1
|
Parkin HC, Shopperly LK, Perez MR, Willerth SM, Manners I. Uniform block copolymer nanofibers for the delivery of paclitaxel in 2D and 3D glioblastoma tumor models. Biomater Sci 2024; 12:5283-5294. [PMID: 39246052 DOI: 10.1039/d4bm00480a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Cancer treatment has transformed in recent years, with the introduction of immunotherapy providing substantial improvements in prognoses for certain cancers. However, traditional small molecule chemotherapeutics remain the major frontline of defence, and improving their delivery to solid tumors is of utmost importance for improving potency and reducing side effects. Here, length-controlled one-dimensional seed nanofibers (ca. 25 nm, ĐL = 1.05) were generated from poly(fluorenetrimethylenecarbonate)-block-poly(dimethylaminoethylmethacrylate) via living crystallization-driven self-assembly. Paclitaxel, with an encapsulation content ranging from 1 to 100 wt%, was loaded onto the preformed nanoparticles by solvent addition and evaporation. Drug loading was quantified by dynamic light scattering and transmission electron microscopy. Drug-loaded vectors were then incubated with U87 MG glioblastoma cells in a 2D cell assay for up to 72 h, and their anticancer properties were determined. It was observed that seed nanofibers loaded with 20 wt% paclitaxel were the most advantageous combination (IC50 = 0.48 μg mL-1), while pure seed nanofibers with no loaded drug displayed much lower cytotoxicity (IC50 = 11.52 μg mL-1). The IC50 of the loaded seed nanofibers rivaled that of the commercially approved Abraxane® (IC50 = 0.46 μg mL-1). 3D tumor spheroids were then cultured and subjected to the same stresses. Live/dead cell staining revealed that once more, seed nanofibers with 20 wt% paclitaxel, Abraxane®, and paclitaxel all exhibited similar levels of potency (55% viability), whereas control samples exhibited much higher cell viability (70%) after 3 days. These results demonstrate that nanofibers contain great potential as biocompatible drug delivery vehicles for cancer treatment as they exert a similar anticancer effect to the commercially available Abraxane®.
Collapse
Affiliation(s)
- Hayley C Parkin
- Department of Chemistry, University of Victoria, Victoria, BC V8 W 3 V6, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, 3800 Finnerty Rd, Victoria, BC, V8P 5C2, Canada.
| | - Lennard K Shopperly
- Department of Mechanical Engineering and Division of Medical Sciences, University of Victoria, Victoria, BC V8 W 3 V6, Canada
| | - Milena R Perez
- Department of Mechanical Engineering and Division of Medical Sciences, University of Victoria, Victoria, BC V8 W 3 V6, Canada
| | - Stephanie M Willerth
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, 3800 Finnerty Rd, Victoria, BC, V8P 5C2, Canada.
- Department of Mechanical Engineering and Division of Medical Sciences, University of Victoria, Victoria, BC V8 W 3 V6, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 2B9, Canada
| | - Ian Manners
- Department of Chemistry, University of Victoria, Victoria, BC V8 W 3 V6, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, 3800 Finnerty Rd, Victoria, BC, V8P 5C2, Canada.
| |
Collapse
|
2
|
Liu Y, Wu Y, Deng H, Li W, Cui L, Rong J, Zhao J. A polylysine/hyaluronan-based core-shell nanoparticle triggers drug delivery by ATP/hyaluronidase dual stimuli for inducing apoptosis of breast cancer cells. Int J Biol Macromol 2024; 277:134188. [PMID: 39084428 DOI: 10.1016/j.ijbiomac.2024.134188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/16/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024]
Abstract
The limitations of self-assembled polymeric nanoparticles for cancer therapy, including instability in the bloodstream, non-specific targeting of cancer cells, and unregulated intracellular drug delivery, were effectively addressed by the development of core-shell SNX@PLL-FPBA/mHA NPs. The core was SNX@PLL-FPBA NPs prepared from polylysine conjugated 3-fluoro-4-carboxyphenylboronic acid (PLL-FPBA) self-assembly and SNX encapsulation, while the shell was methacrylate-modified hyaluronic acid (mHA) adhering to the core by electrostatic interactions and subsequently stabilized by photo-crosslinking, without the use of any organic solvent. SNX@PLL-FPBA/mHA NPs exhibited good stability in varying ionic strengths (0-0.30 M NaCl), pH levels (6.8 and 7.4), and plasma environments mimicking the blood, ensuring their efficacy in systemic circulation. The drug delivery from the nanoparticles was highly sensitive to ATP/Hyals stimuli (82 % within 48 h), closely mimicking the intracellular environment of breast cancer cells. The nanoparticles demonstrated good hemocompatibility and non-toxicity towards human skin fibroblasts. Efficient internalization of SNX@PLL-FPBA/mHA NPs by MCF-7 and MDA-MB-231 breast cancer cells was observed by CLSM and flow cytometry. The intracellular ATP/Hyals stimuli triggered the rapid drug delivery and induced cellular apoptosis. Thus, SNX@PLL-FPBA/mHA NPs were a promising drug nanocarrier for breast cancer therapy, offering improved stability, targeted delivery, and controlled drug release to enhance treatment outcomes.
