1
|
Ghaferi M, Alavi SE, Phan K, Maibach H, Mohammed Y. Transdermal Drug Delivery Systems (TDDS): Recent Advances and Failure Modes. Mol Pharm 2024; 21:5373-5391. [PMID: 39365887 DOI: 10.1021/acs.molpharmaceut.4c00211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
Abstract
Transdermal drug delivery systems (TDDS), commonly refered to as "patches", present a nonintrusive technique to provide medication without the need for invasive procedures. These products adhere to the skin and gradually release a specific dosage of medicine at a defined rate into the bloodstream. Compared with other methods of drug delivery, TDDS offer benefits such as reduced invasiveness, convenience for patients, and avoidance of the metabolic processes that occur when drugs are orally consumed. Throughout time, TDDS have been used to provide medications for various medical conditions (such as nicotine, fentanyl, nitroglycerin, and clonidine), and their potential for delivering biologics is currently being explored. This review investigates the current literature on the drug delivery efficacy of medical TDDS through the transdermal route. Additionally, the review addresses potential risks and failure modes associated with TDDS design and development as well as strategies for mitigating such risks. A thorough understanding of failure modes provides a blueprint to mitigate failure and produce high-quality efficacious therapeutics.
Collapse
Affiliation(s)
- Mohsen Ghaferi
- Department of Chemical Engineering, Islamic Azad University, Shahrood Branch, Shahrood, Semnan 9WVR+757, Iran
| | - Seyed Ebrahim Alavi
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, Queensland 4102, Australia
| | - Khanh Phan
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, Queensland 4102, Australia
| | - Howard Maibach
- University of California, San Francisco, San Francisco, California 94115, United States
| | - Yousuf Mohammed
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, Queensland 4102, Australia
- School of Pharmacy, The University of Queensland, Brisbane, Queensland 4102, Australia
| |
Collapse
|
2
|
Svoboda R, Koutná N, Hynková M, Pakosta M. In Situ Raman Spectroscopy as a Valuable Tool for Monitoring Crystallization Kinetics in Molecular Glasses. Molecules 2024; 29:4769. [PMID: 39407696 PMCID: PMC11478080 DOI: 10.3390/molecules29194769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/06/2024] [Accepted: 10/07/2024] [Indexed: 10/20/2024] Open
Abstract
The performance of in situ Raman microscopy (IRM) in monitoring the crystallization kinetics of amorphous drugs (griseofulvin and indomethacin) was evaluated using a comparison with the data obtained via differential scanning calorimetry (DSC). IRM was found to accurately and sensitively detect the initial stages of the crystal growth processes, including the rapid glass-crystal surface growth or recrystallization between polymorphic phases, with the reliable localized identification of the particular polymorphs being the main advantage of IRM over DSC. However, from the quantitative point of view, the reproducibility of the IRM measurements was found to be potentially significantly hindered due to inaccurate temperature recording and calibration, variability in the Raman spectra corresponding to the fully amorphous and crystalline phases, and an overly limited number of spectra possible to collect during acceptable experimental timescales because of the applied heating rates. Since theoretical simulations showed that, from the kinetics point of view, the constant density of collected data points per kinetic effect results in the smallest distortions, only the employment of the fast Raman mapping functions could advance the performance of IRM above that of calorimetric measurements.
