1
|
Zhong Q, Pan X, Chen Y, Lian Q, Gao J, Xu Y, Wang J, Shi Z, Cheng H. Prosthetic Metals: Release, Metabolism and Toxicity. Int J Nanomedicine 2024; 19:5245-5267. [PMID: 38855732 PMCID: PMC11162637 DOI: 10.2147/ijn.s459255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/13/2024] [Indexed: 06/11/2024] Open
Abstract
The development of metallic joint prostheses has been ongoing for more than a century alongside advancements in hip and knee arthroplasty. Among the materials utilized, the Cobalt-Chromium-Molybdenum (Co-Cr-Mo) and Titanium-Aluminum-Vanadium (Ti-Al-V) alloys are predominant in joint prosthesis construction, predominantly due to their commendable biocompatibility, mechanical strength, and corrosion resistance. Nonetheless, over time, the physical wear, electrochemical corrosion, and inflammation induced by these alloys that occur post-implantation can cause the release of various metallic components. The released metals can then flow and metabolize in vivo, subsequently causing potential local or systemic harm. This review first details joint prosthesis development and acknowledges the release of prosthetic metals. Second, we outline the metallic concentration, biodistribution, and elimination pathways of the released prosthetic metals. Lastly, we discuss the possible organ, cellular, critical biomolecules, and significant signaling pathway toxicities and adverse effects that arise from exposure to these metals.
Collapse
Affiliation(s)
- Qiang Zhong
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Xin Pan
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Yuhang Chen
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Qiang Lian
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Jian Gao
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Yixin Xu
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Jian Wang
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Zhanjun Shi
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Hao Cheng
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, People’s Republic of China
| |
Collapse
|
2
|
Navratilova P, Emmer J, Tomas T, Ryba L, Burda J, Loja T, Veverkova J, Valkova L, Pavkova Goldbergova M. Plastic response of macrophages to metal ions and nanoparticles in time mimicking metal implant body environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:4111-4129. [PMID: 38097843 DOI: 10.1007/s11356-023-31430-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 12/05/2023] [Indexed: 01/19/2024]
Abstract
The paradigm of using metal biomaterials could be viewed from two sides - treatment of wide spectrum of degenerative diseases, and debris release from materials. After implant insertion, metal nanoparticles (NPs) and ions are released not only upon the first contact with cells/tissues, but in continual manner, which is immediately recognized by immune cells. In this work, the effects of metal nanoparticles (TiO2, Ni) and ions (Ni2+, Co2+, Cr3+, Mo6+) on primary human M0 macrophages from the blood samples of osteoarthritic patients undergoing total arthroplasty were studied in order to monitor immunomodulatory effects on the cells in a real-time format. The highest NiNPs concentration of 10 µg/ml had no effect on any of macrophage parameters, while the Ni2+ ions cytotoxicity limit for the cells is 0.5 mM. The cytotoxic effects of higher Ni2+ concentration revealed mitochondrial network fragmentation leading to mitochondrial dysfunction, accompanied by increased lysosomal activity and changes in pro-apoptotic markers. The suppression of M2 cell formation ability was connected to presence of Ni2+ ions (0.5 mM) and TiO2NPs (10 µg/ml). The immunomodulatory effect of Mo6+ ions, controversially, inhibit the formation of the cells with M1 phenotype and potentiate the thread-like shape M2s with increased chaotic cell movement. To summarize, metal toxicity depends on the debris form. Both, metal ions and nanoparticles affect macrophage size, morphological and functional parameters, but the effect of ions is more complex and likely more harmful, which has potential impact on healing and determines post-implantation reactions.
Collapse
Affiliation(s)
- Polina Navratilova
- Department of Pathophysiology, Masaryk University, Kamenice 5, Brno, Czech Republic
| | - Jan Emmer
- 1st Department of Orthopaedics, St. Anne's University Hospital, Pekarska 53, Brno, Czech Republic
| | - Tomas Tomas
- 1st Department of Orthopaedics, St. Anne's University Hospital, Pekarska 53, Brno, Czech Republic.
| | - Ludek Ryba
- Department of Orthopaedic Surgery, University Hospital, Jihlavska 20, Brno, Czech Republic
| | - Jan Burda
- Department of Orthopaedic Surgery, University Hospital, Jihlavska 20, Brno, Czech Republic
| | - Tomas Loja
- Centre for Molecular Medicine, Central European Institute of Technology/Masaryk University, Kamenice 5, Brno, Czech Republic
| | - Jana Veverkova
- Department of Pathophysiology, Masaryk University, Kamenice 5, Brno, Czech Republic
| | - Lucie Valkova
- Department of Pathophysiology, Masaryk University, Kamenice 5, Brno, Czech Republic
| | | |
Collapse
|
3
|
Collin-Faure V, Vitipon M, Torres A, Tanyeres O, Dalzon B, Rabilloud T. The internal dose makes the poison: higher internalization of polystyrene particles induce increased perturbation of macrophages. Front Immunol 2023; 14:1092743. [PMID: 37251378 PMCID: PMC10213243 DOI: 10.3389/fimmu.2023.1092743] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/28/2023] [Indexed: 05/31/2023] Open
Abstract
Plastics are emerging pollutants of great concern. Macroplastics released in the environment degrade into microplastics and nanoplastics. Because of their small size, these micro and nano plastic particles can enter the food chain and contaminate humans with still unknown biological effects. Plastics being particulate pollutants, they are handled in the human body by scavenger cells such as macrophages, which are important players in the innate immune system. Using polystyrene as a model of micro and nanoplastics, with size ranging from under 100 nm to 6 microns, we have showed that although non-toxic, polystyrene nano and microbeads alter the normal functioning of macrophages in a size and dose-dependent manner. Alterations in the oxidative stress, lysosomal and mitochondrial functions were detected, as well as changes in the expression of various surface markers involved in the immune response such as CD11a/b, CD18, CD86, PD-L1, or CD204. For each beads size tested, the alterations were more pronounced for the cell subpopulation that had internalized the highest number of beads. Across beads sizes, the alterations were more pronounced for beads in the supra-micron range than for beads in the sub-micron range. Overall, this means that internalization of high doses of polystyrene favors the emergence of subpopulations of macrophages with an altered phenotype, which may not only be less efficient in their functions but also alter the fine balance of the innate immune system.