Collapse
Affiliation(s)
- Yuying Liu
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511436, China
| | - Yan Wu
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511436, China; Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Haotian Deng
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511436, China
| | - Wanying Li
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511436, China
| | - Lishu Cui
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511436, China
| | - Jianhua Rong
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511436, China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 511436, China
| | - Jianhao Zhao
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511436, China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 511436, China.
| |
Collapse
|
3
|
He S, Zheng L, Li J, Liu S. Epilepsy Treatment and Diagnosis Enhanced by Current Nanomaterial Innovations: A Comprehensive Review. Mol Neurobiol 2024:10.1007/s12035-024-04328-9. [PMID: 38951470 DOI: 10.1007/s12035-024-04328-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 06/20/2024] [Indexed: 07/03/2024]
Abstract
Epilepsy is a complex disease in the brain. Complete control of seizure has always been a challenge in epilepsy treatment. Currently, clinical management primarily involves pharmacological and surgical interventions, with the former being the preferred approach. However, antiepileptic drugs often exhibit low bioavailability due to inherent limitations such as poor water solubility and difficulty penetrating the blood-brain barrier (BBB). These issues significantly reduce the drugs' effectiveness and limit their clinical application in epilepsy treatment. Additionally, the diagnostic accuracy of current imaging techniques and electroencephalography (EEG) for epilepsy is suboptimal, often failing to precisely localize epileptogenic tissues. Accurate diagnosis is critical for the surgical management of epilepsy. Thus, there is a pressing need to enhance both the therapeutic outcomes of epilepsy medications and the diagnostic precision of the condition. In recent years, the advancement of nanotechnology in the biomedical sector has led to the development of nanomaterials as drug carriers. These materials are designed to improve drug bioavailability and targeting by leveraging their large specific surface area, facile surface modification, ability to cross the BBB, and high biocompatibility. Furthermore, nanomaterials have been utilized as contrast agents in imaging and as materials for EEG electrodes, enhancing the accuracy of epilepsy diagnoses. This review provides a comprehensive examination of current research on nanomaterials in the treatment and diagnosis of epilepsy, offering new strategies and directions for future investigation.
Collapse
Affiliation(s)
- Shipei He
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research & Guangxi Key Laboratory of Brain Science, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Liyao Zheng
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research & Guangxi Key Laboratory of Brain Science, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Jinling Li
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China.
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research & Guangxi Key Laboratory of Brain Science, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China.
| | - Sijia Liu
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China.
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research & Guangxi Key Laboratory of Brain Science, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
4
|
Du J, Shi LL, Jiang WW, Liu XA, Wu XH, Huang XX, Huo MW, Shi LZ, Dong J, Jiang X, Huang R, Cao QR, Zhang W. Crafting Docetaxel-Loaded Albumin Nanoparticles Through a Novel Thermal-Driven Self-Assembly/Microfluidic Combination Technology: Formulation, Process Optimization, Stability, and Bioavailability. Int J Nanomedicine 2024; 19:5071-5094. [PMID: 38846644 PMCID: PMC11155381 DOI: 10.2147/ijn.s457482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/16/2024] [Indexed: 06/09/2024] Open
Abstract
Background The commercial docetaxel (DTX) formulation causes severe side effects due to polysorbate 80 and ethanol. Novel surfactant-free nanoparticle (NP) systems are needed to improve bioavailability and reduce side effects. However, controlling the particle size and stability of NPs and improving the batch-to-batch variation are the major challenges. Methods DTX-loaded bovine serum albumin nanoparticles (DTX-BSA-NPs) were prepared by a novel thermal-driven self-assembly/microfluidic technology. Single-factor analysis and orthogonal test were conducted to obtain the optimal formulation of DTX-BSA-NPs in terms of particle size, encapsulation efficiency (EE), and drug loading (DL). The effects of oil/water flow rate and pump pressure on the particle size, EE, and DL were investigated to optimize the preparation process of DTX-BSA-NPs. The drug release, physicochemical properties, stability, and pharmacokinetics of NPs were evaluated. Results The optimized DTX-BSA-NPs were uniform, with a particle size of 118.30 nm, EE of 89.04%, and DL of 8.27%. They showed a sustained release of 70% over 96 hours and an increased stability. There were some interactions between the drug and excipients in DTX-BSA-NPs. The half-life, mean residence time, and area under the curve (AUC) of DTX-BSA-NPs increased, but plasma clearance decreased when compared with DTX. Conclusion The thermal-driven self-assembly/microfluidic combination method effectively produces BSA-based NPs that improve the bioavailability and stability of DTX, offering a promising alternative to traditional formulations.