Collapse
Affiliation(s)
- Roman Svoboda
- Department of Physical Chemistry, Faculty of Chemical Technology, University of Pardubice, nam. Cs. legii 565, 532 10 Pardubice, Czech Republic
| | - Nicola Koutná
- Department of Physical Chemistry, Faculty of Chemical Technology, University of Pardubice, nam. Cs. legii 565, 532 10 Pardubice, Czech Republic
| | - Magdalena Hynková
- Department of Physical Chemistry, Faculty of Chemical Technology, University of Pardubice, nam. Cs. legii 565, 532 10 Pardubice, Czech Republic
| | - Marek Pakosta
- Faculty of Electrical Engineering and Informatics, University of Pardubice, nam. Cs. legii 565, 530 02 Pardubice, Czech Republic
| |
Collapse
|
3
|
Yu HL, Goh CF. Glycols: The ubiquitous solvent for dermal formulations. Eur J Pharm Biopharm 2024; 196:114182. [PMID: 38224756 DOI: 10.1016/j.ejpb.2024.114182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/15/2023] [Accepted: 01/10/2024] [Indexed: 01/17/2024]
Abstract
Glycols stand out as one of the most commonly employed safe and effective excipients for pharmaceutical and cosmeceutical products. Their widespread adoption can be attributed to their exceptional solvency characteristics and their ability to interact effectively with skin lipids and keratin for permeation enhancement. Notably, propylene glycol enjoys significant popularity in this regard. Ongoing research endeavours have been dedicated to scrutinising the impact of glycols on dermal drug delivery and shedding light on the intricate mechanisms by which glycols enhance skin permeation. This review aims to mitigate the discordance within the existing literature, assemble a holistic understanding of the impact of glycols on the percutaneous absorption of active compounds and furnish the reader with a profound comprehension of the foundational facets pertaining to their skin permeation enhancement mechanisms, while simultaneously delving deeper into the intricacies of these processes.
Collapse
Affiliation(s)
- Hai Long Yu
- Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Pulau Pinang 11800, Malaysia
| | - Choon Fu Goh
- Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Pulau Pinang 11800, Malaysia.
| |
Collapse
|
4
|
Iliopoulos F, Tang CF, Li Z, Rahma A, Lane ME. Confocal Raman Spectroscopy for Assessing Bioequivalence of Topical Formulations. Pharmaceutics 2023; 15:1075. [PMID: 37111561 PMCID: PMC10142145 DOI: 10.3390/pharmaceutics15041075] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/21/2023] [Accepted: 03/25/2023] [Indexed: 03/29/2023] Open
Abstract
The evaluation of bioequivalence (BE) for topical dermatological drug products is challenging, and there has been significant interest from regulatory authorities in developing new BE methodologies in recent years. Currently, BE is demonstrated by comparative clinical endpoint studies; these are costly and time-consuming and often lack sensitivity and reproducibility. Previously, we reported excellent correlations between in vivo Confocal Raman Spectroscopy in human subjects and in vitro skin permeation testing (IVPT) with the human epidermis for skin delivery of ibuprofen and a number of excipients. The aim of the present proof-of-concept study was to evaluate CRS as a method to assess BE of topical products. Two commercially available formulations, Nurofen Max Strength 10% Gel and Ibuleve Speed Relief Max Strength 10% Gel, were selected for evaluation. Delivery of ibuprofen (IBU) to the skin was determined in vitro and in vivo by IVPT and CRS, respectively. The formulations examined were found to deliver comparable amounts of IBU across the skin over 24 h in vitro (p > 0.05). Additionally, the formulations resulted in similar skin uptake values measured with CRS in vivo, either at 1 h or 2 h after application (p > 0.05). This is the first study to report the capability of CRS for the demonstration of BE of dermal products. Future studies will focus on the standardisation of the CRS methodology for a robust and reproducible pharmacokinetic (PK)-based evaluation of topical BE.
