, Felix-Hausdorff-Straße 3, 17487 Greifswald, Germany
| | - Thomas Kipping
- Merck Life Science KGaA, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | - Werner Weitschies
- Department of Biopharmaceutic and Pharmaceutical Technology, Institute of Pharmacy, University of Greifswald, Felix-Hausdorff-Straße 3, 17487 Greifswald, Germany
| | - Julius Krause
- Department of Biopharmaceutic and Pharmaceutical Technology, Institute of Pharmacy, University of Greifswald, Felix-Hausdorff-Straße 3, 17487 Greifswald, Germany
| |
Collapse
|
5
|
Patil H, Vemula SK, Narala S, Lakkala P, Munnangi SR, Narala N, Jara MO, Williams RO, Terefe H, Repka MA. Hot-Melt Extrusion: from Theory to Application in Pharmaceutical Formulation-Where Are We Now? AAPS PharmSciTech 2024; 25:37. [PMID: 38355916 DOI: 10.1208/s12249-024-02749-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/19/2024] [Indexed: 02/16/2024] Open
Abstract
Hot-melt extrusion (HME) is a globally recognized, robust, effective technology that enhances the bioavailability of poorly soluble active pharmaceutical ingredients and offers an efficient continuous manufacturing process. The twin-screw extruder (TSE) offers an extremely resourceful customizable mixer that is used for continuous compounding and granulation by using different combinations of conveying elements, kneading elements (forward and reverse configuration), and distributive mixing elements. TSE is thus efficiently utilized for dry, wet, or melt granulation not only to manufacture dosage forms such as tablets, capsules, or granule-filled sachets, but also for designing novel formulations such as dry powder inhalers, drying units for granules, nanoextrusion, 3D printing, complexation, and amorphous solid dispersions. Over the past decades, combined academic and pharmaceutical industry collaborations have driven novel innovations for HME technology, which has resulted in a substantial increase in published articles and patents. This article summarizes the challenges and models for executing HME scale-up. Additionally, it covers the benefits of continuous manufacturing, process analytical technology (PAT) considerations, and regulatory requirements. In summary, this well-designed review builds upon our earlier publication, probing deeper into the potential of twin-screw extruders (TSE) for various new applications.
Collapse
Affiliation(s)
- Hemlata Patil
- Department of Product Development, Catalent Pharma Solutions, 14 Schoolhouse Road, Somerset, New Jersey, 08873, USA
| | - Sateesh Kumar Vemula
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Oxford, Mississippi, 38677, USA
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144001, India
| | - Sagar Narala
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Oxford, Mississippi, 38677, USA
| | - Preethi Lakkala
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Oxford, Mississippi, 38677, USA
| | - Siva Ram Munnangi
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Oxford, Mississippi, 38677, USA
| | - Nagarjuna Narala
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Oxford, Mississippi, 38677, USA
| | - Miguel O Jara
- Molecular Pharmaceutics and Drug Delivery Division, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Austin, Texas, 78712, USA
| | - Robert O Williams
- Molecular Pharmaceutics and Drug Delivery Division, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Austin, Texas, 78712, USA
| | - Hibreniguss Terefe
- Department of Product Development, Catalent Pharma Solutions, 14 Schoolhouse Road, Somerset, New Jersey, 08873, USA
| | - Michael A Repka
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Oxford, Mississippi, 38677, USA.
- Pii Center for Pharmaceutical Technology, The University of Mississippi, University, Oxford, Mississippi, 38677, USA.
| |
Collapse
|
6
|
Uboldi M, Chiappa A, Rossi M, Briatico-Vangosa F, Melocchi A, Zema L. Development of a multi-component gastroretentive expandable drug delivery system (GREDDS) for personalized administration of metformin. Expert Opin Drug Deliv 2024; 21:131-149. [PMID: 38088371 DOI: 10.1080/17425247.2023.2294884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/11/2023] [Indexed: 12/20/2023]
Abstract
OBJECTIVES Efficacy and compliance of type II diabetes treatment would greatly benefit from dosage forms providing controlled release of metformin in the upper gastrointestinal tract. In this respect, the feasibility of a new system ensuring stomach-retention and personalized release of this drug at its absorption window for multiple days was investigated. METHODS The system proposed comprised of a drug-containing core and a viscoelastic umbrella-like skeleton, which were manufactured by melt-casting and 3D printing. Prototypes, alone or upon assembly and insertion into commercially-available capsules, were characterized for key parameters: thermo-mechanical properties, accelerated stability, degradation, drug release, deployment performance, and resistance to simulated gastric contractions. RESULTS Each part of the system was successfully manufactured using purposely-selected materials and the performance of final prototypes matched the desired one. This included: i) easy folding of the skeleton against the core in the collapsed administered shape, ii) rapid recovery of the cumbersome configuration at the target site, even upon storage, and iii) prolonged release of metformin. CONCLUSIONS Composition, geometry, and performance of the system developed in this work were deemed acceptable for stomach-retention and prolonged as well as customizable release of metformin in its absorption window, laying promising bases for further development steps.
Collapse
Affiliation(s)
- Marco Uboldi
- Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milano, Italy
| | - Arianna Chiappa
- Dipartimento di Chimica, Materiali e Ingegneria Chimica "G. Natta", Politecnico di Milano, Milano, Italy
| | - Margherita Rossi
- Dipartimento di Chimica, Materiali e Ingegneria Chimica "G. Natta", Politecnico di Milano, Milano, Italy
| | - Francesco Briatico-Vangosa
- Dipartimento di Chimica, Materiali e Ingegneria Chimica "G. Natta", Politecnico di Milano, Milano, Italy
| | - Alice Melocchi
- Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milano, Italy
| | - Lucia Zema
- Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
7
|
Al-Japairai K, Hamed Almurisi S, Mahmood S, Madheswaran T, Chatterjee B, Sri P, Azra Binti Ahmad Mazlan N, Al Hagbani T, Alheibshy F. Strategies to improve the stability of amorphous solid dispersions in view of the hot melt extrusion (HME) method. Int J Pharm 2023; 647:123536. [PMID: 37865133 DOI: 10.1016/j.ijpharm.2023.123536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/24/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
Oral administration of drugs is preferred over other routes for several reasons: it is non-invasive, easy to administer, and easy to store. However, drug formulation for oral administration is often hindered by the drug's poor solubility, which limits its bioavailability and reduces its commercial value. As a solution, amorphous solid dispersion (ASD) was introduced as a drug formulation method that improves drug solubility by changing the molecular structure of the drugs from crystalline to amorphous. The hot melt extrusion (HME) method is emerging in the pharmaceutical industry as an alternative to manufacture ASD. However, despite solving solubility issues, ASD also exposes the drug to a high risk of crystallisation, either during processing or storage. Formulating a successful oral administration drug using ASD requires optimisation of the formulation, polymers, and HME manufacturing processes applied. This review presents some important considerations in ASD formulation, including strategies to improve the stability of the final product using HME to allow more new drugs to be formulated using this method.
