1
|
Kim M, Hwang Y, Lim S, Jang HK, Kim HO. Advances in Nanoparticles as Non-Viral Vectors for Efficient Delivery of CRISPR/Cas9. Pharmaceutics 2024; 16:1197. [PMID: 39339233 PMCID: PMC11434874 DOI: 10.3390/pharmaceutics16091197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
The clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 system is a gene-editing technology. Nanoparticle delivery systems have attracted attention because of the limitations of conventional viral vectors. In this review, we assess the efficiency of various nanoparticles, including lipid-based, polymer-based, inorganic, and extracellular vesicle-based systems, as non-viral vectors for CRISPR/Cas9 delivery. We discuss their advantages, limitations, and current challenges. By summarizing recent advancements and highlighting key strategies, this review aims to provide a comprehensive overview of the role of non-viral delivery systems in advancing CRISPR/Cas9 technology for clinical applications and gene therapy.
Collapse
Affiliation(s)
- Minse Kim
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
- Department of Smart Health Science and Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Youngwoo Hwang
- Department of Smart Health Science and Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
- Department of Systems Immunology, Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Seongyu Lim
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
- Department of Smart Health Science and Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hyeon-Ki Jang
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
- Department of Smart Health Science and Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
- Multidimensional Genomics Research Center, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hyun-Ouk Kim
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
- Department of Smart Health Science and Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
2
|
Wu L, He C, Zhao T, Li T, Xu H, Wen J, Xu X, Gao L. Diagnosis and treatment status of inoperable locally advanced breast cancer and the application value of inorganic nanomaterials. J Nanobiotechnology 2024; 22:366. [PMID: 38918821 PMCID: PMC11197354 DOI: 10.1186/s12951-024-02644-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/16/2024] [Indexed: 06/27/2024] Open
Abstract
Locally advanced breast cancer (LABC) is a heterogeneous group of breast cancer that accounts for 10-30% of breast cancer cases. Despite the ongoing development of current treatment methods, LABC remains a severe and complex public health concern around the world, thus prompting the urgent requirement for innovative diagnosis and treatment strategies. The primary treatment challenges are inoperable clinical status and ineffective local control methods. With the rapid advancement of nanotechnology, inorganic nanoparticles (INPs) exhibit a potential application prospect in diagnosing and treating breast cancer. Due to the unique inherent characteristics of INPs, different functions can be performed via appropriate modifications and constructions, thus making them suitable for different imaging technology strategies and treatment schemes. INPs can improve the efficacy of conventional local radiotherapy treatment. In the face of inoperable LABC, INPs have proposed new local therapeutic methods and fostered the evolution of novel strategies such as photothermal and photodynamic therapy, magnetothermal therapy, sonodynamic therapy, and multifunctional inorganic nanoplatform. This article reviews the advances of INPs in local accurate imaging and breast cancer treatment and offers insights to overcome the existing clinical difficulties in LABC management.
Collapse
Affiliation(s)
- Linxuan Wu
- School of Intelligent Medicine, China Medical University, Shenyang, 110122, China
| | - Chuan He
- Department of Laboratory Medicine, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Tingting Zhao
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Tianqi Li
- School of Intelligent Medicine, China Medical University, Shenyang, 110122, China
| | - Hefeng Xu
- School of Intelligent Medicine, China Medical University, Shenyang, 110122, China
| | - Jian Wen
- Department of Breast Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China.
| | - Xiaoqian Xu
- School of Intelligent Medicine, China Medical University, Shenyang, 110122, China.
| | - Lin Gao
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, 110022, China.
| |
Collapse
|
3
|
Enyu X, Xinbo L, Xuelian C, Huimin C, Yin C, Yan C. Construction and performance evaluation of pH-responsive oxidized hyaluronic acid hollow mesoporous silica nanoparticles. Int J Biol Macromol 2024; 257:128656. [PMID: 38065461 DOI: 10.1016/j.ijbiomac.2023.128656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/01/2023] [Accepted: 12/05/2023] [Indexed: 01/26/2024]
Abstract
In this study, hollow mesoporous silica (HMSN) was created to facilitate drug distribution using the hard template method. The oxidized hyaluronic acid (oxiHA) was coated on the carrier surface by the Schiff base reaction, producing the pH-responsive nanoparticles HMSNs-DOX-oxiHA targeted by CD44 and preventing drug leakage from mesopores. The prepared nanoparticles had a size of 151.79 ± 13.52 nm and a surface potential of -8.42 ± 0.48 mV. The rich mesoporous structure and internal cavity of HMSNs-NH2 achieved the effective encapsulation and loading rates of doxorubicin (DOX) at 76.84 ± 0.24 % and 18.73 ± 0.05 %, respectively. Owing to the pH sensitivity of imine bonds, HMSNs-DOX-oxiHA has a good pH response and release performance. The in vitro experiments showed that the nanoparticles were not cytotoxic and could enhance HCT-116 uptake efficiency by hyaluronic acid/CD44 receptor-mediated endocytosis, effectively inhibiting tumor cell proliferation and reducing toxic side effects on normal cells. In summary, the polysaccharide-based nano-drug delivery system constructed in this experiment not only has the basic response properties of a carrier but also introduces the bioactive advantages of natural polysaccharides.