Collapse
Affiliation(s)
- Juan Du
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, People’s Republic of China
| | - Li-Li Shi
- College of Medicine, Jiaxing University, Jiaxing, People’s Republic of China
| | - Wei-Wei Jiang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, People’s Republic of China
| | - Xue-Ai Liu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, People’s Republic of China
| | - Xin-Hong Wu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, People’s Republic of China
| | - Xiang-Xiang Huang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, People’s Republic of China
| | - Ming-Wei Huo
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, People’s Republic of China
| | - Ling-Zhi Shi
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, People’s Republic of China
| | - Jingjian Dong
- College of Medicine, Jiaxing University, Jiaxing, People’s Republic of China
| | - Xiaohong Jiang
- College of Medicine, Jiaxing University, Jiaxing, People’s Republic of China
| | - Renyu Huang
- College of Social Science, Soochow University, Institute of Culture and Tourism Development, Soochow University, Suzhou, 215123, People’s Republic of China
| | - Qing-Ri Cao
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, People’s Republic of China
| | - Wenzhou Zhang
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, People’s Republic of China
| |
Collapse
|
5
|
Beach M, Nayanathara U, Gao Y, Zhang C, Xiong Y, Wang Y, Such GK. Polymeric Nanoparticles for Drug Delivery. Chem Rev 2024; 124:5505-5616. [PMID: 38626459 PMCID: PMC11086401 DOI: 10.1021/acs.chemrev.3c00705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
The recent emergence of nanomedicine has revolutionized the therapeutic landscape and necessitated the creation of more sophisticated drug delivery systems. Polymeric nanoparticles sit at the forefront of numerous promising drug delivery designs, due to their unmatched control over physiochemical properties such as size, shape, architecture, charge, and surface functionality. Furthermore, polymeric nanoparticles have the ability to navigate various biological barriers to precisely target specific sites within the body, encapsulate a diverse range of therapeutic cargo and efficiently release this cargo in response to internal and external stimuli. However, despite these remarkable advantages, the presence of polymeric nanoparticles in wider clinical application is minimal. This review will provide a comprehensive understanding of polymeric nanoparticles as drug delivery vehicles. The biological barriers affecting drug delivery will be outlined first, followed by a comprehensive description of the various nanoparticle designs and preparation methods, beginning with the polymers on which they are based. The review will meticulously explore the current performance of polymeric nanoparticles against a myriad of diseases including cancer, viral and bacterial infections, before finally evaluating the advantages and crucial challenges that will determine their wider clinical potential in the decades to come.
Collapse
Affiliation(s)
- Maximilian
A. Beach
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Umeka Nayanathara
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yanting Gao
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Changhe Zhang
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yijun Xiong
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yufu Wang
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Georgina K. Such
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
6
|
Zolotova MO, Znoyko SL, Orlov AV, Nikitin PI, Sinolits AV. Efficient Chlorostannate Modification of Magnetite Nanoparticles for Their Biofunctionalization. MATERIALS (BASEL, SWITZERLAND) 2024; 17:349. [PMID: 38255517 PMCID: PMC10820483 DOI: 10.3390/ma17020349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/22/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024]
Abstract
Magnetite nanoparticles (MNPs) are highly favored materials for a wide range of applications, from smart composite materials and biosensors to targeted drug delivery. These multifunctional applications typically require the biofunctional coating of MNPs that involves various conjugation techniques to form stable MNP-biomolecule complexes. In this study, a cost-effective method is developed for the chlorostannate modification of MNP surfaces that provides efficient one-step conjugation with biomolecules. The proposed method was validated using MNPs obtained via an optimized co-precipitation technique that included the use of degassed water, argon atmosphere, and the pre-filtering of FeCl2 and FeCl3 solutions followed by MNP surface modification using stannous chloride. The resulting chlorostannated nanoparticles were comprehensively characterized, and their efficiency was compared with both carboxylate-modified and unmodified MNPs. The biorecognition performance of MNPs was verified via magnetic immunochromatography. Mouse monoclonal antibodies to folic acid served as model biomolecules conjugated with the MNP to produce nanobioconjugates, while folic acid-gelatin conjugates were immobilized on the test lines of immunochromatography lateral flow test strips. The specific trapping of the obtained nanobioconjugates via antibody-antigen interactions was registered via the highly sensitive magnetic particle quantification technique. The developed chlorostannate modification of MNPs is a versatile, rapid, and convenient tool for creating multifunctional nanobioconjugates with applications that span in vitro diagnostics, magnetic separation, and potential in vivo uses.
Collapse
Affiliation(s)
- Maria O. Zolotova
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov Street, 119991 Moscow, Russia (A.V.O.)
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 31 Kashirskoe Shosse, 115409 Moscow, Russia
| | - Sergey L. Znoyko
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov Street, 119991 Moscow, Russia (A.V.O.)
| | - Alexey V. Orlov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov Street, 119991 Moscow, Russia (A.V.O.)
| | - Petr I. Nikitin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov Street, 119991 Moscow, Russia (A.V.O.)
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 31 Kashirskoe Shosse, 115409 Moscow, Russia
| | - Artem V. Sinolits
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov Street, 119991 Moscow, Russia (A.V.O.)
- Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, Kosygin Str. 19, 119991 Moscow, Russia
| |
Collapse
|
7
|
Chen Z, Wang X, Chen X, Huang J, Wang C, Wang J, Wang Z. Accelerating therapeutic protein design with computational approaches toward the clinical stage. Comput Struct Biotechnol J 2023; 21:2909-2926. [PMID: 38213894 PMCID: PMC10781723 DOI: 10.1016/j.csbj.2023.04.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/11/2023] [Accepted: 04/27/2023] [Indexed: 01/13/2024] Open
Abstract
Therapeutic protein, represented by antibodies, is of increasing interest in human medicine. However, clinical translation of therapeutic protein is still largely hindered by different aspects of developability, including affinity and selectivity, stability and aggregation prevention, solubility and viscosity reduction, and deimmunization. Conventional optimization of the developability with widely used methods, like display technologies and library screening approaches, is a time and cost-intensive endeavor, and the efficiency in finding suitable solutions is still not enough to meet clinical needs. In recent years, the accelerated advancement of computational methodologies has ushered in a transformative era in the field of therapeutic protein design. Owing to their remarkable capabilities in feature extraction and modeling, the integration of cutting-edge computational strategies with conventional techniques presents a promising avenue to accelerate the progression of therapeutic protein design and optimization toward clinical implementation. Here, we compared the differences between therapeutic protein and small molecules in developability and provided an overview of the computational approaches applicable to the design or optimization of therapeutic protein in several developability issues.