Collapse
|
4
|
Lehotska Mikusova M, Busova M, Tulinska J, Masanova V, Liskova A, Uhnakova I, Dusinska M, Krivosikova Z, Rollerova E, Alacova R, Wsolova L, Horvathova M, Szabova M, Lukan N, Vecera Z, Coufalik P, Krumal K, Alexa L, Thon V, Piler P, Buchtova M, Vrlikova L, Moravec P, Galanda D, Mikuska P. Titanium Dioxide Nanoparticles Modulate Systemic Immune Response and Increase Levels of Reduced Glutathione in Mice after Seven-Week Inhalation. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13040767. [PMID: 36839135 PMCID: PMC9964099 DOI: 10.3390/nano13040767] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 05/30/2023]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) are used in a wide range of applications. Although inhalation of NPs is one of the most important toxicologically relevant routes, experimental studies on potential harmful effects of TiO2 NPs using a whole-body inhalation chamber model are rare. In this study, the profile of lymphocyte markers, functional immunoassays, and antioxidant defense markers were analyzed to evaluate the potential adverse effects of seven-week inhalation exposure to two different concentrations of TiO2 NPs (0.00167 and 0.1308 mg TiO2/m3) in mice. A dose-dependent effect of TiO2 NPs on innate immunity was evident in the form of stimulated phagocytic activity of monocytes in low-dose mice and suppressed secretory function of monocytes (IL-18) in high-dose animals. The effect of TiO2 NPs on adaptive immunity, manifested in the spleen by a decrease in the percentage of T-cells, a reduction in T-helper cells, and a dose-dependent decrease in lymphocyte cytokine production, may indicate immunosuppression in exposed mice. The dose-dependent increase in GSH concentration and GSH/GSSG ratio in whole blood demonstrated stimulated antioxidant defense against oxidative stress induced by TiO2 NP exposure.
Collapse
Affiliation(s)
| | - Milena Busova
- Institute of Hygiene and Epidemiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, 121 08 Prague, Czech Republic
| | - Jana Tulinska
- Faculty of Medicine, Slovak Medical University, 833 03 Bratislava, Slovakia
| | - Vlasta Masanova
- Faculty of Medicine, Slovak Medical University, 833 03 Bratislava, Slovakia
| | - Aurelia Liskova
- Faculty of Medicine, Slovak Medical University, 833 03 Bratislava, Slovakia
| | - Iveta Uhnakova
- Faculty of Medicine, Slovak Medical University, 833 03 Bratislava, Slovakia
| | - Maria Dusinska
- Health Effects Laboratory, Norwegian Institute for Air Research, 2007 Kjeller, Norway
| | - Zora Krivosikova
- Faculty of Medicine, Slovak Medical University, 833 03 Bratislava, Slovakia
| | - Eva Rollerova
- Faculty of Public Health, Slovak Medical University, 833 03 Bratislava, Slovakia
| | - Radka Alacova
- Faculty of Public Health, Slovak Medical University, 833 03 Bratislava, Slovakia
| | - Ladislava Wsolova
- Faculty of Public Health, Slovak Medical University, 833 03 Bratislava, Slovakia
| | - Mira Horvathova
- Faculty of Medicine, Slovak Medical University, 833 03 Bratislava, Slovakia
| | - Michaela Szabova
- Faculty of Medicine, Slovak Medical University, 833 03 Bratislava, Slovakia
| | - Norbert Lukan
- Faculty of Medicine, Slovak Medical University, 833 03 Bratislava, Slovakia
| | - Zbynek Vecera
- Department of Environmental Analytical Chemistry, Institute of Analytical Chemistry of the Czech Academy of Sciences, 602 00 Brno, Czech Republic
| | - Pavel Coufalik
- Department of Environmental Analytical Chemistry, Institute of Analytical Chemistry of the Czech Academy of Sciences, 602 00 Brno, Czech Republic
| | - Kamil Krumal
- Department of Environmental Analytical Chemistry, Institute of Analytical Chemistry of the Czech Academy of Sciences, 602 00 Brno, Czech Republic
| | - Lukas Alexa
- Department of Environmental Analytical Chemistry, Institute of Analytical Chemistry of the Czech Academy of Sciences, 602 00 Brno, Czech Republic
| | - Vojtech Thon
- RECETOX, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Pavel Piler
- RECETOX, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Marcela Buchtova
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 602 00 Brno, Czech Republic
| | - Lucie Vrlikova
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 602 00 Brno, Czech Republic
| | - Pavel Moravec
- Aerosol Chemistry and Physics Research Group, Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, 165 00 Prague, Czech Republic
| | - Dusan Galanda
- Public Health Authority of the Slovak Republic, Radiation Protection Department, 82645 Bratislava, Slovakia
| | - Pavel Mikuska
- Department of Environmental Analytical Chemistry, Institute of Analytical Chemistry of the Czech Academy of Sciences, 602 00 Brno, Czech Republic
| |
Collapse
|
5
|
Mobeen H, Safdar M, Fatima A, Afzal S, Zaman H, Mehdi Z. Emerging applications of nanotechnology in context to immunology: A comprehensive review. Front Bioeng Biotechnol 2022; 10:1024871. [PMID: 36619389 PMCID: PMC9815620 DOI: 10.3389/fbioe.2022.1024871] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/21/2022] [Indexed: 11/16/2022] Open
Abstract
Numerous benefits of nanotechnology are available in many scientific domains. In this sense, nanoparticles serve as the fundamental foundation of nanotechnology. Recent developments in nanotechnology have demonstrated that nanoparticles have enormous promise for use in almost every field of life sciences. Nanoscience and nanotechnology use the distinctive characteristics of tiny nanoparticles (NPs) for various purposes in electronics, fabrics, cosmetics, biopharmaceutical industries, and medicines. The exclusive physical, chemical, and biological characteristics of nanoparticles prompt different immune responses in the body. Nanoparticles are believed to have strong potential for the development of advanced adjuvants, cytokines, vaccines, drugs, immunotherapies, and theranostic applications for the treatment of targeted bacterial, fungal, viral, and allergic diseases and removal of the tumor with minimal toxicity as compared to macro and microstructures. This review highlights the medical and non-medical applications with a detailed discussion on enhanced and targeted natural and acquired immunity against pathogens provoked by nanoparticles. The immunological aspects of the nanotechnology field are beyond the scope of this Review. However, we provide updated data that will explore novel theragnostic immunological applications of nanotechnology for better and immediate treatment.