Collapse
Affiliation(s)
- Xu Enyu
- College of Food and Pharmacy, Zhejiang Ocean University, 1 South Haida Road, Zhoushan 316000, People's Republic of China
| | - Liu Xinbo
- College of Food and Pharmacy, Zhejiang Ocean University, 1 South Haida Road, Zhoushan 316000, People's Republic of China
| | - Chen Xuelian
- College of Food and Pharmacy, Zhejiang Ocean University, 1 South Haida Road, Zhoushan 316000, People's Republic of China
| | - Chen Huimin
- College of Food and Pharmacy, Zhejiang Ocean University, 1 South Haida Road, Zhoushan 316000, People's Republic of China
| | - Chen Yin
- College of Food and Pharmacy, Zhejiang Ocean University, 1 South Haida Road, Zhoushan 316000, People's Republic of China.
| | - Chen Yan
- College of Food and Pharmacy, Zhejiang Ocean University, 1 South Haida Road, Zhoushan 316000, People's Republic of China.
| |
Collapse
|
4
|
Sivamaruthi BS, Kapoor DU, Kukkar RR, Gaur M, Elossaily GM, Prajapati BG, Chaiyasut C. Mesoporous Silica Nanoparticles: Types, Synthesis, Role in the Treatment of Alzheimer's Disease, and Other Applications. Pharmaceutics 2023; 15:2666. [PMID: 38140007 PMCID: PMC10747102 DOI: 10.3390/pharmaceutics15122666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/25/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Globally, many individuals struggle with Alzheimer's disease (AD), an unrelenting and incapacitating neurodegenerative condition. Despite notable research endeavors, effective remedies for AD remain constrained, prompting the exploration of innovative therapeutic avenues. Within this context, silica-based nanoplatforms have emerged with pronounced potential due to their unique attributes like expansive surface area, customizable pore dimensions, and compatibility with living systems. These nanoplatforms hold promise as prospective interventions for AD. This assessment provides a comprehensive overview encompassing various forms of mesoporous silica nanoparticles (MSNs), techniques for formulation, and their applications in biomedicine. A significant feature lies in their ability to precisely guide and control the transport of therapeutic agents to the brain, facilitated by the adaptability of these nanoplatforms as drug carriers. Their utility as tools for early detection and monitoring of AD is investigated. Challenges and prospects associated with harnessing MSNs are studied, underscoring the imperative of stringent safety evaluations and optimization of how they interact with the body. Additionally, the incorporation of multifunctional attributes like imaging and targeting components is emphasized to enhance their efficacy within the intricate milieu of AD. As the battle against the profound repercussions of AD persists, MSNs emerge as a promising avenue with the potential to propel the development of viable therapeutic interventions.
Collapse
Affiliation(s)
- Bhagavathi Sundaram Sivamaruthi
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand;
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Devesh U. Kapoor
- Department of Pharmacy, Dr. Dayaram Patel Pharmacy College, Bardoli 394601, Gujarat, India;
| | - Rajiv R. Kukkar
- School of Pharmacy, Raffles University, Neemrana 301705, Rajasthan, India
| | - Mansi Gaur
- Rajasthan Pharmacy College, Rajasthan University of Health Sciences, Jaipur 302033, Rajasthan, India
| | - Gehan M. Elossaily
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia;
| | - Bhupendra G. Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Mehsana 384012, Gujarat, India
| | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
5
|
Li M, Yang G, Zheng Y, Lv J, Zhou W, Zhang H, You F, Wu C, Yang H, Liu Y. NIR/pH-triggered aptamer-functionalized DNA origami nanovehicle for imaging-guided chemo-phototherapy. J Nanobiotechnology 2023; 21:186. [PMID: 37301952 DOI: 10.1186/s12951-023-01953-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/03/2023] [Indexed: 06/12/2023] Open
Abstract
Targeted chemo-phototherapy has received widespread attention in cancer treatment for its advantages in reducing the side effects of chemotherapeutics and improving therapeutic effects. However, safe and efficient targeted-delivery of therapeutic agents remains a major obstacle. Herein, we successfully constructed an AS1411-functionalized triangle DNA origami (TOA) to codeliver chemotherapeutic drug (doxorubicin, DOX) and a photosensitizer (indocyanine green, ICG), denoted as TOADI (DOX/ICG-loaded TOA), for targeted synergistic chemo-phototherapy. In vitro studies show that AS1411 as an aptamer of nucleolin efficiently enhances the nanocarrier's endocytosis more than 3 times by tumor cells highly expressing nucleolin. Subsequently, TOADI controllably releases the DOX into the nucleus through the photothermal effect of ICG triggered by near-infrared (NIR) laser irradiation, and the acidic environment of lysosomes/endosomes facilitates the release. The downregulated Bcl-2 and upregulated Bax, Cyt c, and cleaved caspase-3 indicate that the synergistic chemo-phototherapeutic effect of TOADI induces the apoptosis of 4T1 cells, causing ~ 80% cell death. In 4T1 tumor-bearing mice, TOADI exhibits 2.5-fold targeted accumulation in tumor region than TODI without AS1411, and 4-fold higher than free ICG, demonstrating its excellent tumor targeting ability in vivo. With the synergetic treatment of DOX and ICG, TOADI shows a significant therapeutic effect of ~ 90% inhibition of tumor growth with negligible systemic toxicity. In addition, TOADI presents outstanding superiority in fluorescence and photothermal imaging. Taken together, this multifunctional DNA origami-based nanosystem with the advantages of specific tumor targeting and controllable drug release provides a new strategy for enhanced cancer therapy.