Collapse
Affiliation(s)
- Zhidong Chen
- Department of Pathology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Xinpei Wang
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Xu Chen
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Juyang Huang
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Chenglin Wang
- Shenzhen Qiyu Biotechnology Co., Ltd, Shenzhen 518107, China
| | - Junqing Wang
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Zhe Wang
- Department of Pathology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| |
Collapse
|
8
|
Sortase A Inhibitor Protein Nanoparticle Formulations Demonstrate Antibacterial Synergy When Combined with Antimicrobial Peptides. Molecules 2023; 28:molecules28052114. [PMID: 36903360 PMCID: PMC10004702 DOI: 10.3390/molecules28052114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/09/2023] [Accepted: 02/21/2023] [Indexed: 02/26/2023] Open
Abstract
Sortase A (SrtA) is an enzyme which attaches proteins, including virulence factors, to bacterial cell walls. It is a potential target for developing anti-virulence agents against pathogenic and antimicrobial resistant bacteria. This study aimed to engineer 𝛽-lactoglobulin protein nanoparticles (PNPs) for encapsulating safe and inexpensive natural SrtA inhibitors (SrtAIs; trans-chalcone (TC), curcumin (CUR), quercetin (QC), and berberine (BR)) to improve their poor aqueous dispersibility, to screen for synergy with antimicrobial peptides (AMPs), and to reduce the cost, dose, and toxicity of AMPs. Minimum inhibitory concentration (MIC), checkerboard synergy, and cell viability assays were performed for SrtAI PNPs against Gram-positive (methicillin-sensitive and -resistant S. aureus) and Gram-negative (E. coli, P. aeruginosa) bacteria alone and combined with leading AMPs (pexiganan, indolicidin, and a mastoparan derivative). Each SrtAI PNP inhibited Gram-positive (MIC: 62.5-125 µg/mL) and Gram-negative (MIC: 31.3-500 µg/mL) bacterial growth. TC PNPs with pexiganan demonstrated synergy against each bacteria, while BR PNPs with pexiganan or indolicidin provided synergy towards S. aureus. Each SrtAI PNP inhibited SrtA (IC50: 25.0-81.8 µg/mL), and did not affect HEK-293 cell viability at their MIC or optimal synergistic concentrations with AMPs. Overall, this study provides a safe nanoplatform for enhancing antimicrobial synergy to develop treatments for superbug infections.
Collapse
|
9
|
Huang H, Lin Y, Jiang Y, Yao Q, Chen R, Zhao YZ, Kou L. Recombinant protein drugs-based intra articular drug delivery systems for osteoarthritis therapy. Eur J Pharm Biopharm 2023; 183:33-46. [PMID: 36563886 DOI: 10.1016/j.ejpb.2022.12.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/05/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
Osteoarthritis (OA) is the most prevalent chronic degenerative joint disease. It weakens the motor function of patients and imposes a significant economic burden on society. The current medications commonly used in clinical practice do not meet the need for the treatment of OA. Recombinant protein drugs (RPDs) can treat OA by inhibiting inflammatory pathways, regulating catabolism/anabolism, and promoting cartilage repair, thereby showing promise as disease-modifying OA drugs (DMOADs). However, the rapid clearance and short half-life of them in the articular cavity limit their clinical translation. Therefore, the reliable drug delivery systems for extending drug treatment are necessary for the further development. This review introduces RPDs with therapeutic potential for OA, and summarizes their research progress on related drug delivery systems, and make proper discussion on the certain keys for optimal development of this area.
Collapse
Affiliation(s)
- Huirong Huang
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yujie Lin
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou 325027, China
| | - Yiling Jiang
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou 325027, China
| | - Qing Yao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Ruijie Chen
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325027, China
| | - Ying-Zheng Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Longfa Kou
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou 325027, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325027, China; Wenzhou Key Laboratory of Basic Science and Translational Research of Radiation Oncology, Wenzhou 325027, China.
| |
Collapse
|
10
|
Pérez-Isidoro R, Guevara-Pantoja FJ, Ventura-Hunter C, Guerrero-Sánchez C, Ruiz-Suárez JC, Schubert US, Saldívar-Guerra E. Fluidized or not fluidized? Biophysical characterization of biohybrid lipid/protein/polymer liposomes and their interaction with tetracaine. Biochim Biophys Acta Gen Subj 2023; 1867:130287. [PMID: 36460234 DOI: 10.1016/j.bbagen.2022.130287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 11/19/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022]
Abstract
BACKGROUND Nanomedicine and the pharmaceutical industry demand the investigation of new biomaterials to improve drug therapies. Combinations of lipids, proteins, and polymers represent innovative platforms for drug delivery. However, little is known about the interactions between such compounds and this knowledge is key to prepare successful drug delivery systems. METHODS Biophysical properties of biohybrid vesicles (BhVs) composed of phospholipids, proteins, and amphiphilic block copolymers, assembled without using organic solvents, were investigated by differential scanning calorimetry and dynamic light scattering. We studied four biohybrid systems; two of them included the effect of incorporating tetracaine. Thermal changes of phospholipids and proteins when interacting with the amphiphilic block copolymers and tetracaine were analyzed. RESULTS Lysozyme and the copolymers adsorb onto the lipid bilayer modifying the phase transition temperature, enthalpy change, and cooperativity. Dynamic light scattering investigations revealed relevant changes in the size and zeta potential of the BhVs. Interestingly, tetracaine, a membrane-active drug, can fluidize or rigidize BhVs. CONCLUSIONS We conclude that positively charged regions of lysozyme are necessary to incorporate the block copolymer chains into the lipid membrane, turning the bilayer into a more rigid system. Electrostatic properties and the hydrophilic-lipophilic balance are determinant for the stability of biohybrid membranes. GENERAL SIGNIFICANCE This investigation provides fundamental information associated with the performance of biohybrid drug delivery systems and can be of practical significance for designing more efficient drug nanocarriers.