Collapse
Affiliation(s)
- Hifsa Mobeen
- Department of Allied Health Sciences, Superior University, Lahore, Pakistan
| | - Muhammad Safdar
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Asma Fatima
- Pakistan Institute of Quality Control, Superior University, Lahore, Pakistan
| | - Samia Afzal
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Hassan Zaman
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Zuhair Mehdi
- Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
6
|
Rolo D, Assunção R, Ventura C, Alvito P, Gonçalves L, Martins C, Bettencourt A, Jordan P, Vital N, Pereira J, Pinto F, Matos P, Silva MJ, Louro H. Adverse Outcome Pathways Associated with the Ingestion of Titanium Dioxide Nanoparticles-A Systematic Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12193275. [PMID: 36234403 PMCID: PMC9565478 DOI: 10.3390/nano12193275] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 05/15/2023]
Abstract
Titanium dioxide nanoparticles (TiO2-NPs) are widely used, and humans are exposed through food (E171), cosmetics (e.g., toothpaste), and pharmaceuticals. The oral and gastrointestinal (GIT) tract are the first contact sites, but it may be systemically distributed. However, a robust adverse outcome pathway (AOP) has not been developed upon GIT exposure to TiO2-NPs. The aim of this review was to provide an integrative analysis of the published data on cellular and molecular mechanisms triggered after the ingestion of TiO2-NPs, proposing plausible AOPs that may drive policy decisions. A systematic review according to Prisma Methodology was performed in three databases of peer-reviewed literature: Pubmed, Scopus, and Web of Science. A total of 787 records were identified, screened in title/abstract, being 185 used for data extraction. The main endpoints identified were oxidative stress, cytotoxicity/apoptosis/cell death, inflammation, cellular and systemic uptake, genotoxicity, and carcinogenicity. From the results, AOPs were proposed where colorectal cancer, liver injury, reproductive toxicity, cardiac and kidney damage, as well as hematological effects stand out as possible adverse outcomes. The recent transgenerational studies also point to concerns with regard to population effects. Overall, the findings further support a limitation of the use of TiO2-NPs in food, announced by the European Food Safety Authority (EFSA).
Collapse
Affiliation(s)
- Dora Rolo
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- ToxOmics—Centre for Toxicogenomics and Human Health, NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
- Correspondence:
| | - Ricardo Assunção
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- CESAM, Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
- IUEM, Instituto Universitário Egas Moniz, Egas Moniz-Cooperativa de Ensino Superior, CRL, 2829-511 Monte de Caparica, Portugal
| | - Célia Ventura
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- ToxOmics—Centre for Toxicogenomics and Human Health, NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| | - Paula Alvito
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- CESAM, Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Lídia Gonçalves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, 1649-003 Lisbon, Portugal
| | - Carla Martins
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- NOVA National School of Public Health, Public Health Research Centre, Universidade NOVA de Lisboa, 1600-560 Lisbon, Portugal
- Comprehensive Health Research Center (CHRC), 1169-056 Lisbon, Portugal
| | - Ana Bettencourt
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, 1649-003 Lisbon, Portugal
| | - Peter Jordan
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Nádia Vital
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- ToxOmics—Centre for Toxicogenomics and Human Health, NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
- NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| | - Joana Pereira
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Fátima Pinto
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- ToxOmics—Centre for Toxicogenomics and Human Health, NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| | - Paulo Matos
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Maria João Silva
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- ToxOmics—Centre for Toxicogenomics and Human Health, NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| | - Henriqueta Louro
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- ToxOmics—Centre for Toxicogenomics and Human Health, NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| |
Collapse
|
7
|
Colnot E, Cardoit L, Cabirol MJ, Roudier L, Delville MH, Fayoux A, Thoby-Brisson M, Juvin L, Morin D. Chronic maternal exposure to titanium dioxide nanoparticles alters breathing in newborn offspring. Part Fibre Toxicol 2022; 19:57. [PMID: 35982496 PMCID: PMC9386967 DOI: 10.1186/s12989-022-00497-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 08/08/2022] [Indexed: 12/01/2022] Open
Abstract
Background Over the last two decades, nanotechnologies and the use of nanoparticles represent one of the greatest technological advances in many fields of human activity. Particles of titanium dioxide (TiO2) are one of the nanomaterials most frequently found in everyday consumer products. But, due in particular to their extremely small size, TiO2 nanoparticles (NPs) are prone to cross biological barriers and potentially lead to adverse health effects. The presence of TiO2 NPs found in human placentae and in the infant meconium has indicated unequivocally the capacity for a materno-fetal transfer of this nanomaterial. Although chronic exposure to TiO2 NPs during pregnancy is known to induce offspring cognitive deficits associated with neurotoxicity, the impact of a gestational exposure on a vital motor function such as respiration, whose functional emergence occurs during fetal development, remains unknown. Results Using in vivo whole-body plethysmographic recordings from neonatal mice, we show that a chronic exposure to TiO2 NPs during pregnancy alters the respiratory activity of offspring, characterized by an abnormally elevated rate of breathing. Correspondingly, using ex vivo electrophysiological recordings performed on isolated brainstem-spinal cord preparations of newborn mice and medullary slice preparations containing specific nuclei controlling breathing frequency, we show that the spontaneously generated respiratory-related rhythm is significantly and abnormally accelerated in animals prenatally exposed to TiO2 NPs. Moreover, such a chronic prenatal exposure was found to impair the capacity of respiratory neural circuitry to effectively adjust breathing rates in response to excitatory environmental stimuli such as an increase in ambient temperature. Conclusions Our findings thus demonstrate that a maternal exposure to TiO2 NPs during pregnancy affects the normal development and operation of the respiratory centers in progeny. Supplementary Information The online version contains supplementary material available at 10.1186/s12989-022-00497-4.
Collapse
Affiliation(s)
- Eloïse Colnot
- Univ. Bordeaux, CNRS, INCIA, UMR 5287, F-33000, Bordeaux, France
| | - Laura Cardoit
- Univ. Bordeaux, CNRS, INCIA, UMR 5287, F-33000, Bordeaux, France
| | | | - Lydia Roudier
- Univ. Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, F-33608, Pessac, France
| | | | - Anne Fayoux
- Univ. Bordeaux, CNRS, INCIA, UMR 5287, F-33000, Bordeaux, France
| | | | - Laurent Juvin
- Univ. Bordeaux, CNRS, INCIA, UMR 5287, F-33000, Bordeaux, France
| | - Didier Morin
- Univ. Bordeaux, CNRS, INCIA, UMR 5287, F-33000, Bordeaux, France. .,Univ. Bordeaux, Department of Health, Safety and Environment, Bordeaux Institute of Technology, F-33175, Gradignan, France.