Collapse
Grants
- (12132004, U19A2006, 32171395) the National Natural Science Foundation of China
- (12132004, U19A2006, 32171395) the National Natural Science Foundation of China
- (23NSFSC0392, 23SYSX0108, 2022NSFSC0048) the Sichuan Science and Technology Program
- (23NSFSC0392, 23SYSX0108, 2022NSFSC0048) the Sichuan Science and Technology Program
- (ZYGX2021YGLH204, ZYGX2021YGLH017, ZYGX2021YGLH023) the Joint Funds of Center for Engineering Medicine
- (ZYGX2021YGLH204, ZYGX2021YGLH017, ZYGX2021YGLH023) the Joint Funds of Center for Engineering Medicine
Collapse
Affiliation(s)
- Mengyue Li
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P.R. China
| | - Geng Yang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P.R. China
| | - Yue Zheng
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P.R. China
| | - Jiazhen Lv
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P.R. China
| | - Wanyi Zhou
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P.R. China
| | - Hanxi Zhang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P.R. China
| | - Fengming You
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu, University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan, 610072, P.R. China
| | - Chunhui Wu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P.R. China
| | - Hong Yang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P.R. China.
| | - Yiyao Liu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P.R. China.
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu, University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan, 610072, P.R. China.
| |
Collapse
|
6
|
Sun L, Zuo C, Liu X, Guo Y, Wang X, Dong Z, Han M. Combined Photothermal Therapy and Lycium barbarum Polysaccharide for Topical Administration to Improve the Efficacy of Doxorubicin in the Treatment of Breast Cancer. Pharmaceutics 2022; 14:pharmaceutics14122677. [PMID: 36559180 PMCID: PMC9785128 DOI: 10.3390/pharmaceutics14122677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
In order to improve the efficacy of doxorubicin in the treatment of breast cancer, we constructed a drug delivery system combined with local administration of Lycium barbarum polysaccharides (LBP) and photothermal-material polypyrrole nanoparticles (PPY NPs). In vitro cytotoxicity experiments showed that the inhibitory effect of DOX + LBP + PPY NPs on 4T1 cells under NIR (near infrared) laser was eight times that of DOX at the same concentration (64% vs. 8%). In vivo antitumor experiments showed that the tumor inhibition rate of LBP + DOX + PPY NPs + NIR reached 87.86%. The results of the H&E staining and biochemical assays showed that the systemic toxicity of LBP + DOX + PPY NPs + NIR group was reduced, and liver damage was significantly lower in the combined topical administration group (ALT 54 ± 14.44 vs. 28 ± 3.56; AST 158 ± 16.39 vs. 111 ± 20.85) (p < 0.05). The results of the Elisa assay showed that LBP + DOX + PPY NPs + NIR can enhance efficacy and reduce toxicity (IL-10, IFN-γ, TNF-α, IgA, ROS). In conclusion, LBP + DOX + PPY NPs combined with photothermal therapy can improve the therapeutic effect of DOX on breast cancer and reduce its toxic side effects.
Collapse
Affiliation(s)
- Lina Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Cuiling Zuo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Xinxin Liu
- Research Center of Pharmaceutical Engineering Technology, Harbin University of Commerce, Harbin 150076, China
| | - Yifei Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Xiangtao Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Zhengqi Dong
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Correspondence: (Z.D.); (M.H.)
| | - Meihua Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Correspondence: (Z.D.); (M.H.)