Collapse
Affiliation(s)
- Khater Al-Japairai
- Department of Pharmaceutical Engineering, Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Gambang 26300, Malaysia.
| | - Samah Hamed Almurisi
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia.
| | - Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Thiagarajan Madheswaran
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia.
| | - Bappaditya Chatterjee
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, V.L.Mehta Road, Mumbai 400055, India.
| | - Prasanthi Sri
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia.
| | | | - Turki Al Hagbani
- Department of Pharmaceutics, College of Pharmacy, University of Ha'il, Ha'il 81442, Saudi Arabia.
| | - Fawaz Alheibshy
- Department of Pharmaceutics, College of Pharmacy, University of Ha'il, Ha'il 81442, Saudi Arabia; Department of Pharmaceutics, College of Pharmacy, Aden University, Aden 6075, Yemen.
| |
Collapse
|
8
|
Ravasi E, Melocchi A, Arrigoni A, Chiappa A, Gennari CGM, Uboldi M, Bertarelli C, Zema L, Briatico Vangosa F. Electrospinning of pullulan-based orodispersible films containing sildenafil. Int J Pharm 2023; 643:123258. [PMID: 37479102 DOI: 10.1016/j.ijpharm.2023.123258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/23/2023]
Abstract
Feasibility of electrospinning in the manufacturing of sildenafil-containing orodispersible films (ODFs) intended to enhance oxygenation and to reduce pulmonary arterial pressure in pediatric patients was evaluated. Given the targeted subjects, the simplest and safest formulation was chosen, using water as the only solvent and pullulan, a natural polymer, as the sole fiber-forming agent. A systematic characterization in terms of shear and extensional viscosity as well as surface tension of solutions containing different amounts of pullulan and sildenafil was carried out. Accordingly, electrospinning parameters enabling the continuous production, at the highest possible rate, of defect-free fibers with uniform diameter in the nanometer range were assessed. Morphology, microstructure, drug content and relevant solid state as well as ability of the resulting non-woven films to interact with aqueous fluids were evaluated. To better define the role of the fibrous nanostructure on the performance of ODFs, analogous films were produced by spin- and blade-coating and tested. Interestingly, the disintegration process of electrospun products turned out to be the fastest (i.e. occurring within few s) and compliant with Ph. Eur. and USP limits, making relevant ODFs particularly promising for increasing sildenafil bioavailability, thus lowering its dosages.
Collapse
Affiliation(s)
- Elisabetta Ravasi
- Dipartimento di Chimica, Materiali e Ingegneria Chimica "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Alice Melocchi
- Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via Giuseppe Colombo 71, 20133 Milano, Italy
| | - Alessia Arrigoni
- Dipartimento di Chimica, Materiali e Ingegneria Chimica "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Arianna Chiappa
- Dipartimento di Chimica, Materiali e Ingegneria Chimica "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Chiara Grazia Milena Gennari
- Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via Giuseppe Colombo 71, 20133 Milano, Italy
| | - Marco Uboldi
- Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via Giuseppe Colombo 71, 20133 Milano, Italy
| | - Chiara Bertarelli
- Dipartimento di Chimica, Materiali e Ingegneria Chimica "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Lucia Zema
- Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via Giuseppe Colombo 71, 20133 Milano, Italy.
| | - Francesco Briatico Vangosa
- Dipartimento di Chimica, Materiali e Ingegneria Chimica "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy.
| |
Collapse
|
9
|
Matadh AV, Echanur A, Suresh S, Chede L, Maibach H, Kulkarni V, Murthy SN, H N S. Can Continuous Manufacturing of Topical Semisolids by Hot Melt Extrusion Soon Be a Reality? Mol Pharm 2023; 20:3779-3790. [PMID: 37421361 DOI: 10.1021/acs.molpharmaceut.3c00201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2023]
Abstract
For more than five decades, pharmaceutical manufacturers have been relying heavily on batch manufacturing that is a sequential, multistep, laborious, and time-consuming process. However, late advances in manufacturing technologies have prompted manufacturers to consider continuous manufacturing (CM) is a feasible manufacturing process that encompasses fewer steps and is less tedious and quick. Global regulatory agencies are taking a proactive role to facilitate pharmaceutical industries to adopt CM that assures product quality by employing robust manufacturing technologies encountering fewer interruptions, thereby substantially reducing product failures and recalls. However, adopting innovative CM is known to pose technical and regulatory challenges. Hot melt extrusion (HME) is one such state-of-the-art enabling technology that facilitates CM of diverse pharmaceutical dosage forms, including topical semisolids. Efforts have been made to continuously manufacture semisolids by HME integrating the principles of Quality by Design (QbD) and Quality Risk Management (QRM) and deploying Process Analytical Technologies (PAT) tools. Attempts have been made to systematically elucidate the effect of critical material attributes (CMA) and critical process parameters (CPP) on product critical quality attributes (CQA) and Quality Target Product Profiles (QTPP) deploying PAT tools. The article critically reviews the feasibility of one of the enabling technologies such as HME in CM of topical semisolids. The review highlights the benefits of the CM process and challenges ahead to implement the technology to topical semisolids. Once the CM of semisolids adopting melt extrusion integrated with PAT tools becomes a reality, the process can be extended to manufacture sterile semisolids that usually involve more critical processing steps.
Collapse
Affiliation(s)
- Anusha V Matadh
- Institute for Drug Delivery and Biomedical Research, Mahalaxmipuram, Bengaluru 560086, Karnataka, India
| | - Anusha Echanur
- Institute for Drug Delivery and Biomedical Research, Mahalaxmipuram, Bengaluru 560086, Karnataka, India
| | - Sarasija Suresh
- Institute for Drug Delivery and Biomedical Research, Mahalaxmipuram, Bengaluru 560086, Karnataka, India
| | - Laxmishanthi Chede
- College of Pharmacy, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Howard Maibach
- University of California, 2340 Sutter Street, San Francisco, California 94115, United States
| | - Vijay Kulkarni
- Steer Life Sciences, Fourth Phase, Peenya, Industrial Area, Bengaluru 560058, Karnataka, India
| | - S Narasimha Murthy
- Institute for Drug Delivery and Biomedical Research, Mahalaxmipuram, Bengaluru 560086, Karnataka, India
- Topical Products Testing, LLC, 9, Industrial Park Drive, Oxford, Mississippi 38655, United States
| | - Shivakumar H N
- Institute for Drug Delivery and Biomedical Research, Mahalaxmipuram, Bengaluru 560086, Karnataka, India
- KLE College of Pharmacy, Second Block, Rajajinagar, Bengaluru 560010, Karnataka, India
| |
Collapse
|
10
|
Madanayake SN, Manipura A, Thakuria R, Adassooriya NM. Opportunities and Challenges in Mechanochemical Cocrystallization toward Scaled-Up Pharmaceutical Manufacturing. Org Process Res Dev 2023. [DOI: 10.1021/acs.oprd.2c00314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
- Sithmi Nimashi Madanayake
- Department of Chemical and Process Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Aruna Manipura
- Department of Chemical and Process Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Ranjit Thakuria
- Department of Chemistry, Gauhati University, Guwahati 781014, Assam, India
| | - Nadeesh M. Adassooriya
- Department of Chemical and Process Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya 20400, Sri Lanka
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
11
|
Controlled delivery via hot-melt extrusion: A focus on non-biodegradable carriers for non-oral applications. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
12
|
Expandable Drug Delivery Systems Based on Shape Memory Polymers: Impact of Film Coating on Mechanical Properties and Release and Recovery Performance. Pharmaceutics 2022; 14:pharmaceutics14122814. [PMID: 36559306 PMCID: PMC9786903 DOI: 10.3390/pharmaceutics14122814] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Retentive drug delivery systems (DDSs) are intended for prolonged residence and release inside hollow muscular organs, to achieve either local or systemic therapeutic goals. Recently, formulations based on shape memory polymers (SMPs) have gained attention in view of their special ability to recover a shape with greater spatial encumbrance at the target organ (e.g., urinary bladder or stomach), triggered by contact with biological fluids at body temperature. In this work, poly(vinyl alcohol) (PVA), a pharmaceutical-grade SMP previously shown to be an interesting 4D printing candidate, was employed to fabricate expandable organ-retentive prototypes by hot melt extrusion. With the aim of improving the mechanical resistance of the expandable DDS and slowing down relevant drug release, the application of insoluble permeable coatings based on either Eudragit® RS/RL or Eudragit® NE was evaluated using simple I-shaped specimens. The impact of the composition and thickness of the coating on the shape memory, swelling, and release behavior as well as on the mechanical properties of these specimens was thoroughly investigated and the effectiveness of the proposed strategy was demonstrated by the results obtained.