| |
Collapse
|
8
|
Schwarzfischer M, Rogler G. The Intestinal Barrier-Shielding the Body from Nano- and Microparticles in Our Diet. Metabolites 2022; 12:223. [PMID: 35323666 PMCID: PMC8952728 DOI: 10.3390/metabo12030223] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 01/27/2023] Open
Abstract
Nano- and microparticles are an implicit part of the human diet. They are unknowingly ingested with our food that contains them as additives or pollutants. However, their impact on human health is not yet understood and controversially discussed. The intestinal epithelial barrier shields our body against exogenous influences, such as commensal bacteria, pathogens, and body-foreign particles and, therefore, protects our body integrity. Breakdown of the intestinal epithelial barrier and aberrant immune responses are key events in the pathogenesis of inflammatory bowel disease (IBD). Epithelial lesions might enable systemic translocation of nano- and microparticles into the system, eventually triggering an excessive immune response. Thus, IBD patients could be particularly vulnerable to adverse health effects caused by the ingestion of synthetic particles with food. The food-additive titanium dioxide (TiO2) serves as a coloring agent in food products and is omnipresent in the Western diet. TiO2 nanoparticles exacerbate intestinal inflammation by activation of innate and adaptive immune response. Because of serious safety concerns, the use of TiO2 as a food additive was recently banned from food production within the European Union. Due to environmental pollution, plastic has entered the human food chain, and plastic microparticles have been evidenced in the drinking water and comestible goods. The impact of plastic ingestion and its resulting consequences on human health is currently the subject of intense research. Focusing on TiO2 and plastic particles in the human diet and their impact on epithelial integrity, gut homeostasis, and intestinal inflammation, this review is addressing contemporary hot topics which are currently attracting a lot of public attention.
Collapse
Affiliation(s)
| | - Gerhard Rogler
- Department of Gastroenterology & Hepatology, University Hospital Zurich, 8091 Zurich, Switzerland;
| |
Collapse
|
9
|
Zhang Y, Duan S, Liu Y, Wang Y. The combined effect of food additive titanium dioxide and lipopolysaccharide on mouse intestinal barrier function after chronic exposure of titanium dioxide-contained feedstuffs. Part Fibre Toxicol 2021; 18:8. [PMID: 33596948 PMCID: PMC7887831 DOI: 10.1186/s12989-021-00399-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 01/17/2021] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE Up to 44% of particulates of food-grade titanium dioxide (TiO2) are in nanoscale, while the effect and combined effect of which with other substances on intestinal barrier haven't been fully understood yet. This study is aimed to study the effect of two kinds of TiO2 nanoparticles (TiO2 NPs and TiO2 MPs) on intestinal barrier functions, to reveal the combined effect of TiO2 NPs and Lipopolysaccharide (LPS) on intestinal barrier. METHODS Male ICR mice were randomly divided into 18 groups (3 feed types * 3 exposure length * 2 LPS dosage) and were fed with normal or TiO2-mixed feed (containing 1% (mass fraction, w/w) TiO2 NPs or TiO2 MPs) for 1, 3, 6 months, followed by a single oral administration of 0 or 10 mg/(kg body weight) LPS. Four hours later, the transportation of TiO2, the intestinal barrier functions and the inflammatory response were evaluated. RESULTS Both TiO2 notably increased the intestinal villi height / crypt depth ratios after 1 and 3 months of exposure, and increased the expression of ileal tight junction proteins (ZO-1 and occludin) after 1 month of exposure. After 6 months of exposure, TiO2 NPs led to reduced feed consumption, TiO2 MPs caused spare microvilli in small intestine and elevated Ti content in the blood cells. The intestinal permeability didn't change in both TiO2 exposed groups. After LPS administration, we observed altered intestinal villi height / crypt depth ratios, lowered intestinal permeability (DAO) and upregulated expression of ileal ZO-1 in both (TiO2 +LPS) exposed groups. There are no significant changes of ileal or serum cytokines except for a higher serum TNF-α level in LPS treated group. The antagonistic effect was found between TiO2 NPs and LPS, but there are complicated interactions between TiO2 MPs and LPS. CONCLUSION Long-term intake of food additive TiO2 could alter the intestinal epithelial structure without influencing intestinal barrier function. Co-exposure of TiO2 and LPS would enhance intestinal barrier function without causing notable inflammatory responses, and there is antagonistic effect between TiO2 NPs and LPS. All the minor effects observed might associate with the gentle exposure method where TiO2 being ingested with feed.
Collapse
Affiliation(s)
- Yongliang Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, People's Republic of China
| | - Shumin Duan
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, People's Republic of China
| | - Ying Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, People's Republic of China
| | - Yun Wang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, People's Republic of China.
| |
Collapse
|
10
|
Zhang L, Haddouti EM, Welle K, Burger C, Kabir K, Schildberg FA. Local Cellular Responses to Metallic and Ceramic Nanoparticles from Orthopedic Joint Arthroplasty Implants. Int J Nanomedicine 2020; 15:6705-6720. [PMID: 32982228 PMCID: PMC7494401 DOI: 10.2147/ijn.s248848] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 07/08/2020] [Indexed: 12/27/2022] Open
Abstract
Over the last decades, joint arthroplasty has become a successful treatment for joint disease. Nowadays, with a growing demand and increasingly younger and active patients accepting these approaches, orthopedic surgeons are seeking implants with improved mechanical behavior and longer life span. However, aseptic loosening as a result of wear debris from implants is considered to be the main cause of long-term implant failure. Previous studies have neatly illustrated the role of micrometric wear particles in the pathological mechanisms underlying aseptic loosening. Recent osteoimmunologic insights into aseptic loosening highlight the important and heretofore underrepresented contribution of nanometric orthopedic wear particles. The present review updates the characteristics of metallic and ceramic nanoparticles generated after prosthesis implantation and summarizes the current understanding of their hazardous effects on peri-prosthetic cells.
Collapse
Affiliation(s)
- Li Zhang
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Venusberg-Campus 1, Bonn 53127, Germany
| | - El-Mustapha Haddouti
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Venusberg-Campus 1, Bonn 53127, Germany
| | - Kristian Welle
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Venusberg-Campus 1, Bonn 53127, Germany
| | - Christof Burger
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Venusberg-Campus 1, Bonn 53127, Germany
| | - Koroush Kabir
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Venusberg-Campus 1, Bonn 53127, Germany
| | - Frank A Schildberg
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Venusberg-Campus 1, Bonn 53127, Germany
| |
Collapse
|
11
|
Shetab Boushehri MA, Dietrich D, Lamprecht A. Nanotechnology as a Platform for the Development of Injectable Parenteral Formulations: A Comprehensive Review of the Know-Hows and State of the Art. Pharmaceutics 2020; 12:pharmaceutics12060510. [PMID: 32503171 PMCID: PMC7356945 DOI: 10.3390/pharmaceutics12060510] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 05/24/2020] [Indexed: 12/11/2022] Open
Abstract
Within recent decades, the development of nanotechnology has made a significant contribution to the progress of various fields of study, including the domains of medical and pharmaceutical sciences. A substantially transformed arena within the context of the latter is the development and production of various injectable parenteral formulations. Indeed, recent decades have witnessed a rapid growth of the marketed and pipeline nanotechnology-based injectable products, which is a testimony to the remarkability of the aforementioned contribution. Adjunct to the ability of nanomaterials to deliver the incorporated payloads to many different targets of interest, nanotechnology has substantially assisted to the development of many further facets of the art. Such contributions include the enhancement of the drug solubility, development of long-acting locally and systemically injectable formulations, tuning the onset of the drug’s release through the endowment of sensitivity to various internal or external stimuli, as well as adjuvancy and immune activation, which is a desirable component for injectable vaccines and immunotherapeutic formulations. The current work seeks to provide a comprehensive review of all the abovementioned contributions, along with the most recent advances made within each domain. Furthermore, recent developments within the domains of passive and active targeting will be briefly debated.