Collapse
Affiliation(s)
- R Pérez-Isidoro
- Centro de Investigación en Química Aplicada (CIQA), Enrique Reyna, 140, 25294 Saltillo, Coahuila, Mexico
| | | | - C Ventura-Hunter
- Centro de Investigación en Química Aplicada (CIQA), Enrique Reyna, 140, 25294 Saltillo, Coahuila, Mexico; Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 97743 Jena, Germany
| | - C Guerrero-Sánchez
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 97743 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - J C Ruiz-Suárez
- CINVESTAV-Monterrey, PIIT, Apodaca, Nuevo León 66600, Mexico
| | - U S Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 97743 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - E Saldívar-Guerra
- Centro de Investigación en Química Aplicada (CIQA), Enrique Reyna, 140, 25294 Saltillo, Coahuila, Mexico.
| |
Collapse
|
11
|
Friend or foe for obesity: how hepatokines remodel adipose tissues and translational perspective. Genes Dis 2022. [DOI: 10.1016/j.gendis.2021.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
12
|
Influence of the Dispersion Medium and Cryoprotectants on the Physico-Chemical Features of Gliadin- and Zein-Based Nanoparticles. Pharmaceutics 2022; 14:pharmaceutics14020332. [PMID: 35214063 PMCID: PMC8878396 DOI: 10.3390/pharmaceutics14020332] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 02/06/2023] Open
Abstract
The evaluation of the physico-chemical features of nanocarriers is fundamental because the modulation of these parameters can influence their biological and in vivo fate. This work investigated the feasibility of saline, 5% w/v glucose and phosphate-buffered saline solution, as polar media for the development of nanoparticles made up of two vegetal proteins, zein from corn and gliadin from wheat, respectively. The physico-chemical features of the various systems were evaluated using dynamic and multiple light scattering techniques, and the results demonstrate that the 5% w/v glucose solution is a feasible medium to be used for their development. Moreover, the best formulations were characterized by the aforementioned techniques following the freeze-drying procedure. The aggregation of the zein nanoparticles prepared in water or glucose solution was prevented by using various cryoprotectants. Mannose confirmed its crucial role in the cryopreservation of the gliadin nanosystems prepared in both water and glucose solution. Sucrose and glucose emerged as additional useful excipients when they were added to gliadin nanoparticles prepared in a 5% glucose solution. Specifically, their protective effect was in the following order: mannose > sucrose > glucose. The results obtained when using specific aqueous media and cryoprotectants permitted us to develop stable zein or gliadin nanoparticles as suspension or freeze-dried formulations.
Collapse
|
13
|
Yuan Y, Wang L, Porcheddu A, Colacino E, Solin N. Mechanochemical Preparation of Protein : hydantoin Hybrids and Their Release Properties. CHEMSUSCHEM 2022; 15:e202102097. [PMID: 34817915 PMCID: PMC9299789 DOI: 10.1002/cssc.202102097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/20/2021] [Indexed: 05/04/2023]
Abstract
Mechanochemistry is a versatile methodology that can be employed both for covalent bond formation in organic synthesis as well as a mediator to allow preparation novel colloidal dispersions for drug delivery. Herein, ball-milling was employed for the solid-state preparation of fluorescent hydrophobic hydantoins, followed by the unprecedented mechanochemically-mediated complexation of hydrophobic hydantoins within hydrophilic protein β-lactoglobulin (BLG) and BLG nanofibrils (BLGNFs). These hydantoin:protein materials were in turn incorporated into hydrogels. The effect of incorporation of hydantoins into proteins, as well as the effect of protein structure, on the release properties were then investigated. The conversion of BLG to BLGNFs led to a more sustained release demonstrating that heat treatment of BLG into BLGNFs could be employed to modify release properties. To the best of our knowledge, this is the first example where protein : hydantoin complexes were prepared by mechanochemical methodology and mechanochemistry was combined with self-assembly in order to prepare protein nanomaterials for drug-delivery applications. In addition, the use of the developed protein materials is not limited to delivery of drugs but can for example be employed as components of smart food (delivery of nutrients) or release systems of pesticides.
Collapse
Affiliation(s)
- Yusheng Yuan
- Department of Physics, Chemistry, and BiologyBiomolecular and Organic ElectronicsLinköping University581 83LinköpingSweden
| | - Lei Wang
- Department of Physics, Chemistry, and BiologyBiomolecular and Organic ElectronicsLinköping University581 83LinköpingSweden
| | - Andrea Porcheddu
- Department of Chemical and Geological SciencesUniversity of CagliariCittadella UniversitariaSS 554 bivio per Sestu09042MonserratoItaly
| | | | - Niclas Solin
- Department of Physics, Chemistry, and BiologyBiomolecular and Organic ElectronicsLinköping University581 83LinköpingSweden
| |
Collapse
|
14
|
Li Y, Sun J, Li J, Liu K, Zhang H. Engineered protein nanodrug as an emerging therapeutic tool. NANO RESEARCH 2022; 15:5161-5172. [PMID: 35281219 PMCID: PMC8900963 DOI: 10.1007/s12274-022-4103-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/20/2021] [Accepted: 12/25/2021] [Indexed: 05/05/2023]
Abstract
Functional proteins are the most versatile macromolecules. They can be obtained by extraction from natural sources or by genetic engineering technologies. The outstanding selectivity, specificity, binding activity, and biocompatibility endow engineered proteins with outstanding performance for disease therapy. Nevertheless, their stability is dramatically impaired in blood circulation, hindering clinical translations. Thus, many strategies have been developed to improve the stability, efficacy, bioavailability, and productivity of therapeutic proteins for clinical applications. In this review, we summarize the recent progress in the fabrication and application of therapeutic proteins. We first introduce various strategies for improving therapeutic efficacy via bioengineering and nanoassembly. Furthermore, we highlight their diverse applications as growth factors, nanovaccines, antibody-based drugs, bioimaging molecules, and cytokine receptor antagonists. Finally, a summary and perspective for the future development of therapeutic proteins are presented.