Collapse
|
13
|
Nyavanandi D, Mandati P, Narala S, Alzahrani A, Kolimi P, Pradhan A, Bandari S, Repka MA. Feasibility of high melting point hydrochlorothiazide processing via cocrystal formation by hot melt extrusion paired fused filament fabrication as a 3D-printed cocrystal tablet. Int J Pharm 2022; 628:122283. [DOI: 10.1016/j.ijpharm.2022.122283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/03/2022] [Accepted: 10/07/2022] [Indexed: 10/31/2022]
|
14
|
Spoerk M, Koutsamanis I, Kottlan A, Makert C, Piller M, Rajkovaca M, Paudel A, Khinast J. Continuous Processing of Micropellets via Hot-Melt Extrusion. AAPS PharmSciTech 2022; 23:264. [PMID: 36163535 DOI: 10.1208/s12249-022-02405-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/23/2022] [Indexed: 11/30/2022] Open
Abstract
Microparticulate drug delivery systems, e.g., micropellets (MPs), are used in a variety of pharmaceutical formulations such as suspensions, injectable systems, and capsules. MPs are currently manufactured mainly via batch, solvent-based processes, e.g., spray-drying and solvent evaporation-extraction. In this paper, we present a novel, solvent-free, continuous hot-melt extrusion-based approach with an inline cold pelletization step and the potential of unprecedented on-the-fly formulation changes, aiming at producing the smallest particles usable for injectable applications. A biodegradable, crystalline dispersion consisting of poly(DL-lactic acid) (PLA) filled with metformin as the model drug was chosen on purpose to elucidate the broad applicability of the process also to formulations with limited stretchability and complex pelletizability. Next to optical/statistical particle analyses and in-line high-speed camera investigations providing insights into the pelletization process, the injectability of the most promising micropellets was compared to that of one marketed formulation. Fast extrudate haul-off speeds and high numbers of pelletizer knives resulted in particles with a narrow and small particle size distribution with a d50 below 270 µm and aspect ratios close to 1. To omit protruding drug particles to ensure sufficient extrudate stretchability and allow for the smallest MPs, it was found that the d90 of the embedded drug must be significantly below the extrudate diameter. Upon adapting the syringe diameter, the produced micropellets revealed similar injectability parameters to the marketed formulation, showcasing the potential that the proposed setup has for the manufacturing of novel microparticulate formulations.
Collapse
Affiliation(s)
- Martin Spoerk
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010, Graz, Austria.
| | - Ioannis Koutsamanis
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010, Graz, Austria
| | - Andreas Kottlan
- Institute of Process and Particle Engineering, Graz University of Technology, Inffeldgasse 13, 8010, Graz, Austria
| | | | - Michael Piller
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010, Graz, Austria
| | - Manuel Rajkovaca
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010, Graz, Austria
| | - Amrit Paudel
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010, Graz, Austria.,Institute of Process and Particle Engineering, Graz University of Technology, Inffeldgasse 13, 8010, Graz, Austria
| | - Johannes Khinast
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010, Graz, Austria.,Institute of Process and Particle Engineering, Graz University of Technology, Inffeldgasse 13, 8010, Graz, Austria
| |
Collapse
|
15
|
Melt Fusion Techniques for Solubility Enhancement: A Comparison of Hot Melt Extrusion and KinetiSol® Technologies. Sci Pharm 2022. [DOI: 10.3390/scipharm90030051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A successful candidate for oral drug delivery needs to possess adequate solubility and dissolution rate to elicit its therapeutic action. Extensive research is being carried out to enhance the solubility of poorly soluble drugs through a number of techniques involving polymeric and non-polymeric approaches. Non-polymeric approaches such as micronization and nanocrystals are successful in improving the apparent solubility of drugs, but the sustenance of solubility is not always possible. Amorphous solid dispersions (ASDs) lead to solubility enhancement as well as the maintenance of solubility with the assistance of polymers, thereby improving bioavailability. Spray drying, hot melt extrusion (HME), and KinetiSol® technologies are some of the techniques capable of manufacturing ASDs. Each of these techniques has its own advantages and disadvantages in terms of processing challenges and applicability in preparing ASDs. The latter two technologies are similar in being fusion and non-solvent techniques to improve solubility. This review compares both HME and KinetiSol® techniques regarding mechanism, equipment design, formulation, and process parameters involved and scalability.
Collapse
|
16
|
Zupančič O, Spoerk M, Paudel A. Lipid-based solubilization technology via hot melt extrusion: promises and challenges. Expert Opin Drug Deliv 2022; 19:1013-1032. [PMID: 35943158 DOI: 10.1080/17425247.2022.2112173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Self-emulsifying drug delivery systems (SEDDS) are a promising strategy to improve the oral bioavailability of poorly water-soluble drugs (PWSD). The excipients of SEDDS enable permeation through the mucus and gastro-intestinal barrier, inhibiting efflux transporters (e.g. P-glycoprotein) of drugs. Poor drug loading capacity and formulation instability are the main setbacks of traditional SEDDS. The use of polymeric precipitation inhibitors was shown to create supersaturable SEDDS with increased drug payload, and their solidification can help to overcome the instability challenge. As an alternative to several existing SEDDS solidification technologies, hot melt extrusion (HME) holds the potential for lean and continuous manufacturing of supersaturable solid-SEDDS. Despite being ubiquitously applied in solid lipid and polymeric processing, HME has not yet been widely considered for the preparation of SEDDS. AREAS COVERED The review begins with the rationale why SEDDS as the preferred lipid-based delivery systems (LBDS) is suitable for the oral delivery of PWSD and discusses the common barriers to oral administration. The potential of LBDS to surmount them is discussed. SEDDS as the flagship of LBDS for PWSD is proposed with a special emphasis on solid-SEDDS. Finally, the opportunities and challenges of HME from the lipid-based excipient (LBE) processing and product performance standpoint are highlighted. EXPERT OPINION HME can be a continuous, solvent-free, cost-effective, and scalable technology for manufacturing solid supersaturable SEDDS. Several critical formulations and process parameters in successfully preparing SEDDS via HME are identified.