Collapse
Affiliation(s)
- Fotis Iliopoulos
- Department of Pharmaceutics, UCL School of Pharmacy, 29–39 Brunswick Square, London WC1N 1AX, UK
| | - Chun Fung Tang
- Department of Pharmaceutics, UCL School of Pharmacy, 29–39 Brunswick Square, London WC1N 1AX, UK
| | - Ziyue Li
- Department of Pharmaceutics, UCL School of Pharmacy, 29–39 Brunswick Square, London WC1N 1AX, UK
| | - Annisa Rahma
- Department of Pharmaceutics, UCL School of Pharmacy, 29–39 Brunswick Square, London WC1N 1AX, UK
- Pharmaceutics Department, School of Pharmacy, Institut Teknologi Bandung, Bandung 40132, Indonesia
| | - Majella E. Lane
- Department of Pharmaceutics, UCL School of Pharmacy, 29–39 Brunswick Square, London WC1N 1AX, UK
| |
Collapse
|
5
|
García-Arieta A, Gordon J, Gwaza L, Merino V, Mangas-Sanjuan V. Regulatory Requirements for the Development of Second-Entry Semisolid Topical Products in the European Union. Pharmaceutics 2023; 15:pharmaceutics15020601. [PMID: 36839924 PMCID: PMC9961670 DOI: 10.3390/pharmaceutics15020601] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
The development of second-entry topical products is hampered by several factors. The excipient composition should be similar to the reference product because excipients may also contribute to efficacy. Conventional pharmacokinetic bioequivalence studies were not considered acceptable because drug concentrations are measured downstream after the site of action. There was no agreed methodology to characterize the microstructure of semisolids, and waivers of therapeutic equivalence studies with clinical endpoints were not possible. Only the vasoconstrictor assay for corticosteroids was accepted as a surrogate. This paper describes the implementation of the European Union's stepwise approach for locally acting products to cutaneous products, discusses the equivalence requirements of the EMA Draft Guideline on the Quality and Equivalence of Topical Products, and compares them with the US Food and Drug Administration recommendations. Step 1 includes the possibility of waivers for simple formulations based on in vitro data only (Q1 + Q2 + Q3 + IVRT). Step 2 includes step 1 requirements plus a kinetic study (TS/IVPT/PKBE) to compare the local availability of complex formulations. Step 3 refers to clinical studies with pharmacodynamic/clinical endpoints. As excipients may affect the local tolerability and efficacy of the products, the similarity of excipient composition is required in all steps, except where clinical endpoints are compared.
Collapse
Affiliation(s)
- Alfredo García-Arieta
- Área de Farmacocinética y Medicamentos Genéricos, División de Farmacología y Evaluación Clínica, Departamento de Medicamentos de Uso Humano, Agencia Española de Medicamentos y Productos Sanitarios, 28022 Madrid, Spain
- Correspondence:
| | - John Gordon
- Division of Biopharmaceutics Evaluation, Bureau of Pharmaceutical Sciences, Pharmaceutical Drugs Directorate, Health Canada, Ottawa, ON K1A 0K9, Canada
| | - Luther Gwaza
- Norms and Standards for Pharmaceuticals, Health Products Policy and Standards, Access to Medicines and Health Products Division, World Health Organization, 1211 Geneva, Switzerland
| | - Virginia Merino
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, 46100 Valencia, Spain
- Interuniversity Research Institute for Molecular Recognition and Technological Development, Polytechnic University of Valencia—University of Valencia, 46022 Valencia, Spain
| | - Víctor Mangas-Sanjuan
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, 46100 Valencia, Spain
- Interuniversity Research Institute for Molecular Recognition and Technological Development, Polytechnic University of Valencia—University of Valencia, 46022 Valencia, Spain
| |
Collapse
|
6
|
Yeoh SC, Loh PL, Murugaiyah V, Goh CF. Development and Characterisation of a Topical Methyl Salicylate Patch: Effect of Solvents on Adhesion and Skin Permeation. Pharmaceutics 2022; 14:pharmaceutics14112491. [PMID: 36432686 PMCID: PMC9698037 DOI: 10.3390/pharmaceutics14112491] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
The advent of skin patch formulation design and technology has enabled the commercialisation of methyl salicylate (MS) as a topical patch. However, the most fundamental aspect of skin permeation is unknown at present. The study aims to investigate the effect of solvent choice on the skin permeation of MS in a neat solvent system and patch formulation with an emphasis on patch adhesion. MS in six selected solvents (propylene glycol (PG), Transcutol®, isopropyl myristate, Labrasol®, Plurol® oleique CC 497 and Maisine® CC) was characterised and in vitro permeation studies were also performed. An ATR-FTIR analysis on solvent-treated skin was conudcted. Patch formulation was prepared and characterised for adhesion, in vitro drug release and skin permeation studies. The highest MS permeation was found in neat PG over 24 h (~90 μg/cm2) due to its strong skin protein conformation effect. Transcutol® and isopropyl myristate showed better skin deposition and formulation retention, respectively. Nevertheless, PG enhanced the patch adhesion despite having a lower cumulative amount of MS permeated (~80 μg/cm2) as compared with Transcutol® and Maisine® (~110-150 μg/cm2). These two solvents, however, demonstrated better skin deposition and formulation retention but a lower patch adhesion. The unpredictable influence of the solvent on patch adhesion highlights the importance of the trade-off between patch adhesion and skin permeation during formulation design.