Collapse
Affiliation(s)
- Yuanxin Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
- University of Science and Technology of China, Hefei, 230026 China
| | - Jing Sun
- Institute of Organic Chemistry, University of Ulm, Albert-Einstein-Allee 11, Ulm, 89081 Germany
| | - Jingjing Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
| | - Kai Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
- University of Science and Technology of China, Hefei, 230026 China
- Department of Chemistry, Tsinghua University, Beijing, 100084 China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
- University of Science and Technology of China, Hefei, 230026 China
- Department of Chemistry, Tsinghua University, Beijing, 100084 China
| |
Collapse
|
15
|
Shi D, Beasock D, Fessler A, Szebeni J, Ljubimova JY, Afonin KA, Dobrovolskaia MA. To PEGylate or not to PEGylate: Immunological properties of nanomedicine's most popular component, polyethylene glycol and its alternatives. Adv Drug Deliv Rev 2022; 180:114079. [PMID: 34902516 PMCID: PMC8899923 DOI: 10.1016/j.addr.2021.114079] [Citation(s) in RCA: 177] [Impact Index Per Article: 88.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 01/03/2023]
Abstract
Polyethylene glycol or PEG has a long history of use in medicine. Many conventional formulations utilize PEG as either an active ingredient or an excipient. PEG found its use in biotechnology therapeutics as a tool to slow down drug clearance and shield protein therapeutics from undesirable immunogenicity. Nanotechnology field applies PEG to create stealth drug carriers with prolonged circulation time and decreased recognition and clearance by the mononuclear phagocyte system (MPS). Most nanomedicines approved for clinical use and experimental nanotherapeutics contain PEG. Among the most recent successful examples are two mRNA-based COVID-19 vaccines that are delivered by PEGylated lipid nanoparticles. The breadth of PEG use in a wide variety of over the counter (OTC) medications as well as in drug products and vaccines stimulated research which uncovered that PEG is not as immunologically inert as it was initially expected. Herein, we review the current understanding of PEG's immunological properties and discuss them in the context of synthesis, biodistribution, safety, efficacy, and characterization of PEGylated nanomedicines. We also review the current knowledge about immunological compatibility of other polymers that are being actively investigated as PEG alternatives.
Collapse
Key Words
- Poly(ethylene)glycol, PEG, immunogenicity, immunology, nanomedicine, toxicity, anti-PEG antibodies, hypersensitivity, synthesis, drug delivery, biotherapeutics
Collapse
Affiliation(s)
- Da Shi
- Nanotechnology Characterization Lab, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD, USA
| | - Damian Beasock
- University of North Carolina Charlotte, Charlotte, NC, USA
| | - Adam Fessler
- University of North Carolina Charlotte, Charlotte, NC, USA
| | - Janos Szebeni
- Nanomedicine Research and Education Center, Institute of Translational Medicine, Semmelweis University, Budapest, Hungary; SeroScience LCC, Budapest, Hungary; Department of Nanobiotechnology and Regenerative Medicine, Faculty of Health, Miskolc University, Miskolc, Hungary
| | | | | | - Marina A Dobrovolskaia
- Nanotechnology Characterization Lab, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD, USA.
| |
Collapse
|
16
|
Hafez DA, Hassanin IA, Teleb M, Khattab SN, Elkhodairy KA, Elzoghby AO. Recent advances in nanomedicine-based delivery of histone deacetylase inhibitors for cancer therapy. Nanomedicine (Lond) 2021; 16:2305-2325. [PMID: 34551585 DOI: 10.2217/nnm-2021-0196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Histone deacetylase inhibitors (HDACi) are cancer therapeutics that operate at the epigenetic level and which have recently gained wide attention. However, the applications of HDACi are generally hindered by their poor physicochemical characteristics and unfavorable pharmacokinetic profile. Inspired by the approved nanomedicine-based drugs in the market, nanocarriers could provide a resort to circumvent the limitations imposed by HDACi. Enhanced tumor targeting, improved cellular uptake and reduced toxicity are major advantages offered by HDACi-loaded nanoparticles. More importantly, site-specific drug delivery can be achieved via engineered stimuli-responsive nanosystems. In this review we elucidate the anticancer mechanisms of HDACi and their structure-activity relationships, with a special focus on their nanomedicine-based delivery, different drug loading concepts and their implications.