Collapse
Affiliation(s)
- Ožbej Zupančič
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria
| | - Martin Spoerk
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria
| | - Amrit Paudel
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria.,Institute of Process and Particle Engineering, Graz University of Technology, Inffeldgasse 13, 8010 Graz, Austria
| |
Collapse
|
17
|
Ishimoto K, Shimada Y, Ohno A, Otani S, Ago Y, Maeda S, Lin B, Nunomura K, Hino N, Suzuki M, Nakagawa S. Physicochemical and Biochemical Evaluation of Amorphous Solid Dispersion of Naringenin Prepared Using Hot-Melt Extrusion. Front Nutr 2022; 9:850103. [PMID: 35571922 PMCID: PMC9093646 DOI: 10.3389/fnut.2022.850103] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/06/2022] [Indexed: 11/17/2022] Open
Abstract
Naringenin (NRG) is a plant-derived flavonoid. Due to its antioxidant, anti-inflammatory, and analgesic activities it is beneficial to human health and is often used as a functional food ingredient; however, it has poor water solubility and low in vivo bioavailability. Therefore, the efficacy of NRG can be improved by enhancing its water solubility to increase gastrointestinal absorption. Conventional methods for the formulation of NRG are very complex and use toxic organic solvents, making them impractical for the production of functional foods. The objective of this study was to develop a safe and effective NRG-based functional food material. Previously, we established a technology to prepare amorphous solid dispersions (SDs) from functional food ingredients with poor water solubility and used hot-melt extrusion technology that is comparatively simple and does not involve the use of organic solvents. In this study, we prepared NRG SD and evaluated them both physicochemically and biochemically. NRG SD had superior water solubility and gastrointestinal absorption relative to native NRG and showed higher analgesic efficacy in rats than crystalline NRG. NRG SD was administered to mice in a mixed diet for 28 days, and organ weights and hematological/clinical biochemical parameters were assessed. NRG SD did not demonstrate severe adverse effects. The results suggest that NRG SD is a safe and highly efficacious formulation that can be used as a functional food material in the future.
Collapse
Affiliation(s)
- Kenji Ishimoto
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.,Laboratory of Innovative Food Science, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.,Global Center for Medical Engineering and Informatics, Osaka University, Osaka, Japan.,Center for Supporting Drug Discovery and Life Science Research, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Yukiko Shimada
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Akane Ohno
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Shuichi Otani
- Laboratory of Innovative Food Science, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.,Mitsui Norin Co., Ltd., R&D Group, Shizuoka, Japan
| | - Yukio Ago
- Global Center for Medical Engineering and Informatics, Osaka University, Osaka, Japan.,Department of Cellular and Molecular Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Soya Maeda
- Laboratory of Innovative Food Science, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.,Mitsui Norin Co., Ltd., R&D Group, Shizuoka, Japan
| | - Bangzhong Lin
- Center for Supporting Drug Discovery and Life Science Research, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Kazuto Nunomura
- Center for Supporting Drug Discovery and Life Science Research, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Nobumasa Hino
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Masayuki Suzuki
- Laboratory of Innovative Food Science, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.,Mitsui Norin Co., Ltd., R&D Group, Shizuoka, Japan
| | - Shinsaku Nakagawa
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.,Laboratory of Innovative Food Science, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.,Global Center for Medical Engineering and Informatics, Osaka University, Osaka, Japan.,Center for Supporting Drug Discovery and Life Science Research, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| |
Collapse
|
18
|
Solid Dispersion Formulations by FDM 3D Printing-A Review. Pharmaceutics 2022; 14:pharmaceutics14040690. [PMID: 35456524 PMCID: PMC9032529 DOI: 10.3390/pharmaceutics14040690] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 01/06/2023] Open
Abstract
Additive manufacturing (AM) is revolutionizing the way medicines are designed, manufactured, and utilized. Perhaps, AM appears to be ideal for the fit-for-purpose manufacturing of medicines in contrast to the several disadvantages associated with the conventional fit-for-all mass production that accounts for less than 50% of pharmacotherapeutic treatment/management of diseases especially among children and elderly patients, as well as patients with special needs. In this review, we discuss the current trends in the application of additive manufacturing to prepare personalized dosage forms on-demand focusing the attention on the relevance of coupling solid dispersion with FDM 3D printing. Combining the two technologies could offer many advantages such as to improve the solubility, dissolution, and oral bioavailability of poorly soluble drugs in tandem with the concept of precision medicine and personalized dosing and to address the dilemma of commercial availability of FDM filaments loaded with Class II and/or Class IV drugs. However, thermal treatment especially for heat-sensitive drugs, regulatory, and ethical obligations in terms of quality control and quality assurance remain points of concern. Hence, a concerted effort is needed between the scientific community, the pharmaceutical industries, the regulatory agencies, the clinicians and clinical pharmacists, and the end-users to address these concerns.
Collapse
|
19
|
Agrawal S, Fernandes J, Shaikh F, Patel V. Quality aspects in the development of pelletized dosage forms. Heliyon 2022; 8:e08956. [PMID: 35243077 PMCID: PMC8873546 DOI: 10.1016/j.heliyon.2022.e08956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/27/2022] [Accepted: 02/11/2022] [Indexed: 12/03/2022] Open
Abstract
The aim of this work was to identify and collate the major common challenges that arise during pellet development. These challenges focus on aspects right from raw material properties until the final drying process of the pelletization. The challenges associated with the particle size of drug and excipients, physicochemical properties, drug excipient interaction and the effect of type/grade and amount of raw material on the pellet properties are covered in this review. Technological and process related challenges within the commonly used pelletization techniques such as extrusion-spheronization, hot-melt extrusion and layering techniques are also emphasized. The paper likewise gives an insight to the possible ways of addressing the quality of pellets during development.
Collapse
|
20
|
Sainaga Jyothi VG, Ghouse SM, Khatri DK, Nanduri S, Singh SB, Madan J. Lipid nanoparticles in topical dermal drug delivery: Does chemistry of lipid persuade skin penetration? J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Salave S, Prayag K, Rana D, Amate P, Pardhe R, Jadhav A, Jindal AB, Benival D. Recent Progress in Hot Melt Extrusion Technology in Pharmaceutical Dosage Form Design. RECENT ADVANCES IN DRUG DELIVERY AND FORMULATION 2022; 16:170-191. [PMID: 35986528 DOI: 10.2174/2667387816666220819124605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The Hot Melt Extrusion (HME) technique has shown tremendous potential in transforming highly hydrophobic crystalline drug substances into amorphous solids without using solvents. This review explores in detail the general considerations involved in the process of HME, its applications and advances. OBJECTIVE The present review examines the physicochemical properties of polymers pertinent to the HME process. Theoretical approaches for the screening of polymers are highlighted as a part of successful HME processed drug products. The critical quality attributes associated with the process of HME are also discussed in this review. HME plays a significant role in the dosage form design, and the same has been mentioned with suitable examples. The role of HME in developing several sustained release formulations, films, and implants is described along with the research carried out in a similar domain. METHODS The method includes the collection of data from different search engines like PubMed, ScienceDirect, and SciFinder to get coverage of relevant literature for accumulating appropriate information regarding HME, its importance in pharmaceutical product development, and advanced applications. RESULTS HME is known to have advanced pharmaceutical applications in the domains related to 3D printing, nanotechnology, and PAT technology. HME-based technologies explored using Design-of- Experiments also lead to the systematic development of pharmaceutical formulations. CONCLUSION HME remains an adaptable and differentiated technique for overall formulation development.