Collapse
Affiliation(s)
- Maryam A. Shetab Boushehri
- Department of Pharmaceutics, Faculty of Pharmacy, University of Bonn, 53121 Bonn, Germany;
- Correspondence: ; Tel.: +49-228-736428; Fax: +49-228-735268
| | - Dirk Dietrich
- Department of Neurosurgery, University Clinic of Bonn, 53105 Bonn, Germany;
| | - Alf Lamprecht
- Department of Pharmaceutics, Faculty of Pharmacy, University of Bonn, 53121 Bonn, Germany;
- PEPITE EA4267, Institute of Pharmacy, University Bourgogne Franche-Comté, 25000 Besançon, France
| |
Collapse
|
12
|
Mu W, Wang Y, Huang C, Fu Y, Li J, Wang H, Jia X, Ba Q. Effect of Long-Term Intake of Dietary Titanium Dioxide Nanoparticles on Intestine Inflammation in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:9382-9389. [PMID: 31361959 DOI: 10.1021/acs.jafc.9b02391] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Early stage exposure of foodborne substances, such as brightening agent titanium dioxide nanoparticles (TiO2 NPs), can cause long-term effects in adulthood. We aimed to explore the potential adverse effect of long-term dietary intake of TiO2 NPs. After feeding for 2-3 months from weaning, TiO2 NPs-exposed mice showed lower body weight and induced intestinal inflammation. However, this phenomenon was not observed in gut microbiota-removed mice. TiO2 NPs exposure rarely affected the diversity of microbial communities, but significantly decreased the abundance of several probiotic taxa including Bifidobacterium and Lactobacillus. Additionally, TiO2 NPs aggravated DSS-induced chronic colitis and immune response in vivo, and reduced the population of CD4+T cells, regulatory T cells, and macrophages in mesenteric lymph nodes. Therefore, dietary TiO2 NPs could interfere with the balance of immune system and dynamic of gut microbiome, which may result in low-grade intestinal inflammation and aggravated immunological response to external stimulus, thus introducing potential health risk.
Collapse
Affiliation(s)
- Wei Mu
- School of Public Health , Shanghai Jiao Tong University School of Medicine , Shanghai 200025 , P. R. China
| | - Yong Wang
- Henan Business Research Institute Company, Limited , Zhengzhou 450000 , P. R. China
| | - Chao Huang
- CAS Key Laboratory of Nutrition, Metabolism and Food safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences , University of Chinese Academy of Sciences, Chinese Academy of Sciences , Shanghai 200031 , P. R. China
| | - Yijing Fu
- CAS Key Laboratory of Nutrition, Metabolism and Food safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences , University of Chinese Academy of Sciences, Chinese Academy of Sciences , Shanghai 200031 , P. R. China
| | - Jingquan Li
- School of Public Health , Shanghai Jiao Tong University School of Medicine , Shanghai 200025 , P. R. China
| | - Hui Wang
- School of Public Health , Shanghai Jiao Tong University School of Medicine , Shanghai 200025 , P. R. China
| | - Xudong Jia
- Key Laboratory of Food Safety Risk Assessment, Ministry of Health , Beijing 100021 , P. R. China
| | - Qian Ba
- School of Public Health , Shanghai Jiao Tong University School of Medicine , Shanghai 200025 , P. R. China
| |
Collapse
|
13
|
Sharma S, Sharma RK, Gaur K, Cátala Torres JF, Loza-Rosas SA, Torres A, Saxena M, Julin M, Tinoco AD. Fueling a Hot Debate on the Application of TiO 2 Nanoparticles in Sunscreen. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2317. [PMID: 31330764 PMCID: PMC6678326 DOI: 10.3390/ma12142317] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/17/2019] [Accepted: 07/17/2019] [Indexed: 12/20/2022]
Abstract
Titanium is one of the most abundant elements in the earth's crust and while there are many examples of its bioactive properties and use by living organisms, there are few studies that have probed its biochemical reactivity in physiological environments. In the cosmetic industry, TiO2 nanoparticles are widely used. They are often incorporated in sunscreens as inorganic physical sun blockers, taking advantage of their semiconducting property, which facilitates absorbing ultraviolet (UV) radiation. Sunscreens are formulated to protect human skin from the redox activity of the TiO2 nanoparticles (NPs) and are mass-marketed as safe for people and the environment. By closely examining the biological use of TiO2 and the influence of biomolecules on its stability and solubility, we reassess the reactivity of the material in the presence and absence of UV energy. We also consider the alarming impact that TiO2 NP seepage into bodies of water can cause to the environment and aquatic life, and the effect that it can have on human skin and health, in general, especially if it penetrates into the human body and the bloodstream.
Collapse
Affiliation(s)
- Shweta Sharma
- Department of Environmental Sciences, University of Puerto Rico Río Piedras, 17 AVE Universidad STE 1701, San Juan, PR 00925-2537, USA
| | - Rohit K Sharma
- Department of Chemistry, University of Puerto Rico Río Piedras, 17 AVE Universidad STE 1701, San Juan, PR 00925-2537, USA
| | - Kavita Gaur
- Department of Chemistry, University of Puerto Rico Río Piedras, 17 AVE Universidad STE 1701, San Juan, PR 00925-2537, USA
| | - José F Cátala Torres
- Department of Chemistry, University of Puerto Rico Río Piedras, 17 AVE Universidad STE 1701, San Juan, PR 00925-2537, USA
| | - Sergio A Loza-Rosas
- Department of Chemistry, University of Puerto Rico Río Piedras, 17 AVE Universidad STE 1701, San Juan, PR 00925-2537, USA
| | - Anamaris Torres
- Biochemistry & Pharmacology Department, San Juan Bautista School of Medicine, Caguas, PR 00726, USA
| | - Manoj Saxena
- Department of Chemistry, University of Puerto Rico Río Piedras, 17 AVE Universidad STE 1701, San Juan, PR 00925-2537, USA
| | - Mara Julin
- Department of Chemistry, Syracuse University, Syracuse, NY 13244, USA
| | - Arthur D Tinoco
- Department of Chemistry, University of Puerto Rico Río Piedras, 17 AVE Universidad STE 1701, San Juan, PR 00925-2537, USA.