| |
Collapse
|
7
|
Lactobionic acid-functionalized hollow mesoporous silica nanoparticles for cancer chemotherapy and phototherapy. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.08.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
8
|
Hyaluronic Acid-Based Nanomaterials Applied to Cancer: Where Are We Now? Pharmaceutics 2022; 14:pharmaceutics14102092. [PMID: 36297526 PMCID: PMC9609123 DOI: 10.3390/pharmaceutics14102092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/05/2022] Open
Abstract
Cancer cells normally develop the ability to rewire or reprogram themselves to become resistant to treatments that were previously effective. Despite progress in understanding drug resistance, knowledge gaps remain regarding the underlying biological causes of drug resistance and the design of cancer treatments to overcome it. So, resistance acquisition remains a major problem in cancer treatment. Targeted therapeutics are considered the next generation of cancer therapy because they overcome many limitations of traditional treatments. Numerous tumor cells overexpress several receptors that have a high binding affinity for hyaluronic acid (HA), while they are poorly expressed in normal body cells. HA and its derivatives have the advantage of being biocompatible and biodegradable and may be conjugated with a variety of drugs and drug carriers for developing various formulations as anticancer therapies such as micelles, nanogels, and inorganic nanoparticles. Due to their stability in blood circulation and predictable delivery patterns, enhanced tumor-selective drug accumulation, and decreased toxicity to normal tissues, tumor-targeting nanomaterial-based drug delivery systems have been shown to represent an efficacious approach for the treatment of cancer. In this review, we aim to provide an overview of some in vitro and in vivo studies related to the potential of HA as a ligand to develop targeted nanovehicles for future biomedical applications in cancer treatment.
Collapse
|
9
|
Wang T, Hu X, Yang Y, Wu Q, He C, He X, Wang Z, Mao X. New Insight into Assembled Fe3O4@PEI@Ag Structure as Acceptable Agent with Enzymatic and Photothermal Properties. Int J Mol Sci 2022; 23:ijms231810743. [PMID: 36142657 PMCID: PMC9501236 DOI: 10.3390/ijms231810743] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/30/2022] [Accepted: 08/11/2022] [Indexed: 11/27/2022] Open
Abstract
Metal-based enzyme mimics are considered to be acceptable agents in terms of their biomedical and biological properties; among them, iron oxides (Fe3O4) are treated as basement in fabricating heterogeneous composites through variable valency integrations. In this work, we have established a facile approach for constructing Fe3O4@Ag composite through assembling Fe3O4 and Ag together via polyethyleneimine ethylenediamine (PEI) linkages. The obtained Fe3O4@PEI@Ag structure conveys several hundred nanometers (~150 nm). The absorption peak at 652 nm is utilized for confirming the peroxidase-like activity of Fe3O4@PEI@Ag structure by catalyzing 3,3′,5,5′-tetramethylbenzidine (TMB) in the presence of H2O2. The Michaelis–Menten parameters (Km) of 1.192 mM and 0.302 mM show the higher catalytic activity and strong affinity toward H2O2 and TMB, respectively. The maximum velocity (Vmax) value of 1.299 × 10−7 M∙s−1 and 1.163 × 10−7 M∙s−1 confirm the efficiency of Fe3O4@PEI@Ag structure. The biocompatibility illustrates almost 100% cell viability. Being treated as one simple colorimetric sensor, it shows relative selectivity and sensitivity toward the detection of glucose based on glucose oxidase. By using indocyanine green (ICG) molecule as an additional factor, a remarkable temperature elevation is observed in Fe3O4@PEI@Ag@ICG with increments of 21.6 °C, and the absorption peak is nearby 870 nm. This implies that the multifunctional Fe3O4@PEI@Ag structure could be an alternative substrate for formatting acceptable agents in biomedicine and biotechnology with enzymatic and photothermal properties.
Collapse
Affiliation(s)
- Teng Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Xi Hu
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Yujun Yang
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Qing Wu
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Chengdian He
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Xiong He
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Zhenyu Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
- Correspondence: (Z.W.); (X.M.)
| | - Xiang Mao
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
- Correspondence: (Z.W.); (X.M.)
| |
Collapse
|
10
|
Feng H, Li M, Xing Z, Ouyang XK, Ling J. Efficient delivery of fucoxanthin using metal–polyphenol network-coated magnetic mesoporous silica. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
11
|
Alamdari SG, Amini M, Jalilzadeh N, Baradaran B, Mohammadzadeh R, Mokhtarzadeh A, Oroojalian F. Recent advances in nanoparticle-based photothermal therapy for breast cancer. J Control Release 2022; 349:269-303. [PMID: 35787915 DOI: 10.1016/j.jconrel.2022.06.050] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/20/2022] [Accepted: 06/25/2022] [Indexed: 12/17/2022]
Abstract
Breast cancer is one of the most common cancers among women that is associated with high mortality. Conventional treatments including surgery, radiotherapy, and chemotherapy, which are not effective enough and have disadvantages such as toxicity and damage to healthy cells. Photothermal therapy (PTT) of cancer cells has been took great attention by researchers in recent years due to the use of light radiation and heat generation at the tumor site, which thermal ablation is considered a minimally invasive method for the treatment of breast cancer. Nanotechnology has opened up a new perspective in the treatment of breast cancer using PTT method. Through NIR light absorption, researchers applied various nanostructures because of their specific nature of penetrating and targeting tumor tissue, increasing the effectiveness of PTT, and combining it with other treatments. If PTT is used with common cancer treatments, it can dramatically increase the effectiveness of treatment and reduce the side effects of other methods. PTT performance can also be improved by hybridizing at least two different nanomaterials. Nanoparticles that intensely absorb light and increase the efficiency of converting light into heat can specifically kill tumors through hyperthermia of cancer cells. One of the main reasons that have increased the efficiency of nanoparticles in PTT is their permeability and durability effect and they can accumulate in tumor tissue. Targeted PTT can be provided by incorporating specific ligands to target receptors expressed on the surface of cancer cells on nanoparticles. These nanoparticles can specifically target cancer cells by maintaining the surface area and increasing penetration. In this study, we briefly introduce the performance of light therapy, application of metal nanoparticles, polymer nanoparticles, carbon nanoparticles, and hybrid nanoparticles for use in PTT of breast cancer.