Collapse
Affiliation(s)
- Sagar Salave
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Kedar Prayag
- Department of Pharmacy, Birla Institute of Technology and Science Pilani (BITS PILANI), Pilani, Rajasthan, India
| | - Dhwani Rana
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Prakash Amate
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Rupali Pardhe
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Ajinkya Jadhav
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Anil B Jindal
- Department of Pharmacy, Birla Institute of Technology and Science Pilani (BITS PILANI), Pilani, Rajasthan, India
| | - Derajram Benival
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| |
Collapse
|
22
|
Quodbach J, Bogdahn M, Breitkreutz J, Chamberlain R, Eggenreich K, Elia AG, Gottschalk N, Gunkel-Grabole G, Hoffmann L, Kapote D, Kipping T, Klinken S, Loose F, Marquetant T, Windolf H, Geißler S, Spitz T. Quality of FDM 3D Printed Medicines for Pediatrics: Considerations for Formulation Development, Filament Extrusion, Printing Process and Printer Design. Ther Innov Regul Sci 2021; 56:910-928. [PMID: 34826120 PMCID: PMC9492703 DOI: 10.1007/s43441-021-00354-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/04/2021] [Indexed: 02/08/2023]
Abstract
3d printing is capable of providing dose individualization for pediatric medicines and translating the precision medicine approach into practical application. In pediatrics, dose individualization and preparation of small dosage forms is a requirement for successful therapy, which is frequently not possible due to the lack of suitable dosage forms. For precision medicine, individual characteristics of patients are considered for the selection of the best possible API in the most suitable dose with the most effective release profile to improve therapeutic outcome. 3d printing is inherently suitable for manufacturing of individualized medicines with varying dosages, sizes, release profiles and drug combinations in small batch sizes, which cannot be manufactured with traditional technologies. However, understanding of critical quality attributes and process parameters still needs to be significantly improved for this new technology. To ensure health and safety of patients, cleaning and process validation needs to be established. Additionally, adequate analytical methods for the in-process control of intermediates, regarding their printability as well as control of the final 3d printed tablets considering any risk of this new technology will be required. The PolyPrint consortium is actively working on developing novel polymers for fused deposition modeling (FDM) 3d printing, filament formulation and manufacturing development as well as optimization of the printing process, and the design of a GMP-capable FDM 3d printer. In this manuscript, the consortium shares its views on quality aspects and measures for 3d printing from drug-loaded filaments, including formulation development, the printing process, and the printed dosage forms. Additionally, engineering approaches for quality assurance during the printing process and for the final dosage form will be presented together with considerations for a GMP-capable printer design.
Collapse
Affiliation(s)
- Julian Quodbach
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany.
| | - Malte Bogdahn
- Merck Healthcare KGaA, Frankfurter Str. 250, Darmstadt, Germany
| | - Jörg Breitkreutz
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Rebecca Chamberlain
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | | | | | | | | | - Lena Hoffmann
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | | | - Thomas Kipping
- Merck Life Science KGaA, Frankfurter Str. 250, Darmstadt, Germany
| | - Stefan Klinken
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Fabian Loose
- Laboratory for Manufacturing Systems, University of Applied Sciences Cologne, Betzdorfer Str. 2, 50679, Cologne, Germany
| | | | - Hellen Windolf
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Simon Geißler
- Merck Healthcare KGaA, Frankfurter Str. 250, Darmstadt, Germany
| | - Tilmann Spitz
- Laboratory for Manufacturing Systems, University of Applied Sciences Cologne, Betzdorfer Str. 2, 50679, Cologne, Germany
| |
Collapse
|
23
|
Wen X, Deng Z, Xu Y, Yan G, Deng X, Wu L, Liang Q, Fang F, Feng X, Yu M, He J. Preparation and In Vitro/In Vivo Evaluation of Orally Disintegrating/Modified-Release Praziquantel Tablets. Pharmaceutics 2021; 13:pharmaceutics13101567. [PMID: 34683860 PMCID: PMC8538324 DOI: 10.3390/pharmaceutics13101567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/09/2021] [Accepted: 09/22/2021] [Indexed: 12/11/2022] Open
Abstract
This study was designed to develop orally disintegrating/sustained-release praziquantel (PZQ) tablets using the hot-melt extrusion (HME) technique and direct compression, and subsequently evaluate their release in in vitro and in vivo pharmacokinetics. For the extrusion process, hypromellose acetate succinate (HPMCAS)-LG was the carrier of pure PZQ, with a standard screw configuration used at an extrusion temperature of 140 °C and a screw rotation speed of 100 rpm. Differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), powder X-ray diffraction (PXRD) and Fourier-transform infrared spectroscopy (FTIR) were performed to characterize the extrudate. Orally disintegrating/sustained-release praziquantel tablets (PZQ ODSRTs) were prepared by direct compression after appropriate excipients were blended with the extrudate. The release amount was 5.10% in pH 1.0 hydrochloric acid at 2 h and over 90% in phosphoric acid buffer at 45 min, indicating the enteric-coating character of PZQ ODSRTs. Compared with the pharmacokinetics of marketed PZQ tablets (Aipuruike®) in dogs, the times to peak (Tmax), elimination half-life (t1/2λ) and mean residence time (MRT) were extended in PZQ ODSRTs, and the relative bioavailability of PZQ ODSRTs was up to 184.48% of that of Aipuruike®. This study suggested that PZQ ODSRTs may have potential for the clinical treatment of parasitosis.
Collapse
Affiliation(s)
- Xuemei Wen
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (X.W.); (Z.D.); (Y.X.); (G.Y.); (X.D.); (L.W.); (Q.L.); (F.F.)
| | - Zhaoyou Deng
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (X.W.); (Z.D.); (Y.X.); (G.Y.); (X.D.); (L.W.); (Q.L.); (F.F.)
| | - Yangfeng Xu
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (X.W.); (Z.D.); (Y.X.); (G.Y.); (X.D.); (L.W.); (Q.L.); (F.F.)
| | - Guoqing Yan
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (X.W.); (Z.D.); (Y.X.); (G.Y.); (X.D.); (L.W.); (Q.L.); (F.F.)
| | - Xin Deng
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (X.W.); (Z.D.); (Y.X.); (G.Y.); (X.D.); (L.W.); (Q.L.); (F.F.)
| | - Liqin Wu
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (X.W.); (Z.D.); (Y.X.); (G.Y.); (X.D.); (L.W.); (Q.L.); (F.F.)
| | - Qiuling Liang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (X.W.); (Z.D.); (Y.X.); (G.Y.); (X.D.); (L.W.); (Q.L.); (F.F.)
| | - Fang Fang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (X.W.); (Z.D.); (Y.X.); (G.Y.); (X.D.); (L.W.); (Q.L.); (F.F.)
| | - Xin Feng
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA;
| | - Meiling Yu
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (X.W.); (Z.D.); (Y.X.); (G.Y.); (X.D.); (L.W.); (Q.L.); (F.F.)
- Correspondence: (M.Y.); (J.H.); Tel.: +86-771-3235635 (M.Y. & J.H.); Fax: +86-771-3270149 (M.Y. & J.H.)
| | - Jiakang He
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (X.W.); (Z.D.); (Y.X.); (G.Y.); (X.D.); (L.W.); (Q.L.); (F.F.)
