1
|
Castanha RF, Pereira ADES, Villarreal GPU, Vallim JH, Pertrini FS, Jonsson CM, Fraceto LF, Castro VLSSD. Ecotoxicity studies of two atrazine nanoformulations: From the evaluation of stability in media to the effects on aquatic organisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122235. [PMID: 37543073 DOI: 10.1016/j.envpol.2023.122235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 08/07/2023]
Abstract
In the field of agriculture, nanopesticides have been developed as an alternative to the conventional pesticides, being more efficient for pest control. However, before their widespread application it is essential to evaluate their safe application and no environmental impacts. In this paper, we evaluated the toxicological effects of two kinds of atrazine nanoformulations (ATZ NPs) in different biological models (Raphidocelis subcapitata, Danio rerio, Lemna minor, Artemia salina, Lactuca sativa and Daphnia magna) and compared the results with nanoparticle stability over time and the presence of natural organic matter (NOM). The systems showed different characteristics for Zein (ATZ NPZ) (184 ± 2 nm with a PDI of 0.28 ± 0.04 and zeta potential of (30.4 ± 0.05 mV) and poly(epsilon-caprolactone (ATZ PCL) (192 ± 3 nm, polydispersity (PDI) of 0.28 ± 0.28 and zeta potential of -18.8 ± 1.2 mV) nanoparticles. The results showed that there is a correlation between nanoparticles stability and the presence of NOM in the medium and Environmental Concentrations (EC) values. The stability loss or an increase in nanoparticle size result in low toxicity for R. subcapitata and L. minor. For D. magna and D. rerio, the presence of NOM in the medium reduces the ecotoxic effects for ATZ NPZ nanoparticles, but not for ATZ NPs, showing that the nanoparticles characteristics and their interaction with NOM can modulate toxic effects. Nanoparticle stability throughout the evaluation must be considered and become an integral part of toxicity protocol guidelines for nanopesticides, to ensure test quality and authentic results regarding nanopesticide effects in target and non-target organisms.
Collapse
Affiliation(s)
| | - Anderson do Espírito Santo Pereira
- Department of Environmental Engineering, Institute of Science and Technology of Sorocaba (ICTS), São Paulo State University (Unesp), Avenida Três de Março, 511, 18087-180, Sorocaba, São Paulo State, Brazil
| | - Gabriela Patricia Unigarro Villarreal
- Department of Environmental Engineering, Institute of Science and Technology of Sorocaba (ICTS), São Paulo State University (Unesp), Avenida Três de Março, 511, 18087-180, Sorocaba, São Paulo State, Brazil
| | - José Henrique Vallim
- Embrapa Environment, Rod SP 340, km 127.5, 13918-110, Jaguariúna, São Paulo State, Brazil
| | - Fernanda Sana Pertrini
- Department of Environmental Engineering, Institute of Science and Technology of Sorocaba (ICTS), São Paulo State University (Unesp), Avenida Três de Março, 511, 18087-180, Sorocaba, São Paulo State, Brazil
| | - Claudio Martín Jonsson
- Embrapa Environment, Rod SP 340, km 127.5, 13918-110, Jaguariúna, São Paulo State, Brazil
| | - Leonardo Fernandes Fraceto
- Department of Environmental Engineering, Institute of Science and Technology of Sorocaba (ICTS), São Paulo State University (Unesp), Avenida Três de Março, 511, 18087-180, Sorocaba, São Paulo State, Brazil
| | | |
Collapse
|
2
|
Schwirn K, Voelker D, Galert W, Quik J, Tietjen L. Environmental Risk Assessment of Nanomaterials in the Light of New Obligations Under the REACH Regulation: Which Challenges Remain and How to Approach Them? INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2020; 16:706-717. [PMID: 32175661 PMCID: PMC7497025 DOI: 10.1002/ieam.4267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/10/2020] [Accepted: 03/09/2020] [Indexed: 05/16/2023]
Abstract