Collapse
Affiliation(s)
- Sania Ghobadi Alamdari
- Department of Cell and Molecular Biology, Faculty of Basic Sciences, University of Maragheh, Maragheh, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazila Jalilzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Mohammadzadeh
- Department of Cell and Molecular Biology, Faculty of Basic Sciences, University of Maragheh, Maragheh, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Fatemeh Oroojalian
- Department of Advanced Technologies, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran; Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| |
Collapse
|
12
|
Xu M, Yang Y, Yuan Z. Breast Cancer Cell Membrane Camouflaged Lipid Nanoparticles for Tumor-Targeted NIR-II Phototheranostics. Pharmaceutics 2022; 14:pharmaceutics14071367. [PMID: 35890265 PMCID: PMC9319009 DOI: 10.3390/pharmaceutics14071367] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/14/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022] Open
Abstract
Photoacoustic imaging and photothermal therapy that employ organic dye in the second near-infrared window (NIR-II) became an attractive theranostical strategy for eliminating solid tumors, in which IR1048 was previously reported to be a good candidate. However, the further biomedical application of IR1048 was blocked by its poor water-solubility and lack of tumor-targeting. To solve this problem, liposome camouflaged with 4T1 cell membrane fragments was employed to encapsulate IR1048 (thereafter called MLI), and its application for photoacoustic and thermo-imaging and photothermal therapy were explored in vitro and in vivo. The results showed that MLI exhibited spherical morphology around 92.55 ± 5.41 nm coated by monolayer adventitial fragments, and uniformly dispersed in PBS with high loading efficiency and encapsulation efficiency to IR1048. In addition, both free IR1048 and MLI presented strong absorption in NIR-II, and upon 1064 nm laser irradiation the MLI showed awesome photothermal performance that could rapidly elevate the temperature to 50.9 °C in 6 min. Simultaneously, phantom assay proved that MLI could dramatically enhance the photoacoustic amplitudes by a linear concentration-dependent way. Moreover, either flow cytometry or confocal analysis evidenced that MLI was the most uptaked by 4T1 cells among other melanoma B16 cells and Hek293 cells and coexist of IR1048 and 1064 nm laser irradiation were indispensable for the photothermal cytotoxicity of MLI that specifically killed 96.16% of 4T1 cells far outweigh the B16 cells while hardly toxic to the Hek293 normal cells. Furthermore, PA imaging figured out that 4 h post tail-vein injection of MLI was the best time to give 1064 nm irradiation to conduct the photothermal therapy when the average tumor-accumulation of MLI achieved the highest. In the NIR-II photothermal therapy, MLI could significantly inhibit the tumor growth and almost ablated the tumors with slight body weight variation and the highest average life span over the therapy episode and caused no damage to the normal organs. Hence, MLI could pave the way for further biomedical applications of IR-1048 by homologous tumor-targeting and dual-modal imaging directed NIR-II accurate photothermal therapy with high efficacy and fine biosafety.
Collapse
Affiliation(s)
- Mengze Xu
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau 999078, China;
- Centre for Cognitive and Brain Sciences, University of Macau, Macau 999078, China
| | - Yu Yang
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Zhen Yuan
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau 999078, China;
- Centre for Cognitive and Brain Sciences, University of Macau, Macau 999078, China
- Correspondence: ; Tel.: +853-8822-4989; Fax: +853-8822-2314
| |
Collapse
|
13
|
Zhang H, Feng Y, Xie X, Song T, Yang G, Su Q, Li T, Li S, Wu C, You F, Liu Y, Yang H. Engineered Mesenchymal Stem Cells as a Biotherapy Platform for Targeted Photodynamic Immunotherapy of Breast Cancer. Adv Healthc Mater 2022; 11:e2101375. [PMID: 34981675 DOI: 10.1002/adhm.202101375] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/12/2021] [Indexed: 01/10/2023]
Abstract
Interleukin-12 (IL12) is a pleiotropic cytokine with promising prospects for cancer immunotherapy. Though IL12 gene-based therapy can overcome the fatal hurdle of severe systemic toxicity, targeted delivery and tumor-located expression of IL12 gene remain the challenging issues yet to be solved. Photo-immunotherapy emerging as a novel and precise therapeutic strategy, which elaborately combines immune-activating agents with light-triggered photosensitizers for potentiated anticancer efficacy. Herein, an engineered stem cell-based biotherapy platform (MB/IL12-MSCs) incorporating immune gene plasmid IL12 (pIL12) and photosensitizer methylene blue (MB) is developed to realize tumor-homing delivery of therapeutic agents and photo-immunotherapy efficacy enhancement. The biotherapy platform retained tumor-tropic migration and penetration functions, which improved the intratumoral distribution of therapeutic agents, thereby promoting photodynamic effects and reinforcing immune responses. Importantly, MB/IL12-MSCs restricted the expression and distribution of IL12 at tumor site, which minimized potential toxicity while eliciting sufficient anticancer immunity. In noteworthy, activation of immunity induced by MB/IL12-MSCs established long-term systemic immunologic memory to prevent tumor relapse. The MB/IL12-MSCs outperform their monotherapy counterparts in breast tumor models, and the growth of tumor significantly arrested as well as re-challenging abscopal tumor growth slowdown. Collectively, this work reveals that MSCs-based strategy may advance more efficient, durable, and safer cancer photo-immunotherapy.