- Correspondence: (M.Y.); (J.H.); Tel.: +86-771-3235635 (M.Y. & J.H.); Fax: +86-771-3270149 (M.Y. & J.H.)
| |
Collapse
|
24
|
Simões MF, Pinto RMA, Simões S. Hot-Melt Extrusion: a Roadmap for Product Development. AAPS PharmSciTech 2021; 22:184. [PMID: 34142250 DOI: 10.1208/s12249-021-02017-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 04/14/2021] [Indexed: 01/01/2023] Open
Abstract
Hot-melt extrusion has found extensive application as a feasible pharmaceutical technological option over recent years. HME applications include solubility enhancement, taste masking, and sustained drug release. As bioavailability enhancement is a hot topic of today's science, one of the main applications of HME is centered on amorphous solid dispersions. This review describes the most significant aspects of HME technology and its use to prepare solid dispersions as a drug formulation strategy to enhance the solubility of poorly soluble drugs. It also addresses molecular and thermodynamic features critical for the physicochemical properties of these systems, mainly in what concerns miscibility and physical stability. Moreover, the importance of applying the Quality by Design philosophy in drug development is also discussed, as well as process analytical technologies in pharmaceutical HME monitoring, under the current standards of product development and regulatory guidance. Graphical Abstract.
Collapse
|
25
|
Melocchi A, Uboldi M, Cerea M, Foppoli A, Maroni A, Moutaharrik S, Palugan L, Zema L, Gazzaniga A. Shape memory materials and 4D printing in pharmaceutics. Adv Drug Deliv Rev 2021; 173:216-237. [PMID: 33774118 DOI: 10.1016/j.addr.2021.03.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/09/2021] [Accepted: 03/18/2021] [Indexed: 12/18/2022]
Abstract
Shape memory materials (SMMs), including alloys and polymers, can be programmed into a temporary configuration and then recover the original shape in which they were processed in response to a triggering external stimulus (e.g. change in temperature or pH, contact with water). For this behavior, SMMs are currently raising a lot of attention in the pharmaceutical field where they could bring about important innovations in the current treatments. 4D printing involves processing of SMMs by 3D printing, thus adding shape evolution over time to the already numerous customization possibilities of this new manufacturing technology. SMM-based drug delivery systems (DDSs) proposed in the scientific literature were here reviewed and classified according to the target pursued through the shape recovery process. Administration route, therapeutic goal, temporary and original shape, triggering stimulus, main innovation features and possible room for improvement of the DDSs were especially highlighted.
Collapse
|
26
|
Dumpa N, Butreddy A, Wang H, Komanduri N, Bandari S, Repka MA. 3D printing in personalized drug delivery: An overview of hot-melt extrusion-based fused deposition modeling. Int J Pharm 2021; 600:120501. [PMID: 33746011 PMCID: PMC8089048 DOI: 10.1016/j.ijpharm.2021.120501] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/09/2021] [Accepted: 03/13/2021] [Indexed: 01/01/2023]
Abstract
Advancements in pharmaceutical technologies have led to the personalization of therapies over the last decade. Three-dimensional printing (3DP) is an emerging technique in the manufacturing of pharmaceutical dosage forms because of its potential to create complex and customized dosage forms according to the patient's needs. Among the various 3DP techniques based on different functioning mechanisms, fused deposition modeling (FDM) 3D printing is a versatile and widely used method with advantages such as precision of quantity and the ability to incorporate different fill densities. This method is also economical and easily produces complex designs. Hot-melt extrusion (HME) is an established technique in pharmaceutical manufacturing that is utilized in the development of filaments which are used as "ink roll" or feedstock material in FDM 3D printing. This review discusses the various stages involved in FDM 3D printing, including feedstock filament preparation using HME, digital dosage form designs, filament characterization, and various novel applications, and future perspectives.
Collapse
Affiliation(s)
- Nagireddy Dumpa
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Arun Butreddy
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Honghe Wang
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Neeraja Komanduri
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Suresh Bandari
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Michael A Repka
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA; Pii Center for Pharmaceutical Technology, The University of Mississippi, University, MS 38677, USA.
| |
Collapse
|
27
|
Bandari S, Nyavanandi D, Dumpa N, Repka MA. Coupling hot melt extrusion and fused deposition modeling: Critical properties for successful performance. Adv Drug Deliv Rev 2021; 172:52-63. [PMID: 33571550 DOI: 10.1016/j.addr.2021.02.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/14/2021] [Accepted: 02/04/2021] [Indexed: 01/19/2023]
Abstract
Interest in 3D printing for pharmaceutical applications has increased in recent years. Compared to other 3D printing techniques, hot melt extrusion (HME)-based fused deposition modeling (FDM) 3D printing has been the most extensively investigated for patient-focused dosage. HME technology can be coupled with FDM 3D printing as a continuous manufacturing process. However, the crucial pharmaceutical polymers, formulation and process parameters must be investigated to establish HME-coupled FDM 3D printing. These advancements will lead the way towards developing continuous drug delivery systems for personalized therapy. This brief overview classifies pharmaceutical additive manufacturing, Hot Melt Extrusion, and Fused Deposition Modeling 3D printing techniques with a focus on coupling HME and FDM 3D printing processes. It also provides insights on the critical material properties, process and equipment parameters and limitations of successful HME-coupled FDM systems.
Collapse
Affiliation(s)
- Suresh Bandari
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Dinesh Nyavanandi
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Nagireddy Dumpa
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Michael A Repka
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA; Pii Center for Pharmaceutical Technology, The University of Mississippi, University, MS 38677, USA.
| |
Collapse
|
28
|
Formulation development of itraconazole PEGylated nano-lipid carriers for pulmonary aspergillosis using hot-melt extrusion technology. INTERNATIONAL JOURNAL OF PHARMACEUTICS-X 2021; 3:100074. [PMID: 33748741 PMCID: PMC7973123 DOI: 10.1016/j.ijpx.2021.100074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 02/27/2021] [Indexed: 12/03/2022]
Abstract
Pulmonary delivery is a promising alternative for the oral treatment of pulmonary aspergillosis. This study aimed to develop continuous and scalable itraconazole PEGylated nano-lipid carriers (ITZ-PEG-NLC) for inhalation delivery. The feasibility of preparing NLCs utilizing hot-melt extrusion (HME) coupled with probe sonication was investigated. The process parameters for HME and sonication were varied to optimize the formulation. ITZ-PEG-NLC (particle size, 101.20 ± 1.69 nm; polydispersity index, 0.26 ± 0.01) was successfully formulated. The drug entrapment efficiency of ITZ-PEG-NLC was 97.28 ± 0.50%. Transmission electron microscopy was used to characterize the shape of the particles. The developed formulations were evaluated for their aerodynamic properties for pulmonary delivery. The lung deposition of ITZ-PEG-NLC was determined using an Anderson Cascade Impactor and Philips Respironics Sami the Seal Nebulizer Compressor. In vitro cytotoxicity studies were performed using A549 cells. A burst-release pattern was observed in ITZ-PEG-NLC with a drug release of 41.74 ± 1.49% in 60 min. The in vitro aerosolization of the ITZ-PEG-NLC formulation showed a mass median aerodynamic diameter of 3.51 ± 0.28 μm and a geometric standard deviation of 2.44 ± 0.49. These findings indicate that HME technology could be used for the production of continuous scalable ITZ-PEG-NLC.