Collapse
Affiliation(s)
- Soo Chin Yeoh
- Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia
| | - Poh Lee Loh
- THP Medical Sdn Bhd, 1209, Jalan Perindustrian Bukit Minyak 18, Kawasan Perindustrian Bukit Minyak, Simpang Ampat 14100, Penang, Malaysia
| | - Vikneswaran Murugaiyah
- Discipline of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia
- Centre for Drug Research, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia
| | - Choon Fu Goh
- Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia
- Correspondence:
| |
Collapse
|
7
|
Iliopoulos F, Goh CF, Haque T, Rahma A, Lane ME. Dermal Delivery of Diclofenac Sodium-In Vitro and In Vivo Studies. Pharmaceutics 2022; 14:2106. [PMID: 36297542 PMCID: PMC9607602 DOI: 10.3390/pharmaceutics14102106] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022] Open
Abstract
Previously, we reported the use of confocal Raman spectroscopy (CRS) as a novel non-invasive approach to determine drug disposition in the skin in vivo. Results obtained by CRS were found to correlate with data from the well-established in vitro permeation test (IVPT) model using human epidermis. However, these studies used simple vehicles comprising single solvents and binary or ternary solvent mixtures; to date, the utility of CRS for monitoring dermal absorption following application of complex marketed formulations has not been examined. In the present work, skin delivery of diclofenac sodium (DFNa) from two topical dermatological drug products, namely Diclac® Lipogel 10 mg/g and Primofenac® Emulsion gel 1%, was determined by IVPT and in vivo by both CRS and tape stripping (TS) methodologies under similar experimental conditions. The in vivo data were evaluated against the in vitro findings, and a direct comparison between CRS and TS was performed. Results from all methodologies showed that Diclac promoted significantly greater DFNa delivery to the skin (p < 0.05). The cumulative amounts of DFNa which permeated at 24 h in vitro for Diclac (86.5 ± 9.4 µg/cm2) were 3.6-fold greater than the corresponding amounts found for Primofenac (24.4 ± 2.7 µg/cm2). Additionally, total skin uptake of DFNa in vivo, estimated by the area under the depth profiles curves (AUC), or the signal intensity of the drug detected in the upper stratum corneum (SC) (4 µm) ranged from 3.5 to 3.6-fold greater for Diclac than for Primofenac. The shape of the distribution profiles and the depth of DFNa penetration to the SC estimated by CRS and TS were similar for the two methods. However, TS data indicated a 4.7-fold greater efficacy of Diclac relative to Primofenac, with corresponding total amounts of drug penetrated, 94.1 ± 22.6 µg and 20.2 ± 7.0 µg. The findings demonstrate that CRS is a methodology that is capable of distinguishing skin delivery of DFNa from different formulations. The results support the use of this approach for non-invasive evaluation of topical products in vivo. Future studies will examine additional formulations with more complex compositions and will use a wider range of drugs with different physicochemical properties. The non-invasive nature of CRS coupled with the ability to monitor drug permeation in real time offer significant advantages for testing and development of topical dermatological products.