Collapse
Affiliation(s)
- Dina A Hafez
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt.,Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Islam A Hassanin
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt.,Department of Biotechnology, Institute of Graduate Studies & Research, Alexandria University, Alexandria, 21526, Egypt
| | - Mohamed Teleb
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Sherine N Khattab
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt.,Department of Chemistry, Faculty of Science, Alexandria University, Alexandria, 21321, Egypt
| | - Kadria A Elkhodairy
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt.,Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Ahmed O Elzoghby
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt.,Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| |
Collapse
|
17
|
Sustained Release Systems for Delivery of Therapeutic Peptide/Protein. Biomacromolecules 2021; 22:2299-2324. [PMID: 33957752 DOI: 10.1021/acs.biomac.1c00160] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Peptide/protein therapeutics have been significantly applied in the clinical treatment of various diseases such as cancer, diabetes, etc. owing to their high biocompatibility, specificity, and therapeutic efficacy. However, due to their immunogenicity, instability stemming from its complex tertiary and quaternary structure, vulnerability to enzyme degradation, and rapid renal clearance, the clinical application of protein/peptide therapeutics is significantly confined. Though nanotechnology has been demonstrated to prevent enzyme degradation of the protein therapeutics and thus enhance the half-life, issues such as initial burst release and uncontrollable release kinetics are still unsolved. Moreover, the traditional administration method results in poor patient compliance, limiting the clinical application of protein/peptide therapeutics. Exploiting the sustained-release formulations for more controllable delivery of protein/peptide therapeutics to decrease the frequency of injection and enhance patient compliance is thus greatly meaningful. In this review, we comprehensively summarize the substantial advancements of protein/peptide sustained-release systems in the past decades. In addition, the advantages and disadvantages of all these sustained-release systems in clinical application together with their future challenges are also discussed in this review.
Collapse
|
18
|
Ghadami SA, Ahmadi Z, Moosavi-Nejad Z. The albumin-based nanoparticle formation in relation to protein aggregation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 252:119489. [PMID: 33524819 DOI: 10.1016/j.saa.2021.119489] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
Albumin is an attractive protein for the preparation of nanoparticle with possible therapeutic applications, due to its biodegradable, nontoxic, non-immunogenic, and metabolizable properties. Many studies have investigated the formation of albumin nanoparticles, generally by the desolvation or coacervation approaches. One of the most important parameters that should be considered in the formation of nanoparticles is their morphology (size and shape). There are many proposals to control the nanoparticle size, but it remains a challenge for researchers yet. In this study, we showed that control of BSA-based nanoparticles/microparticles size could be achieved by varying the temperature and pH and therefore controlling the rate of aggregation. The aggregation behavior was monitored by UV-Vis spectroscopy, SEM, and dye-binding assay. Our results provide more options for the size and shape control of BSA-based nanoparticle in natural buffer systems. The aggregation of BSA at different temperatures within the range of 50-80 °C were studied under the effect of different pHs in the range of 4.7-6.2. In this research, we found that protein aggregation under extreme conditions of pH and temperature, or at the pH near to pI appears to be amorphous, and at the pH above the pI seems to be the amyloid fibril structure. In some instances where the aggregation is neither too fast nor too slow, in the initial phase of the aggregation process, nanoparticle structures can be identified and separated by mechanistic approaches. This observation suggests that the best condition for monitoring the formation of albumin-based nanoparticles could be pH 5.7, 70 °C. Satisfactory rationalization of all aspects of our experimental observation requires further and more detailed study.
Collapse
Affiliation(s)
| | - Zahra Ahmadi
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Zahra Moosavi-Nejad
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran.
| |
Collapse
|
19
|
Rafipour R, Mousavi A, Mansouri K. Apoferritin nanocages for targeted delivery of idarubicin against breast cancer cells. Biotechnol Appl Biochem 2021; 69:1061-1067. [PMID: 33929766 DOI: 10.1002/bab.2177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/20/2021] [Indexed: 11/10/2022]
Abstract
In recent years, nanotechnology has attracted attention for its capability to diagnose and remedy diverse tumors successfully. Protein nanocarriers as a platform of targeted drug delivery can be used to reduce toxicity and improve the effect of anticancer drugs. Idarubicin (IDR) is a chemotherapy drug that is classified as an anthracycline antitumor. In this study, IDR was encapsulated within horse spleen apoferritin (HsAFr) nanocarriers. Encapsulation was obtained through disassembling apoferritin into subunits at pH 2 and subsequently reassembling it at pH 7.4 in the presence of IDR. Transmission electron microscopy, UV-vis, and fluorescence spectroscopy techniques showed that drug molecules are loaded within apoferritin. Intrinsic fluorescence information exhibited that the encapsulation does not have any effects on the tertiary structure of the protein. Drug loading and entrapment efficiency were found to be 7.15% and 84.75%, respectively. Comparison of anticancer activities in HsAFr-IDR and free drug IDR was made via the MTT viability technique in a human breast cancer cell line (MCF-7).