Collapse
|
29
|
Monschke M, Kayser K, Wagner KG. Influence of Particle Size and Drug Load on Amorphous Solid Dispersions Containing pH-Dependent Soluble Polymers and the Weak Base Ketoconazole. AAPS PharmSciTech 2021; 22:44. [PMID: 33438107 PMCID: PMC7803674 DOI: 10.1208/s12249-020-01914-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/21/2020] [Indexed: 01/12/2023] Open
Abstract
Among the great number of poorly soluble drugs in pharmaceutical development, most of them are weak bases. Typically, they readily dissolve in an acidic environment but are prone to precipitation at elevated pH. This was aimed to be counteracted by the preparation of amorphous solid dispersions (ASDs) using the pH-dependent soluble polymers methacrylic acid ethylacrylate copolymer (Eudragit L100-55) and hydroxypropylmethylcellulose acetate succinate (HPMCAS) via hot-melt extrusion. The hot-melt extruded ASDs were of amorphous nature and single phased with the presence of specific interactions between drug and polymer as revealed by X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC), and Fourier-transform infrared spectroscopy (FT-IR). The ASDs were milled and classified into six particle size fractions. We investigated the influence of particle size, drug load, and polymer type on the dissolution performance. The best dissolution performance was achieved for the ASD made from Eudragit L100-55 at a drug load of 10%, whereby the dissolution rate was inversely proportional to the particle size. Within a pH-shift dissolution experiment (from pH 1 to pH 6.8), amorphous-amorphous phase separation occurred as a result of exposure to acidic medium which caused markedly reduced dissolution rates at subsequent higher pH values. Phase separation could be prevented by using enteric capsules (Vcaps Enteric®), which provided optimal dissolution profiles for the Eudragit L100-55 ASD at a drug load of 10%.
Collapse
Affiliation(s)
- Marius Monschke
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, Gerhard-Domagk-Str. 3, 53121, Bonn, Germany
| | - Kevin Kayser
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, Gerhard-Domagk-Str. 3, 53121, Bonn, Germany
| | - Karl G Wagner
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, Gerhard-Domagk-Str. 3, 53121, Bonn, Germany.
| |
Collapse
|
30
|
3D-printing of lopinavir printlets by selective laser sintering and quantification of crystalline fraction by XRPD-chemometric models. Int J Pharm 2021; 592:120059. [DOI: 10.1016/j.ijpharm.2020.120059] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 12/30/2022]
|
31
|
Chaudhari VS, Malakar TK, Murty US, Banerjee S. Extruded filaments derived 3D printed medicated skin patch to mitigate destructive pulmonary tuberculosis: design to delivery. Expert Opin Drug Deliv 2020; 18:301-313. [PMID: 33131339 DOI: 10.1080/17425247.2021.1845648] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Background: Quercetin in combination with polyvinylpyrrolidone (PVP) was found to limit the spreading of necrosis to unaffected tissues in tuberculosis-infected mice. Therefore, we hypothesized that 3D printed medicated skin patch incorporated with a quercetin-PVP combination would provide an appropriate therapeutic drug concentration with desired sustained release profile.Research design and methods: We fabricated quercetin-PVP 40 extruded-filaments by hot-melt extrusion (HME) technique along with Eudragit® RSPO and tri-ethyl citrate and further printed it to make medicated skin patches using fused deposition modeling (FDM) based 3D Printing technology. Various characterizations were performed to optimize the 3D-printed patch formulation.Results: Patch formulation has been optimized for several characterization parameters and was further assessed using SEM, DSC, and XRD studies to confirm the conversion of crystalline quercetin into an amorphous form. Finally, the pharmacokinetic profile of an optimized patch was studied in rats showing prolonged Tmax, lowered Cmax, and reduced fluctuations in plasma concentrations till 18 days with single skin application of 3D-printed medicated patch.Conclusion: Overall data confirmed the feasibility of developing 3D printed medicated skin patches to provide plasma levels for continued 18 days in rats after a single application.
Collapse
Affiliation(s)
- Vishal Sharad Chaudhari
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (Niper)-guwahati, Changsari, India
| | - Tushar Kanti Malakar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (Niper)-guwahati, Changsari, India
| | | | - Subham Banerjee
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (Niper)-guwahati, Changsari, India
| |
Collapse
|
32
|
Deshkar S, Rathi M, Zambad S, Gandhi K. Hot Melt Extrusion and its Application in 3D Printing of Pharmaceuticals. Curr Drug Deliv 2020; 18:387-407. [PMID: 33176646 DOI: 10.2174/1567201817999201110193655] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/10/2020] [Accepted: 09/29/2020] [Indexed: 11/22/2022]
Abstract
Hot Melt Extrusion (HME) is a continuous pharmaceutical manufacturing process that has been extensively investigated for solubility improvement and taste masking of active pharmaceutical ingredients. Recently, it is being explored for its application in 3D printing. 3D printing of pharmaceuticals allows flexibility of dosage form design, customization of dosage form for personalized therapy and the possibility of complex designs with the inclusion of multiple actives in a single unit dosage form. Fused Deposition Modeling (FDM) is a 3D printing technique with a variety of applications in pharmaceutical dosage form development. FDM process requires a polymer filament as the starting material that can be obtained by hot melt extrusion. Recent reports suggest enormous applications of a combination of hot melt extrusion and FDM technology in 3D printing of pharmaceuticals and need to be investigated further. This review in detail describes the HME process, along with its application in 3D printing. The review also summarizes the published reports on the application of HME coupled with 3D printing technology in drug delivery.
Collapse
Affiliation(s)
- Sanjeevani Deshkar
- Department of Pharmaceutics, Dr. D.Y. Patil Institute of Pharamceutical Sciences and Research, Pune, Maharashtra 411018, India
| | - Mrunali Rathi
- Department of Pharmaceutics, Dr. D.Y. Patil Institute of Pharamceutical Sciences and Research, Pune, Maharashtra 411018, India
| | - Shital Zambad
- ThinCR Technologies India Pvt Ltd, Rahatani, Pune, Maharashtra 411017, India
| | | |
Collapse
|
33
|
Vo AQ, Zhang J, Nyavanandi D, Bandari S, Repka MA. Hot melt extrusion paired fused deposition modeling 3D printing to develop hydroxypropyl cellulose based floating tablets of cinnarizine. Carbohydr Polym 2020; 246:116519. [PMID: 32747229 PMCID: PMC7403534 DOI: 10.1016/j.carbpol.2020.116519] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/23/2020] [Accepted: 05/26/2020] [Indexed: 11/25/2022]
Abstract
Three-dimensional printing could serve as a platform to fabricate individualized medicines and complex-structured solid dosage forms. Herein, hot melt extrusion was coupled with 3D printing to develop a unique gastro retentive dosage form to personalize treatment of cinnarizine or other narrow absorption window drugs. The mechanical strength of the extruded strands was optimized for printing by combining two polymers, hydroxypropyl cellulose and vinylpyrrolidone vinyl acetate copolymer. The unit dose, floating force, and release profile were controlled by the printing parameters and object design. The tablets floated immediately within the FaSSGF, and floating force was relatively constant up to 12 h. Drug release followed zero-order kinetics and could be controlled from 6 h to ≥ 12 h. Input variables had a good correlation (R > 0.95) with unit dose, floating force, and dissolution profile (p < 0.05). Authors successfully proposed and tested a new paradigm of individualized medicine fabrication to meet individual patient needs.