| |
Collapse
|
14
|
Metal Nanoparticles Released from Dental Implant Surfaces: Potential Contribution to Chronic Inflammation and Peri-Implant Bone Loss. MATERIALS 2019; 12:ma12122036. [PMID: 31242601 PMCID: PMC6630980 DOI: 10.3390/ma12122036] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/18/2019] [Accepted: 06/20/2019] [Indexed: 02/06/2023]
Abstract
Peri-implantitis is an inflammatory disease affecting tissues surrounding dental implants. Although it represents a common complication of dental implant treatments, the underlying mechanisms have not yet been fully described. The aim of this study is to identify the role of titanium nanoparticles released form the implants on the chronic inflammation and bone lysis in the surrounding tissue. We analyzed the in vitro effect of titanium (Ti) particle exposure on mesenchymal stem cells (MSCs) and fibroblasts (FU), evaluating cell proliferation by MTT test and the generation of reactive oxygen species (ROS). Subsequently, in vivo analysis of peri-implant Ti particle distribution, histological, and molecular analyses were performed. Ti particles led to a time-dependent decrease in cell viability and increase in ROS production in both MSCs and FU. Tissue analyses revealed presence of oxidative stress, high extracellular and intracellular Ti levels and imbalanced bone turnover. High expression of ZFP467 and the presence of adipose-like tissue suggested dysregulation of the MSC population; alterations in vessel morphology were identified. The results suggest that Ti particles may induce the production of high ROS levels, recruiting abnormal quantity of neutrophils able to produce high level of metalloproteinase. This induces the degradation of collagen fibers. These events may influence MSC commitment, with an imbalance of bone regeneration.
Collapse
|
15
|
Wang H, Liu S, Song Y, Zhu BW, Tan M. Universal existence of fluorescent carbon dots in beer and assessment of their potential toxicity. Nanotoxicology 2019; 13:160-173. [DOI: 10.1080/17435390.2018.1530394] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Haitao Wang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, People’s Republic of China
- National Engineering Research Center of Seafood, Dalian, Liaoning, People’s Republic of China
- Engineering Research Center of Seafood of Ministry of Education of China, Dalian, Liaoning, People’s Republic of China
| | - Shan Liu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, People’s Republic of China
- National Engineering Research Center of Seafood, Dalian, Liaoning, People’s Republic of China
- Engineering Research Center of Seafood of Ministry of Education of China, Dalian, Liaoning, People’s Republic of China
| | - Yukun Song
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, People’s Republic of China
- National Engineering Research Center of Seafood, Dalian, Liaoning, People’s Republic of China
- Engineering Research Center of Seafood of Ministry of Education of China, Dalian, Liaoning, People’s Republic of China
| | - Bei-Wei Zhu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, People’s Republic of China
- National Engineering Research Center of Seafood, Dalian, Liaoning, People’s Republic of China
- Engineering Research Center of Seafood of Ministry of Education of China, Dalian, Liaoning, People’s Republic of China
| | - Mingqian Tan
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, People’s Republic of China
- National Engineering Research Center of Seafood, Dalian, Liaoning, People’s Republic of China
- Engineering Research Center of Seafood of Ministry of Education of China, Dalian, Liaoning, People’s Republic of China
| |
Collapse
|
16
|
Prenatal exposure to TiO 2 nanoparticles in mice causes behavioral deficits with relevance to autism spectrum disorder and beyond. Transl Psychiatry 2018; 8:193. [PMID: 30237468 PMCID: PMC6148221 DOI: 10.1038/s41398-018-0251-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/23/2018] [Accepted: 08/07/2018] [Indexed: 02/07/2023] Open
Abstract
Environmental factors are involved in the etiology of autism spectrum disorder (ASD) and may contribute to the raise in its incidence rate. It is currently unknown whether the increasing use of nanoparticles such as titanium dioxide (TiO2 NPs) in consumer products and biomedical applications may play a role in these associations. While nano-sized TiO2 is generally regarded as safe and non-toxic, excessive exposure to TiO2 NPs may be associated with negative health consequences especially when occurring during sensitive developmental periods. To test if prenatal exposure to TiO2 NPs alters fetal development and behavioral functions relevant to ASD, C57Bl6/N dams were subjected to a single intravenous injection of a low (100 µg) or high (1000 µg) dose of TiO2 NPs or vehicle solution on gestation day 9. ASD-related behavioral functions were assessed in the offspring using paradigms that index murine versions of ASD symptoms. Maternal exposure to TiO2 NPs led to subtle and dose-dependent impairments in neonatal vocal communication and juvenile sociability, as well as a dose-dependent increase in prepulse inhibition of the acoustic startle reflex of both sexes. These behavioral alterations emerged in the absence of pregnancy complications. Prenatal exposure to TiO2 NPs did not cause overt fetal malformations or changes in pregnancy outcomes, nor did it affect postnatal growth of the offspring. Taken together, our study provides a first set of preliminary data suggesting that prenatal exposure to nano-sized TiO2 can induce behavioral deficits relevant to ASD and related neurodevelopmental disorders without inducing major changes in physiological development. If extended further, our preclinical findings may provide an incentive for epidemiological studies examining the role of prenatal TiO2 NPs exposure in the etiology of ASD and other neurodevelopmental disorders.
Collapse
|
17
|
Shetab Boushehri MA, Lamprecht A. TLR4-Based Immunotherapeutics in Cancer: A Review of the Achievements and Shortcomings. Mol Pharm 2018; 15:4777-4800. [DOI: 10.1021/acs.molpharmaceut.8b00691] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | - Alf Lamprecht
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, D-53121 Bonn, Germany
- PEPITE EA4267, Univ. Bourgonge Franch-Comte, 25030 Besançon, France
| |
Collapse
|
18
|
Chen Q, Wang N, Zhu M, Lu J, Zhong H, Xue X, Guo S, Li M, Wei X, Tao Y, Yin H. TiO 2 nanoparticles cause mitochondrial dysfunction, activate inflammatory responses, and attenuate phagocytosis in macrophages: A proteomic and metabolomic insight. Redox Biol 2018; 15:266-276. [PMID: 29294438 PMCID: PMC5752088 DOI: 10.1016/j.redox.2017.12.011] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/15/2017] [Accepted: 12/21/2017] [Indexed: 12/12/2022] Open
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) are widely used in food and cosmetics but the health impact of human exposure remains poorly defined. Emerging evidence suggests that TiO2 NPs may elicit immune responses by acting on macrophages. Our proteomic study showed that treatment of macrophages with TiO2 NPs led to significant re-organization of cell membrane and activation of inflammation. These observations were further corroborated with transmission electron microscopy (TEM) experiments, which demonstrated that TiO2 NPs were trapped inside of multi-vesicular bodies (MVB) through endocytotic pathways. TiO2 NP caused significant mitochondrial dysfunction by increasing levels of mitochondrial reactive oxygen species (ROS), decreasing ATP generation, and decreasing metabolic flux in tricarboxylic acid (TCA) cycle from 13C-labelled glutamine using GC-MS-based metabolic flux analysis. Further lipidomic analysis showed that TiO2 NPs significantly decreased levels of cardiolipins, an important class of mitochondrial phospholipids for maintaining proper function of electron transport chains. Furthermore, TiO2 NP exposure activates inflammatory responses by increasing mRNA levels of TNF-α, iNOS, and COX-2. Consistently, our targeted metabolomic analysis showed significantly increased production of COX-2 metabolites including PGD2, PGE2, and 15d-PGJ2. In addition, TiO2 NP also caused significant attenuation of phagocytotic function of macrophages. In summary, our studies utilizing multiple powerful omic techniques suggest that human exposure of TiO2 NPs may have profound impact on macrophage function through activating inflammatory responses and causing mitochondrial dysfunction without physical presence in mitochondria.