Collapse
Affiliation(s)
- Fotis Iliopoulos
- Department of Pharmaceutics, UCL School of Pharmacy, 29–39 Brunswick Square, London WC1N 1AX, UK
| | - Choon Fu Goh
- Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia
| | - Tasnuva Haque
- Department of Pharmaceutics, UCL School of Pharmacy, 29–39 Brunswick Square, London WC1N 1AX, UK
| | - Annisa Rahma
- Department of Pharmaceutics, UCL School of Pharmacy, 29–39 Brunswick Square, London WC1N 1AX, UK
- Pharmaceutics Department, School of Pharmacy, Institut Teknologi Bandung, Bandung 40132, Indonesia
| | - Majella E. Lane
- Department of Pharmaceutics, UCL School of Pharmacy, 29–39 Brunswick Square, London WC1N 1AX, UK
| |
Collapse
|
8
|
Sim YS, Chong ZY, Azizi J, Goh CF. Development and validation of a gradient HPLC-UV method for mitragynine following in vitro skin permeation studies. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1204:123316. [PMID: 35700649 DOI: 10.1016/j.jchromb.2022.123316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/24/2022] [Accepted: 05/28/2022] [Indexed: 11/22/2022]
Abstract
Mitragynine is a promising candidate for pain relief and opiate replacement but the investigations for drug delivery are lacking. This study aims to investigate the potential of mitragynine to be delivered through the skin with an emphasis on developing and validating a gradient HPLC-UV analytical method to determine mitragynine in the samples collected during in vitro skin permeation studies. The optimised method involves a gradient elution using a C18 column with a mobile phase comprising acetonitrile and 0.1 %v/v of formic acid (0-1 min: 30:70 to 70:30 (v/v) and hold up to 4 min; 4-6 min: return to 30:70 (v/v) and hold up to 10 min) at a flow rate of 1.2 mL/min. This method was validated based on the standards set by the International Council on Harmonisation guidelines. The method showed mitragynine elution at ∼ 4 min with adequate linearity (R2 ≥ 0.999 for concentration ranges of 0.5-10 and 10-175 μg/mL) and acceptable limits of detection and quantification at 0.47 and 1.43 μg/mL, respectively. The analytical performance is robust with excellent precision and accuracy. This method was used to evaluate the in vitro skin permeation of mitragynine (5 %w/v) from simple solvent systems over 48 hr. The results showed a cumulative amount of mitragynine permeated at ∼ 11 μg/cm2 for dimethyl sulfoxide and ∼ 4 μg/cm2 for propylene glycol. The study not only addressed the issues of the currently available HPLC-UV methods that limit the direct application but also affirmed the potential of mitragynine to be delivered through the skin.
Collapse
Affiliation(s)
- Yee Shan Sim
- Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Zan Yang Chong
- Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Juzaili Azizi
- Centre for Drug Research, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Choon Fu Goh
- Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia.
| |
Collapse
|
9
|
da Costa Bernardo Port B, Schneider-Rauber G, Fretes Argenta D, Arhangelskis M, de Campos CEM, João Bortoluzzi A, Caon T. Effect of Vehicle Composition on the Preparation of Different Types of Dapsone Crystals for Topical Drug Delivery. Mol Pharm 2022; 19:2164-2174. [PMID: 35708215 DOI: 10.1021/acs.molpharmaceut.2c00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Topical formulations composed of API-pure crystals have been increasingly studied, especially in regards to the impact of particle size in penetration efficiency. Less attention, however, has been devoted to the solid-state properties of drugs delivered to the skin. In this study, we address the effect of formulation composition on the crystal form existing in topical products. Dapsone (DAP) gel formulations were prepared by mixing an organic solution containing DAP with an aqueous solution containing polymers and preservatives. The organic solvent was chosen as ethoxydiglycol (DEGEE), polyethylene glycol (PEG), or 1-methyl-2-pirrolidone (MPR) to assess the impact of composition on DAP crystal form. Such solvent variations resulted in different particulate matter. In terms of crystalline nature, the presence of DEGEE in formulations induced the crystallization of DAP hydrate, while PEG cocrystal and a mixture of hydrate and MPR solvate crystallized from the same amounts of PEG and MPR, respectively. Microscopic analysis of the gels showed heterogeneous particles with different characteristics. The behavior of gels after application to the skin was also tested. Interestingly, the different formulations seemed to accumulate in different regions of the skin. This could be the result of the effect of vehicle composition/excipients on the characteristics of the skin, such as hydration. The site-specific accumulation, however, was more pronounced in crystal-loaded gels as opposed to blank formulations. These results indicate that future studies should consider the effect of formulation composition on the API crystal form landscape as part of the strategies used to successfully target drug delivery to the skin.