Collapse
Affiliation(s)
- Hanxi Zhang
- Department of Biophysics School of Life Science and Technology University of Electronic Science and Technology of China Chengdu Sichuan 610054 P. R. China
| | - Yi Feng
- Department of Biophysics School of Life Science and Technology University of Electronic Science and Technology of China Chengdu Sichuan 610054 P. R. China
| | - Xiaoxue Xie
- Department of Biophysics School of Life Science and Technology University of Electronic Science and Technology of China Chengdu Sichuan 610054 P. R. China
| | - Ting Song
- Department of Biophysics School of Life Science and Technology University of Electronic Science and Technology of China Chengdu Sichuan 610054 P. R. China
| | - Geng Yang
- Department of Biophysics School of Life Science and Technology University of Electronic Science and Technology of China Chengdu Sichuan 610054 P. R. China
| | - Qingqing Su
- Department of Biophysics School of Life Science and Technology University of Electronic Science and Technology of China Chengdu Sichuan 610054 P. R. China
| | - Tingting Li
- Department of Biophysics School of Life Science and Technology University of Electronic Science and Technology of China Chengdu Sichuan 610054 P. R. China
| | - Shun Li
- Department of Biophysics School of Life Science and Technology University of Electronic Science and Technology of China Chengdu Sichuan 610054 P. R. China
| | - Chunhui Wu
- Department of Biophysics School of Life Science and Technology University of Electronic Science and Technology of China Chengdu Sichuan 610054 P. R. China
| | - Fengming You
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province Hospital of Chengdu University of Traditional Chinese Medicine No. 39 Shi‐er‐qiao Road Chengdu Sichuan 610072 P. R. China
| | - Yiyao Liu
- Department of Biophysics School of Life Science and Technology University of Electronic Science and Technology of China Chengdu Sichuan 610054 P. R. China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province Hospital of Chengdu University of Traditional Chinese Medicine No. 39 Shi‐er‐qiao Road Chengdu Sichuan 610072 P. R. China
| | - Hong Yang
- Department of Biophysics School of Life Science and Technology University of Electronic Science and Technology of China Chengdu Sichuan 610054 P. R. China
| |
Collapse
|
14
|
Nanomaterials-based hyperthermia: A literature review from concept to applications in chemistry and biomedicine. J Therm Biol 2022; 104:103201. [DOI: 10.1016/j.jtherbio.2022.103201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 10/19/2022]
|
15
|
Kuang Y, Zhai J, Xiao Q, Zhao S, Li C. Polysaccharide/mesoporous silica nanoparticle-based drug delivery systems: A review. Int J Biol Macromol 2021; 193:457-473. [PMID: 34710474 DOI: 10.1016/j.ijbiomac.2021.10.142] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/30/2021] [Accepted: 10/19/2021] [Indexed: 11/16/2022]
Abstract
Mesoporous silica nanoparticles (MSNs) have been well-researched in the design and fabrication of advanced drug delivery systems (DDSs) due to their advantages such as good biocompatibility, large specific surface area and pore volume for drug loading, easily surface modification, adjusted size and good thermal/chemical stability. For MSN-based DDSs, gate materials are also necessary. And natural polysaccharides, one kind of the most abundant natural resource, have been widely applied as the "gatekeepers" in MSN-based DDSs. Polysaccharides are cheap and rich in sources with good biocompatibility, and some of them have important biological functions. In this review article, polysaccharides including chitosan, hyaluronic acid, sodium alginate and dextran, et al. are briefly introduced. And the preparation processes and properties such as controlled drug release, cancer targeting and disease diagnosis of functional polysaccharide/MSN-based DDSs are discussed.