Collapse
Affiliation(s)
- Qun Chen
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences (INS), Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China; University of the Chinese Academy of Sciences, CAS, Beijing, China; Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing, China
| | - Ningning Wang
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences (INS), Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China; University of the Chinese Academy of Sciences, CAS, Beijing, China
| | - Mingjiang Zhu
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences (INS), Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Jianhong Lu
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences (INS), Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China; University of the Chinese Academy of Sciences, CAS, Beijing, China
| | - Huiqin Zhong
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences (INS), Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China; University of the Chinese Academy of Sciences, CAS, Beijing, China
| | - Xinli Xue
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences (INS), Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China; University of the Chinese Academy of Sciences, CAS, Beijing, China
| | - Shuoyuan Guo
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences (INS), Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China; University of the Chinese Academy of Sciences, CAS, Beijing, China; Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Min Li
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences (INS), Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China; University of the Chinese Academy of Sciences, CAS, Beijing, China
| | - Xinben Wei
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences (INS), Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China; University of the Chinese Academy of Sciences, CAS, Beijing, China
| | - Yongzhen Tao
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences (INS), Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Huiyong Yin
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences (INS), Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China; University of the Chinese Academy of Sciences, CAS, Beijing, China; Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
19
|
Li D, Na X, Wang H, Xie Y, Cong S, Song Y, Xu X, Zhu BW, Tan M. Fluorescent Carbon Dots Derived from Maillard Reaction Products: Their Properties, Biodistribution, Cytotoxicity, and Antioxidant Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:1569-1575. [PMID: 29360356 DOI: 10.1021/acs.jafc.7b05643] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Food-borne nanoparticles have received great attention because of their unique physicochemical properties and potential health risk. In this study, carbon dots (CDs) formed during one of the most important chemical reactions in the food processing field, the Maillard reaction from the model system including glucose and lysine, were investigated. The CDs purified from Maillard reaction products emitted a strong blue fluorescence under ultraviolet light with a fluorescent quantum yield of 16.30%. In addition, they were roughly spherical, with sizes of around 4.3 nm, and mainly composed of carbon, oxygen, hydrogen, and nitrogen. Their surface groups such as hydroxyl, amino, and carboxyl groups were found to possibly enable CDs to scavenge DPPH and hydroxyl radicals. Furthermore, the cytotoxicity assessment of CDs showed that they could readily enter HepG2 cells while causing negligible cell death at low concentration. However, high CDs concentrations were highly cytotoxic and led to cell death via interference of the glycolytic pathway.
Collapse
Affiliation(s)
- Dongmei Li
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University , Qinggongyuan 1, Ganjingzi District, Dalian 116034, Liaoning, People's Republic of China
- Engineering Research Center of Seafood of Ministry of Education of China , Dalian 116034, Liaoning, People's Republic of China
| | - Xiaokang Na
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University , Qinggongyuan 1, Ganjingzi District, Dalian 116034, Liaoning, People's Republic of China
- Engineering Research Center of Seafood of Ministry of Education of China , Dalian 116034, Liaoning, People's Republic of China
| | - Haitao Wang
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University , Qinggongyuan 1, Ganjingzi District, Dalian 116034, Liaoning, People's Republic of China
- Engineering Research Center of Seafood of Ministry of Education of China , Dalian 116034, Liaoning, People's Republic of China
| | - Yisha Xie
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University , Qinggongyuan 1, Ganjingzi District, Dalian 116034, Liaoning, People's Republic of China
- Engineering Research Center of Seafood of Ministry of Education of China , Dalian 116034, Liaoning, People's Republic of China
| | - Shuang Cong
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University , Qinggongyuan 1, Ganjingzi District, Dalian 116034, Liaoning, People's Republic of China
- Engineering Research Center of Seafood of Ministry of Education of China , Dalian 116034, Liaoning, People's Republic of China
| | - Yukun Song
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University , Qinggongyuan 1, Ganjingzi District, Dalian 116034, Liaoning, People's Republic of China
- Engineering Research Center of Seafood of Ministry of Education of China , Dalian 116034, Liaoning, People's Republic of China
| | - Xianbing Xu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University , Qinggongyuan 1, Ganjingzi District, Dalian 116034, Liaoning, People's Republic of China
- Engineering Research Center of Seafood of Ministry of Education of China , Dalian 116034, Liaoning, People's Republic of China
| | - Bei-Wei Zhu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University , Qinggongyuan 1, Ganjingzi District, Dalian 116034, Liaoning, People's Republic of China
- Engineering Research Center of Seafood of Ministry of Education of China , Dalian 116034, Liaoning, People's Republic of China
| | - Mingqian Tan
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University , Qinggongyuan 1, Ganjingzi District, Dalian 116034, Liaoning, People's Republic of China
- Engineering Research Center of Seafood of Ministry of Education of China , Dalian 116034, Liaoning, People's Republic of China
| |
Collapse
|
20
|
The Secretory Response of Rat Peritoneal Mast Cells on Exposure to Mineral Fibers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15010104. [PMID: 29320402 PMCID: PMC5800203 DOI: 10.3390/ijerph15010104] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/27/2017] [Accepted: 01/03/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND Exposure to mineral fibers is of substantial relevance to human health. A key event in exposure is the interaction with inflammatory cells and the subsequent generation of pro-inflammatory factors. Mast cells (MCs) have been shown to interact with titanium oxide (TiO₂) and asbestos fibers. In this study, we compared the response of rat peritoneal MCs challenged with the asbestos crocidolite and nanowires of TiO₂ to that induced by wollastonite employed as a control fiber. METHODS Rat peritoneal MCs (RPMCs), isolated from peritoneal lavage, were incubated in the presence of mineral fibers. The quantities of secreted enzymes were evaluated together with the activity of fiber-associated enzymes. The ultrastructural morphology of fiber-interacting RPMCs was analyzed with electron microscopy. RESULTS Asbestos and TiO₂ stimulate MC secretion. Secreted enzymes bind to fibers and exhibit higher activity. TiO₂ and wollastonite bind and improve enzyme activity, but to a lesser degree than crocidolite. CONCLUSIONS (1) Mineral fibers are able to stimulate the mast cell secretory process by both active (during membrane interaction) and/or passive (during membrane penetration) interaction; (2) fibers can be found to be associated with secreted enzymes-this process appears to create long-lasting pro-inflammatory environments and may represent the active contribution of MCs in maintaining the inflammatory process; (3) MCs and their enzymes should be considered as a therapeutic target in the pathogenesis of asbestos-induced lung inflammation; and (4) MCs can contribute to the inflammatory effect associated with selected engineered nanomaterials, such as TiO₂ nanoparticles.