Collapse
Affiliation(s)
- Ronak Rafipour
- Department of Chemistry, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
| | - Asma Mousavi
- Department of Chemistry, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
| | - Kamran Mansouri
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
20
|
Khramtsov P, Kalashnikova T, Bochkova M, Kropaneva M, Timganova V, Zamorina S, Rayev M. Measuring the concentration of protein nanoparticles synthesized by desolvation method: Comparison of Bradford assay, BCA assay, hydrolysis/UV spectroscopy and gravimetric analysis. Int J Pharm 2021; 599:120422. [PMID: 33647407 DOI: 10.1016/j.ijpharm.2021.120422] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/04/2021] [Accepted: 02/21/2021] [Indexed: 12/12/2022]
Abstract
The desolvation technique is one of the most popular methods for preparing protein nanoparticles for medicine, biotechnology, and food applications. We fabricated 11 batches of BSA nanoparticles and 2 batches of gelatin nanoparticles by desolvation method. BSA nanoparticles from 2 batches were cross-linked by heating at +70 °C for 2 h; other nanoparticles were stabilized by glutaraldehyde. We compared several analytical approaches to measuring their concentration: gravimetric analysis, bicinchoninic acid assay, Bradford assay, and alkaline hydrolysis combined with UV spectroscopy. We revealed that the cross-linking degree and method of cross-linking affect both Bradford and BCA assay. Direct measurement of protein concentration in the suspension of purified nanoparticles by dye-binding assays can lead to significant (up to 50-60%) underestimation of nanoparticle concentration. Quantification of non-desolvated protein (indirect method) is affected by the presence of small nanoparticles in supernatants and can be inaccurate when the yield of desolvation is low. The reaction of cross-linker with protein changes UV absorbance of the latter. Therefore pure protein solution is an inappropriate calibrator when applying UV spectroscopy for the determination of nanoparticle concentration. Our recommendation is to determine the concentration of protein nanoparticles by at least two different methods, including gravimetric analysis.
Collapse
Affiliation(s)
- Pavel Khramtsov
- Department of Biology, Perm State University, 614068, 15 Bukirev str., Perm, Russia; Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, 614081, 13 Golev str., Perm, Russia.
| | - Tatyana Kalashnikova
- Department of Biology, Perm State University, 614068, 15 Bukirev str., Perm, Russia; Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, 614081, 13 Golev str., Perm, Russia
| | - Maria Bochkova
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, 614081, 13 Golev str., Perm, Russia
| | - Maria Kropaneva
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, 614081, 13 Golev str., Perm, Russia
| | - Valeria Timganova
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, 614081, 13 Golev str., Perm, Russia
| | - Svetlana Zamorina
- Department of Biology, Perm State University, 614068, 15 Bukirev str., Perm, Russia; Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, 614081, 13 Golev str., Perm, Russia
| | - Mikhail Rayev
- Department of Biology, Perm State University, 614068, 15 Bukirev str., Perm, Russia; Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, 614081, 13 Golev str., Perm, Russia
| |
Collapse
|
21
|
Self-Assembled Nanocarriers Based on Modified Chitosan for Biomedical Applications: Preparation and Characterization. Polymers (Basel) 2020; 12:polym12112593. [PMID: 33158235 PMCID: PMC7694257 DOI: 10.3390/polym12112593] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/19/2020] [Accepted: 11/02/2020] [Indexed: 12/15/2022] Open
Abstract
Protein-polysaccharide systems are of increasing interest as their combined attributes allow for fulfilling a broad range of applications in biomedical and pharmaceutical fields. In this study, the preparation of nanogels based on maleic anhydride chitosan derivatives (MAC) and bovine serum albumin (BSA) was achieved through a self-assembly process performed in aqueous phase. A series of experiments performed by varying the concentrations of MAC and BSA were conducted to find an appropriate mixing ratio for the polymer solutions leading to thermodynamically stable nanogels with the ability to encapsulate active compounds. The influence of temperature on the formation of nanogels was also studied. The consequent conformational changes were monitored using ultraviolet-visible (UV-VIS) spectrophotometry. The spectrophotometric investigations combined with diffraction light scattering (DLS) technique and zeta potential measurement results were correlated to determine the interaction mechanism and assess the self-assembling processes during nanogel formation. It was found that the hydrodynamic diameter (Dh) of the nanoparticles increased slightly at acidic pH, and the protonation of ionizable amino groups with the pH was confirmed by the zeta potential measurements. MAC/BSA nanogels also exhibited antimicrobial properties after being loaded with amoxicillin (Amox), which is an antibiotic used for the treatment of various infections. The experimental data resulting from this study provide theoretical guidance for the design and development of attractive nanocarriers for a large variety of biomedical applications.
Collapse
|
22
|
Hassanin I, Elzoghby A. Albumin-based nanoparticles: a promising strategy to overcome cancer drug resistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2020; 3:930-946. [PMID: 35582218 PMCID: PMC8992568 DOI: 10.20517/cdr.2020.68] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/28/2020] [Accepted: 10/09/2020] [Indexed: 12/13/2022]
Abstract
Circumvention of cancer drug resistance is one of the major investigations in nanomedicine. In this regard, nanotechnology-based drug delivery has offered various implications. However, protein-based nanocarriers have been a versatile choice compared to other nanomaterials, provided by their favorable characteristics and safety profiles. Specifically, albumin-based nanoparticles have been demonstrated to be an effective drug delivery system, owing to the inherent targeting modalities of albumin, through gp60- and SPARC-mediated receptor endocytosis. Furthermore, surface functionalization was exploited for active targeting, due to albumin’s abundance of carboxylic and amino groups. Stimuli-responsive drug release has also been pertained to albumin nano-systems. Therefore, albumin-based nanocarriers could potentially overcome cancer drug resistance through bypassing drug efflux, enhancing drug uptake, and improving tumor accumulation. Moreover, albumin nanocarriers improve the stability of various therapeutic cargos, for instance, nucleic acids, which allows their systemic administration. This review highlights the recent applications of albumin nanoparticles to overcome cancer drug resistance, the nano-fabrication techniques, as well as future perspectives and challenges.
Collapse
Affiliation(s)
- Islam Hassanin
- Department of Biotechnology, Institute of Graduate studies and Research, Alexandria University, Alexandria 21526, Egypt.,Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Ahmed Elzoghby
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt.,Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| |
Collapse
|