Collapse
Affiliation(s)
- Ying Kuang
- Glyn O. Philips Hydrocolloid Research Centre at HUT, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Junjun Zhai
- Glyn O. Philips Hydrocolloid Research Centre at HUT, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Qinjian Xiao
- Glyn O. Philips Hydrocolloid Research Centre at HUT, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Si Zhao
- Glyn O. Philips Hydrocolloid Research Centre at HUT, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Cao Li
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, China.
| |
Collapse
|
16
|
Xu M, Xue B, Wang Y, Wang D, Gao D, Yang S, Zhao Q, Zhou C, Ruan S, Yuan Z. Temperature-Feedback Nanoplatform for NIR-II Penta-Modal Imaging-Guided Synergistic Photothermal Therapy and CAR-NK Immunotherapy of Lung Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101397. [PMID: 34159726 DOI: 10.1002/smll.202101397] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/06/2021] [Indexed: 06/13/2023]
Abstract
In this study, to visually acquire all-round structural and functional information of lung cancer while performing synergistic photothermal therapy (PTT) and tumor-targeting immunotherapy, a theranostic nanoplatform that introduced upconversion nanoparticles (UCNPs) and IR-1048 dye into the lipid-aptamer nanostructrure (UCILA) is constructed. Interestingly, the IR-1048 dye grafted into the lipid bilayer can serve as the theranostic agent for photoacoustic imaging, optical coherence tomography angiography, photothermal imaging, and PTT in the second near infrared (NIR-II) window. In addition, loaded in the inner part of UCILA, UCNPs possess the superior luminescence property and high X-ray attenuation coefficient, which can act as contrast agents for computed tomography (CT) and thermo-sensitive up-conversion luminescence (UCL) imaging, enabling real-time tracking of metabolic activity of tumor and temperature-feedback PTT. Furthermore, under the complementary guidance of penta-modal imaging and an accurate monitoring of in situ temperature change during PTT, UCILA exhibits its excellent capability for ablating the lung tumor with minimal side effects. Meanwhile, synergistic CAR-NK immunotherapy is carried out specifically to eradicate any possible residual tumor cells after PTT. Therefore, the UCILA nanoplatform is demonstrated as a multifunctional theranostic agent for both penta-modal imaging and temperature-feedback PTT while conducting targeting immunotherapy of lung cancer.
Collapse
Affiliation(s)
- Mengze Xu
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, P. R. China
- Centre for Cognitive and Brain Sciences, University of Macau, Macau SAR, 999078, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR, 999078, China
| | - Bin Xue
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, P. R. China
- Center for Advanced Material Diagnostic Technology, Shenzhen Key Laboratory of Ultraintense Laser and Advanced Material Technology, College of Engineering Physics, Shenzhen Technology University, Shenzhen, 518118, P. R. China
| | - Yue Wang
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, P. R. China
| | - Dan Wang
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, P. R. China
| | - Duyang Gao
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, P. R. China
| | - Shuo Yang
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, P. R. China
| | - Qi Zhao
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, P. R. China
| | - Cangtao Zhou
- Center for Advanced Material Diagnostic Technology, Shenzhen Key Laboratory of Ultraintense Laser and Advanced Material Technology, College of Engineering Physics, Shenzhen Technology University, Shenzhen, 518118, P. R. China
| | - Shuangchen Ruan
- Center for Advanced Material Diagnostic Technology, Shenzhen Key Laboratory of Ultraintense Laser and Advanced Material Technology, College of Engineering Physics, Shenzhen Technology University, Shenzhen, 518118, P. R. China
| | - Zhen Yuan
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, P. R. China
- Centre for Cognitive and Brain Sciences, University of Macau, Macau SAR, 999078, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR, 999078, China
| |
Collapse
|
17
|
Feng Y, Xie X, Zhang H, Su Q, Yang G, Wei X, Li N, Li T, Qin X, Li S, Wu C, Zheng C, Zhu J, You F, Wang G, Yang H, Liu Y. Multistage-responsive nanovehicle to improve tumor penetration for dual-modality imaging-guided photodynamic-immunotherapy. Biomaterials 2021; 275:120990. [PMID: 34186239 DOI: 10.1016/j.biomaterials.2021.120990] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/12/2021] [Accepted: 06/21/2021] [Indexed: 01/10/2023]
Abstract
The exploration of an intelligent multifunctional imaging-guided therapeutic platform is of great significance because of its ideal delivery efficiency and controlled release. In this work, a tumor microenvironment (TME)-responsive nanocarrier (denoted as MB@MSP) is designed for on-demand, sequentially release of a short D-peptide antagonist of programmed cell death-ligand 1 (named as PDPPA-1) and a photosensitizer methylene blue (MB). Fe3O4-Au located in the core of MB@MSP is used as a magnetic resonance imaging and micro-computed tomography imaging contrast agent for noninvasive diagnosis of solid tumors and simultaneous monitoring of drug delivery. The PDPPA-1 coated on MB@MSP can be shed due to the cleavage of the peptide substrate by matrix metalloproteinase-2 (MMP-2) that is highly expressed in the tumor stroma, and disulfide bonding is further broken when it encounters high levels of glutathione (GSH) in TME, which finally leads to significant size reduction and charge-reversal. These transitions facilitate penetration and uptake of nanocarriers against tumors. Noticeably, the released PDPPA-1 can block the immune checkpoint to create an environment that favors the activation of cytotoxic T lymphocytes and augment the antitumor immune response elicited by photodynamic therapy, thus significantly improving therapeutic outcomes. Studies of the underlying mechanisms suggest that the designed MMP-2 and GSH-sensitive delivery system not only induce apoptosis of tumor cells but also modulate the immunosuppressive tumor microenvironment to eventually augment the suppression tumor metastasis effect of CD8+ cytotoxic T cells. Overall, the visualization of the therapeutic processes with comprehensive information renders MB@MSP an intriguing platform to realize the combined treatment of metastatic tumors.