Within the European regulation on the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH, EC No 1907/2006) specific provisions for nanomaterials were included, which have become effective on 1 January 2020. Although knowledge on the peculiarities of testing and assessing fate and effects of nanomaterials in the environment strongly increased in the last years, uncertainties about how to perform a reliable and robust environmental risk assessment for nanomaterials still remain. These uncertainties are of special relevance in a regulatory context, challenging both industry and regulators. The present paper presents current challenges in regulatory hazard and exposure assessment under REACH, as well as classification of nanomaterials, and makes proposals to address them. Still, the nanospecific considerations made here are expected to also be valid for environmental risk assessment approaches in other regulations of chemical safety. Inter alia, these proposals include a way forward to account for exposure concentrations in aquatic toxicity test systems, a discussion of how to account for availability of dissolving nanomaterials in aquatic test systems, and a pragmatic proposal to deduce effect data for soil organisms. Furthermore, it specifies how to potentially deal with nanoforms under the European regulation on Classification, Labelling and Packaging of substances and mixtures (CLP) and outlines the needs for proper exposure assessments of nanomaterials from a regulatory perspective. Integr Environ Assess Manag 2020;16:706-717. © 2020 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
| | - Doris Voelker
- German Environment Agency (UBA), Dessau RoßlauGermany
| | - Wiebke Galert
- German Environment Agency (UBA), Dessau RoßlauGermany
| | - Joris Quik
- National Institute for Public Health and the Environment (RIVM), Bilthoventhe Netherlands
| | - Lars Tietjen
- German Environment Agency (UBA), Dessau RoßlauGermany
| |
Collapse
|
3
|
Sendra M, Carrasco-Braganza MI, Yeste PM, Vila M, Blasco J. Immunotoxicity of polystyrene nanoplastics in different hemocyte subpopulations of Mytilus galloprovincialis. Sci Rep 2020; 10:8637. [PMID: 32451490 PMCID: PMC7248110 DOI: 10.1038/s41598-020-65596-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 05/07/2020] [Indexed: 12/02/2022] Open
Abstract
Plastic represents 60-80% of litter in the ocean. Degradation of plastic to small fragments leads to the formation of microplastics (MPs <5 mm) and nanoplastics (NPs <1 µm). One of the most widely used and representative plastics found in the ocean is polystyrene (PS). Among marine organisms, the immune system of bivalves is recognized as suitable to assess nanomaterial toxicity. Hemocyte subpopulations [R1 (large granular cells), R2 (small semi-granular cells) and R3 (small agranular or hyaline cells)] of Mytilus galloprovincialis are specialized in particular tasks and functions. The authors propose to examine the effects of different sizes (50 nm, 100 nm and 1 μm) PS NPs on the different immune cells of mussels when they were exposed to (1 and 10 mg·L−1) of PS NPs. The most noteworthy results found in this work are: (i) 1 µm PS NPs provoked higher immunological responses with respect to 50 and 100 nm PS NPs, possibly related to the higher stability in size and shape in hemolymph serum, (ii) the R1 subpopulation was the most affected with respect to R2 and R3 concerning immunological responses and (iii) an increase in the release of toxic radicals, apoptotic signals, tracking of lysosomes and a decrease in phagocytic activity was found in R1.
Collapse
Affiliation(s)
- Marta Sendra
- CSIC, Spanish National Reference Laboratory for Mollusc Diseases, Institute of Marine Research (IIM), National Research Council (CSIC), 36208, Vigo, Spain. .,Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), Campus Río San Pedro, 11510, Puerto Real, Cádiz, Spain.