Collapse
Affiliation(s)
| | | | | | - Mihails Arhangelskis
- Faculty of Chemistry, University of Warsaw, 1 Pasteura Street, Warsaw 02-093, Poland
| | | | | | | |
Collapse
|
10
|
Liu Y, Krombholz R, Lunter DJ. Critical parameters for accurate monitoring of caffeine penetration in porcine skin using confocal Raman spectroscopy. Int J Pharm 2021; 607:121055. [PMID: 34461169 DOI: 10.1016/j.ijpharm.2021.121055] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/18/2021] [Accepted: 08/25/2021] [Indexed: 01/01/2023]
Abstract
In this research, we addressed a challenge while measuring the penetration performance of caffeine (CAF) using confocal Raman spectroscopy (CRS). Normally in the process of CRS analysis, skin sample was moved from an incubation setup to a specified CRS-measuring sample holder. Accurate data collection may be questioned due to the variation of the environment the skin placed in. Therefore, two critical parameters including the CRS measuring temperature and proper skin hydration were focused; accordingly, four different conditions were designed. First, the skin was incubated in a real-time device with the skin placing onto PBS-filled chamber where the temperature was adjusted to 32℃. This device can be fixed under the CRS microscope, enabling simultaneous skin incubation and dynamic CRS measurements (condition i, reference). The other conditions referred to skins incubated in Franz diffusion cells for simulating the common experimental procedures. In order to control variables of CRS measuring condition, skins were transferred from cells to real-time device and open device. In real-time device, proper skin hydration was maintained and the skin temperature was adjusted to 32℃ (condition ii) and room temperature (condition iii). In open device, the skin was in a less hydrated state by moving onto a PBS-soaked filter paper and wrapped with aluminum foil at room temperature (condition iv). The skin penetration performances measured in these conditions were compared with reference. Caffeine solution and gel formulation were separately applied to the skin. The results showed in both cases that the decrease of skin temperature and hydration in condition iii and iv would apparently induce the decrease of detected caffeine signal, resulting in the inaccurate data collection. To this point, it indicates the reduction of solubilized caffeine in skin layer. We suggest the forming of caffeine crystallization at varied skin conditions to be the factor. Achieved video image, CRS spectrum collection and surface scan demonstrated the caffeine crystallization process on superficial skin layer. Polarized microscopic images exemplified the crystalline drug on tape stripped skin layers. It can be a potential support of caffeine crystallization inside skin. In short, we suggest the consideration of these parameters during CRS measurements for accurate monitoring of topical drug delivery. Meanwhile, the use of real-time device for dynamic skin incubation and data collection provides advantages in saving time and efforts in this study.
Collapse
Affiliation(s)
- Yali Liu
- Department of Pharmaceutical Technology, Faculty of Science, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| | - Richard Krombholz
- Department of Pharmaceutical Technology, Faculty of Science, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| | - Dominique Jasmin Lunter
- Department of Pharmaceutical Technology, Faculty of Science, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany.