Collapse
Affiliation(s)
- Anh Q Vo
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, MS 38677, USA.
| | - Jiaxiang Zhang
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, MS 38677, USA.
| | - Dinesh Nyavanandi
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, MS 38677, USA.
| | - Suresh Bandari
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, MS 38677, USA.
| | - Michael A Repka
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, MS 38677, USA; Pii Center for Pharmaceutical Technology, The University of Mississippi, MS 38677, USA.
| |
Collapse
|
34
|
Bandari S, Nyavanandi D, Kallakunta VR, Janga KY, Sarabu S, Butreddy A, Repka MA. Continuous twin screw granulation - An advanced alternative granulation technology for use in the pharmaceutical industry. Int J Pharm 2020; 580:119215. [PMID: 32194206 PMCID: PMC7219110 DOI: 10.1016/j.ijpharm.2020.119215] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 03/04/2020] [Accepted: 03/07/2020] [Indexed: 10/24/2022]
Abstract
Hot melt extrusion has been an exciting technology in the pharmaceutical field owing to its novel applicability. Twin-screw granulation presents a great potential and offers many advantages relative to conventional granulation processes. Different twin-screw granulation techniques, such as twin-screw dry granulation, twin-screw wet granulation, and twin-screw melt granulation, are currently being developed as robust and reproducible granulation processes. The competence of twin-screw granulation as a continuous manufacturing process has contributed to its suitability as an alternative granulation option within the pharmaceutical industry. In this article, different types of twin-screw granulation techniques were discussed. In addition, the screw elements, scale-up process, continuous twin-screw granulation which involves process analytical tools, and excipients were explored. This economical, industrially scalable process can be automated for continuous manufacturing to produce granules for the development of oral solid dosage forms. However, extensive research using process analytical tools is warranted to develop processes for the continuous manufacture of granules.
Collapse
Affiliation(s)
- Suresh Bandari
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Dinesh Nyavanandi
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Venkata Raman Kallakunta
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Kartik Yadav Janga
- Formulation Development, Novel Delivery Forms, Bayer Healthcare LLC, 36 Columbia Rd, Morristown, NJ 07960, USA
| | - Sandeep Sarabu
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Arun Butreddy
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Michael A Repka
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA; Pii Center for Pharmaceutical Innovation & Instruction, The University of Mississippi, University, MS 38677, USA.
| |
Collapse
|
35
|
Sarabu S, Kallakunta VR, Bandari S, Batra A, Bi V, Durig T, Zhang F, Repka MA. Hypromellose acetate succinate based amorphous solid dispersions via hot melt extrusion: Effect of drug physicochemical properties. Carbohydr Polym 2020; 233:115828. [PMID: 32059882 PMCID: PMC7082948 DOI: 10.1016/j.carbpol.2020.115828] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/30/2019] [Accepted: 01/02/2020] [Indexed: 01/28/2023]
Abstract
In this study, the impact of drug and hydroxypropyl methylcellulose acetate succinate (HPMCAS) grades physicochemical properties on extrusion process, dissolution and stability of the hot melt extruded amorphous solid dispersions (ASDs) of nifedipine and efavirenz was investigated. Incorporation of drugs affected the extrusion temperature required for solid dispersion preparation. Differential scanning calorimetry and powder X-ray diffraction studies confirmed the amorphous conversion of the drugs in the prepared formulations. The amorphous nature of ASDs was unchanged after 3 months of stability testing at 40 °C and 75% relative humidity. The dissolution efficiency of the ASDs was dependent on the log P of the drug. The inhibitory effect of HPMCAS on drug precipitation was dependent on the hydrophobic interactions between drug and polymer, polymer grade, and dose of the drug. The dissolution efficiency and dissolution rate of the ASDs were dependent on the log P of the drug and solubility and hydrophilicity of the polymer grade respectively. The inhibitory effect of HPMCAS on drug precipitation was dependent on the hydrophobic interactions between drug and polymer, polymer grade, and the dissolution dose of the drug.
Collapse
Affiliation(s)
- Sandeep Sarabu
- Department of Pharmaceutics and Drug Delivery, The University of Mississippi University, 38677, USA.
| | - Venkata Raman Kallakunta
- Department of Pharmaceutics and Drug Delivery, The University of Mississippi University, 38677, USA.
| | - Suresh Bandari
- Department of Pharmaceutics and Drug Delivery, The University of Mississippi University, 38677, USA.
| | - Amol Batra
- Ashland Specialty Ingredients, Wilmington, DE 19808, USA.
| | - Vivian Bi
- Ashland Specialty Ingredients, Wilmington, DE 19808, USA.
| | - Thomas Durig
- Ashland Specialty Ingredients, Wilmington, DE 19808, USA.
| | - Feng Zhang
- College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Michael A Repka
- Department of Pharmaceutics and Drug Delivery, The University of Mississippi University, 38677, USA; Pii Center for Pharmaceutical Innovation and Instruction, The University of Mississippi University 38677, USA.
| |
Collapse
|
36
|
3D printing by fused deposition modeling of single- and multi-compartment hollow systems for oral delivery – A review. Int J Pharm 2020; 579:119155. [DOI: 10.1016/j.ijpharm.2020.119155] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/11/2020] [Accepted: 02/15/2020] [Indexed: 02/08/2023]
|
37
|
Mendonsa N, Almutairy B, Kallakunta VR, Sarabu S, Thipsay P, Bandari S, Repka MA. Manufacturing strategies to develop amorphous solid dispersions: An overview. J Drug Deliv Sci Technol 2019; 55. [PMID: 32863891 DOI: 10.1016/j.jddst.2019.101459] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Since the past several decades, poor water solubility of existing and new drugs in the pipeline have remained a challenging issue for the pharmaceutical industry. Literature describes several approaches to improve the overall solubility, dissolution rate, and bioavailability of drugs with poor water solubility. Moreover, the development of amorphous solid dispersion (SD) using suitable polymers and methods have gained considerable importance in the recent past. In the present review, we attempt to discuss the important and industrially scalable thermal strategies for the development of amorphous SD. These include both solvent (spray drying and fluid bed processing) and fusion (hot melt extrusion and KinetiSol®) based techniques. The current review also provides insights into the thermodynamic properties of drugs, their polymer miscibility and solubility, and their molecular dynamics to develop stable and more efficient amorphous SD.
Collapse
Affiliation(s)
- Nicole Mendonsa
- Department of Pharmaceutics and Drug Delivery, The University of Mississippi, Oxford, MS, 38677, United States
| | - Bjad Almutairy
- Department of Pharmaceutics and Drug Delivery, The University of Mississippi, Oxford, MS, 38677, United States
| | - Venkata Raman Kallakunta
- Department of Pharmaceutics and Drug Delivery, The University of Mississippi, Oxford, MS, 38677, United States
| | - Sandeep Sarabu
- Department of Pharmaceutics and Drug Delivery, The University of Mississippi, Oxford, MS, 38677, United States
| | - Priyanka Thipsay
- Department of Pharmaceutics and Drug Delivery, The University of Mississippi, Oxford, MS, 38677, United States
| | - Suresh Bandari
- Department of Pharmaceutics and Drug Delivery, The University of Mississippi, Oxford, MS, 38677, United States
| | - Michael A Repka
- Department of Pharmaceutics and Drug Delivery, The University of Mississippi, Oxford, MS, 38677, United States.,Pii Center for Pharmaceutical Innovation & Instruction, The University of Mississippi, Oxford, MS, 38677, United States
| |
Collapse
|