| | - María Isabel Carrasco-Braganza
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), Campus Río San Pedro, 11510, Puerto Real, Cádiz, Spain
| | - Pilar María Yeste
- Department of Material Science, Metallurgical Engineering and Inorganic Chemistry, University of Cádiz, Cádiz, Spain
| | - Marta Vila
- Laboratory of Biochemistry and Molecular Biology, University of Huelva, Huelva, Spain
| | - Julián Blasco
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), Campus Río San Pedro, 11510, Puerto Real, Cádiz, Spain
| |
Collapse
|
4
|
Jian W, Ma Y, Wu H, Zhu X, Wang J, Xiong H, Lin L, Wu L. Fabrication of highly stable silver nanoparticles using polysaccharide-protein complexes from abalone viscera and antibacterial activity evaluation. Int J Biol Macromol 2019; 128:839-847. [DOI: 10.1016/j.ijbiomac.2019.01.197] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 01/29/2019] [Accepted: 01/29/2019] [Indexed: 02/04/2023]
|
5
|
Castro VL, Clemente Z, Jonsson C, Silva M, Vallim JH, de Medeiros AMZ, Martinez DST. Nanoecotoxicity assessment of graphene oxide and its relationship with humic acid. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:1998-2012. [PMID: 29608220 DOI: 10.1002/etc.4145] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/02/2017] [Accepted: 03/29/2018] [Indexed: 06/08/2023]
Abstract
The risk assessment of nanomaterials is essential for regulatory purposes and for sustainable nanotechnological development. Although the application of graphene oxide has been widely exploited, its environmental risk is not well understood because several environmental conditions can affect its behavior and toxicity. In the present study, the graphene oxide effect from aquatic ecosystems was assessed considering the interaction with humic acid on 9 organisms: Raphidocelis subcapitata (green algae), Lemna minor (aquatic plant), Lactuca sativa (lettuce), Daphnia magna (planktonic microcrustacean), Artemia salina (brine shrimp), Chironomus sancticaroli (Chironomidae), Hydra attenuata (freshwater polyp), and Caenorhabditis elegans and Panagrolaimus sp. (nematodes). The no-observed-effect concentration (NOEC) was calculated for each organism. The different criteria used to calculate NOEC values were transformed and plotted as a log-logistic function. The hypothetical 5 to 50% hazardous concentration values were, respectively, 0.023 (0.005-0.056) and 0.10 (0.031-0.31) mg L-1 for graphene oxide with and without humic acid, respectively. The safest scenario associated with the predicted no-effect concentration values for graphene oxide in the aquatic compartment were estimated as 20 to 100 μg L-1 (in the absence of humic acid) and 5 to 23 μg L-1 (in the presence of humic acid). Finally, the present approach contributed to the risk assessment of graphene oxide-based nanomaterials and the establishment of nano-regulations. Environ Toxicol Chem 2018;37:1998-2012. © 2018 SETAC.
Collapse
Affiliation(s)
- Vera L Castro
- Laboratory of Ecotoxicology and Biosafety, Embrapa Environment, Jaguariúna, São Paulo, Brazil
- Center for Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Piracicaba, São Paulo, Brazil
| | - Zaira Clemente
- Laboratory of Ecotoxicology and Biosafety, Embrapa Environment, Jaguariúna, São Paulo, Brazil
- Brazilian National Nanotechnology Laboratory (LNNano), Brazilian Center for Research on Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | - Claudio Jonsson
- Laboratory of Ecotoxicology and Biosafety, Embrapa Environment, Jaguariúna, São Paulo, Brazil
| | - Mariana Silva
- Laboratory of Aquatic Ecosystems, Embrapa Environment, Jaguariúna, São Paulo, Brazil
| | - José Henrique Vallim
- Laboratory of Ecotoxicology and Biosafety, Embrapa Environment, Jaguariúna, São Paulo, Brazil
| | - Aline Maria Zigiotto de Medeiros
- Center for Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Piracicaba, São Paulo, Brazil
- Brazilian National Nanotechnology Laboratory (LNNano), Brazilian Center for Research on Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | - Diego Stéfani T Martinez
- Center for Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Piracicaba, São Paulo, Brazil
- Brazilian National Nanotechnology Laboratory (LNNano), Brazilian Center for Research on Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| |
Collapse
|