| |
Collapse
|
11
|
Kim EJ, Choi DH. Quality by design approach to the development of transdermal patch systems and regulatory perspective. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2021. [DOI: 10.1007/s40005-021-00536-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
In Vitro-In Vivo Correlation in Dermal Delivery: The Role of Excipients. Pharmaceutics 2021; 13:pharmaceutics13040542. [PMID: 33924434 PMCID: PMC8069833 DOI: 10.3390/pharmaceutics13040542] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/30/2021] [Accepted: 04/10/2021] [Indexed: 11/30/2022] Open
Abstract
The composition of topical and transdermal formulations is known to determine the rate and the extent of drug delivery to and through the skin. However, to date, the role of excipients in these formulations on skin delivery of actives has received little attention from scientists in the field. Monitoring skin absorption of both drug and vehicle may provide insights into the mechanism by which excipients promote permeation and may facilitate the design of effective and safer products. Previously, we have investigated the use of quantitative Confocal Raman Spectroscopy (CRS) to investigate the delivery of an active to the skin, and we also reported the first fully quantitative study that compared this method with the well-established in vitro permeation test (IVPT) model. To further explore the potential of quantitative CRS in assessing topical delivery, the present work investigated the effects of commonly used excipients on the percutaneous absorption of a model drug, ibuprofen (IBU). Permeation of IBU and selected solvents following finite dose applications to human skin was determined in vitro and in vivo by Franz diffusion studies and quantitative CRS, respectively. The solvents used were propylene glycol (PG), dipropylene glycol (DPG), tripropylene glycol (TPG), and polyethylene glycol 300 (PEG 300). Overall, the cumulative amounts of IBU that permeated at 24 h in vitro were similar for PG, DPG, and TPG (p > 0.05). These three vehicles outperformed PEG 300 (p < 0.05) in terms of drug delivery. Concerning the vehicles, the rank order for in vitro skin permeation was DPG ≥ PG > TPG, while PEG 300 did not permeate the skin. A linear relationship between maximum vehicle and IBU flux in vitro was found, with a correlation coefficient (R2) of 0.95. When comparing in vitro with in vivo data, a positive in vitro–in vivo (IVIV) correlation between the cumulative permeation of IBU in vitro and the total amount of IBU that penetrated the stratum corneum (SC) in vivo was observed, with a Pearson correlation coefficient (R2) of 0.90. A strong IVIV correlation, R2 = 0.82, was found following the linear regression of the cumulative number of solvents permeated in vitro and the corresponding skin uptake in vivo measured with CRS. This is the first study to correlate in vivo permeation of solvents measured by CRS with data obtained by in vitro diffusion studies. The IVIV correlations suggest that CRS is a powerful tool for profiling drug and vehicle delivery from dermal formulations. Future studies will examine additional excipients with varying physicochemical properties. Ultimately, these findings are expected to lead to new approaches for the design, evaluation, and optimization of formulations that target actives to and through the skin.
Collapse
|
13
|
Goh CF, O'Flynn D, Speller R, Lane ME. Spatial resolution of drug crystallisation in the skin by X-ray micro-computed tomography. Micron 2021; 145:103045. [PMID: 33689970 DOI: 10.1016/j.micron.2021.103045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/03/2021] [Accepted: 02/27/2021] [Indexed: 11/15/2022]
Abstract
Drug crystallisation in the skin is recognised as a significant problem in topical and transdermal drug delivery. Our recent investigations provided new evidence of drug crystallisation in the skin, however, confirming the precise location of crystals remains challenging. Of note, most approaches used have required disruption of the membrane by tape stripping, with crystal detection limited to the superficial skin layers. Hence, a non-destructive method for complete spatial resolution of crystallised drug in skin is still lacking. In this communication, we report the application of X-ray micro-computed tomography (microCT) to examine drug crystallisation in mammalian skin ex vivo. Permeation studies of a saturated solution of diclofenac sodium were conducted in porcine skin; subsequently, tissue samples were scanned using microCT to generate 2D and 3D maps. A layer of drug crystals was observed on the skin surface; microCT maps also confirmed the distribution of drug crystals up to a skin depth of 0.2 - 0.3 mm. MicroCT also allowed the identification of drug crystallisation as a distinct and confirmed event in the skin and as an extension from drug crystals formed on the skin. These preliminary results confirm the potential of microCT to study this important phenomenon in topical and transdermal drug delivery.
Collapse
Affiliation(s)
- Choon Fu Goh
- Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia; Department of Pharmaceutics, UCL School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX, United Kingdom.
| | - Daniel O'Flynn
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Robert Speller
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Majella E Lane
- Department of Pharmaceutics, UCL School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX, United Kingdom
| |
Collapse
|