Collapse
Affiliation(s)
- Yi Feng
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Xiaoxue Xie
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Hanxi Zhang
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Qingqing Su
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Geng Yang
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Xiaodan Wei
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Ningxi Li
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Tingting Li
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Xiang Qin
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China; Key Laboratory of Biorheological Science and Technology, Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Shun Li
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Chunhui Wu
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Chuan Zheng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, Sichuan, PR China
| | - Jie Zhu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, Sichuan, PR China
| | - Fengming You
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, Sichuan, PR China
| | - Guixue Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China.
| | - Hong Yang
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China.
| | - Yiyao Liu
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, Sichuan, PR China.
| |
Collapse
|
18
|
Taleghani AS, Nakhjiri AT, Khakzad MJ, Rezayat SM, Ebrahimnejad P, Heydarinasab A, Akbarzadeh A, Marjani A. Mesoporous silica nanoparticles as a versatile nanocarrier for cancer treatment: A review. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115417] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
19
|
Dong J, Cheng Z, Tan S, Zhu Q. Clay nanoparticles as pharmaceutical carriers in drug delivery systems. Expert Opin Drug Deliv 2020; 18:695-714. [PMID: 33301349 DOI: 10.1080/17425247.2021.1862792] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Clay minerals are a class of silicates with chemical inertness, colloid, and thixotropy, which have excellent physicochemical properties, good biocompatibility, low toxicity, and have high application potential in biomedical fields. These inorganic materials have been widely used in pharmaceutical excipients and active substances. In recent years, nanoclay mineral materials have been used as drug vehicles for the delivery of a variety of drugs based on their broad specific surface area, rich porosity, diverse morphology, good adsorption performance, and high ion exchange capacity. AREAS COVERED This review introduces the structures, properties, and applications of various common natural and synthetic nanoclay materials as drug carriers. Natural nanoclays have different morphologies including nanoplates, nanotubes, and nanofibers. Synthetic materials have controllable sizes and flexible structures, where mesoporous silica nanoparticles, laponite, and imogolite are typical ones. These inorganic nanoparticles are often linked to polymers to form multifunctional drug delivery systems for better pharmaceutical performance. EXPERT OPINION The clay nanomaterials have typical properties, including enhanced solubility of insoluble drugs, targeting therapeutic sites, controlled release, and stimulation of responsive drug delivery systems.
Collapse
Affiliation(s)
- Jiani Dong
- Department of Pharmacy, Xiangya School of Pharmaceutical Sciences in Central South University, Changsha, Hunan, China
| | - Zeneng Cheng
- Department of Pharmacy, Xiangya School of Pharmaceutical Sciences in Central South University, Changsha, Hunan, China
| | - Songwen Tan
- Department of Pharmacy, Xiangya School of Pharmaceutical Sciences in Central South University, Changsha, Hunan, China
| | - Qubo Zhu
- Department of Pharmacy, Xiangya School of Pharmaceutical Sciences in Central South University, Changsha, Hunan, China
| |
Collapse
|
20
|
Barui S, Cauda V. Multimodal Decorations of Mesoporous Silica Nanoparticles for Improved Cancer Therapy. Pharmaceutics 2020; 12:E527. [PMID: 32521802 PMCID: PMC7355899 DOI: 10.3390/pharmaceutics12060527] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 02/06/2023] Open
Abstract
The presence of leaky vasculature and the lack of lymphatic drainage of small structures by the solid tumors formulate nanoparticles as promising delivery vehicles in cancer therapy. In particular, among various nanoparticles, the mesoporous silica nanoparticles (MSN) exhibit numerous outstanding features, including mechanical thermal and chemical stability, huge surface area and ordered porous interior to store different anti-cancer therapeutics with high loading capacity and tunable release mechanisms. Furthermore, one can easily decorate the surface of MSN by attaching ligands for active targeting specifically to the cancer region exploiting overexpressed receptors. The controlled release of drugs to the disease site without any leakage to healthy tissues can be achieved by employing environment responsive gatekeepers for the end-capping of MSN. To achieve precise cancer chemotherapy, the most desired delivery system should possess high loading efficiency, site-specificity and capacity of controlled release. In this review we will focus on multimodal decorations of MSN, which is the most demanding ongoing approach related to MSN application in cancer therapy. Herein, we will report about the recently tried efforts for multimodal modifications of MSN, exploiting both the active targeting and stimuli responsive behavior simultaneously, along with individual targeted delivery and stimuli responsive cancer therapy using MSN.
Collapse
Affiliation(s)
| | - Valentina Cauda
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy;
| |
Collapse
|