Collapse
|
21
|
DeLoid GM, Wang Y, Kapronezai K, Lorente LR, Zhang R, Pyrgiotakis G, Konduru NV, Ericsson M, White JC, De La Torre-Roche R, Xiao H, McClements DJ, Demokritou P. An integrated methodology for assessing the impact of food matrix and gastrointestinal effects on the biokinetics and cellular toxicity of ingested engineered nanomaterials. Part Fibre Toxicol 2017; 14:40. [PMID: 29029643 PMCID: PMC5640936 DOI: 10.1186/s12989-017-0221-5] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 09/18/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Engineered nanomaterials (ENMs) are increasingly added to foods to improve their quality, sensory appeal, safety and shelf-life. Human exposure to these ingested ENMs (iENMS) is inevitable, yet little is known of their hazards. To assess potential hazards, efficient in vitro methodologies are needed to evaluate particle biokinetics and toxicity. These methodologies must account for interactions and transformations of iENMs in foods (food matrix effect) and in the gastrointestinal tract (GIT) that are likely to determine nano-biointeractions. Here we report the development and application of an integrated methodology consisting of three interconnected stages: 1) assessment of iENM-food interactions (food matrix effect) using model foods; 2) assessment of gastrointestinal transformations of the nano-enabled model foods using a three-stage GIT simulator; 3) assessment of iENMs biokinetics and cellular toxicity after exposure to simulated GIT conditions using a triculture cell model. As a case study, a model food (corn oil-in-water emulsion) was infused with Fe2O3 (Iron(III) oxide or ferric oxide) ENMs and processed using this three-stage integrated platform to study the impact of food matrix and GIT effects on nanoparticle biokinetics and cytotoxicity . METHODS A corn oil in phosphate buffer emulsion was prepared using a high speed blender and high pressure homogenizer. Iron oxide ENM was dispersed in water by sonication and combined with the food model. The resulting nano-enabled food was passed through a three stage (mouth, stomach and small intestine) GIT simulator. Size distributions of nano-enabled food model and digestae at each stage were analyzed by DLS and laser diffraction. TEM and confocal imaging were used to assess morphology of digestae at each phase. Dissolution of Fe2O3 ENM along the GIT was assessed by ICP-MS analysis of supernatants and pellets following centrifugation of digestae. An in vitro transwell triculture epithelial model was used to assess biokinetics and toxicity of ingested Fe2O3 ENM. Translocation of Fe2O3 ENM was determined by ICP-MS analysis of cell lysates and basolateral compartment fluid over time. RESULTS It was demonstrated that the interactions of iENMs with food and GIT components influenced nanoparticle fate and transport, biokinetics and toxicological profile. Large differences in particle size, charge, and morphology were observed in the model food with and without Fe2O3 and among digestae from different stages of the simulated GIT (mouth, stomach, and small intestine). Immunoflorescence and TEM imaging of the cell culture model revealed markers and morphology of small intestinal epithelium including enterocytes, goblet cells and M cells. Fe2O3 was not toxic at concentrations tested in the digesta. In biokinetics studies, translocation of Fe2O3 after 4 h was <1% and ~2% for digesta with and without serum, respectively, suggesting that use of serum proteins alters iENMs biokinetics and raises concerns about commonly-used approaches that neglect iENM - food-GIT interactions or dilute digestae in serum-containing media. CONCLUSIONS We present a simple integrated methodology for studying the biokinetics and toxicology of iENMs, which takes into consideration nanoparticle-food-GIT interactions. The importance of food matrix and GIT effects on biointeractions was demonstrated, as well as the incorporation of these critical factors into a cellular toxicity screening model. Standardized food models still need to be developed and used to assess the effect of the food matrix effects on the fate and bioactivity of iENMs since commercial foods vary considerably in their compositions and structures.
Collapse
Affiliation(s)
- Glen M. DeLoid
- Center for Nanotechnology and Nanotoxicology, HSPH-NIEHS Nanosafety Research Center, Department of Environmental Health, Harvard School of Public Health, Boston, MA 02115 USA
| | - Yanli Wang
- Center for Nanotechnology and Nanotoxicology, HSPH-NIEHS Nanosafety Research Center, Department of Environmental Health, Harvard School of Public Health, Boston, MA 02115 USA
| | - Klara Kapronezai
- Center for Nanotechnology and Nanotoxicology, HSPH-NIEHS Nanosafety Research Center, Department of Environmental Health, Harvard School of Public Health, Boston, MA 02115 USA
| | - Laura Rubio Lorente
- Center for Nanotechnology and Nanotoxicology, HSPH-NIEHS Nanosafety Research Center, Department of Environmental Health, Harvard School of Public Health, Boston, MA 02115 USA
| | - Roujie Zhang
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003 USA
| | - Georgios Pyrgiotakis
- Center for Nanotechnology and Nanotoxicology, HSPH-NIEHS Nanosafety Research Center, Department of Environmental Health, Harvard School of Public Health, Boston, MA 02115 USA
| | - Nagarjun V. Konduru
- Center for Nanotechnology and Nanotoxicology, HSPH-NIEHS Nanosafety Research Center, Department of Environmental Health, Harvard School of Public Health, Boston, MA 02115 USA
| | - Maria Ericsson
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115 USA
| | - Jason C. White
- Department of Analytical Chemistry, Connecticut Agricultural Experiment Station, New Haven, CT 06504 USA
| | - Roberto De La Torre-Roche
- Department of Analytical Chemistry, Connecticut Agricultural Experiment Station, New Haven, CT 06504 USA
| | - Hang Xiao
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003 USA
| | - David Julian McClements
- Center for Nanotechnology and Nanotoxicology, HSPH-NIEHS Nanosafety Research Center, Department of Environmental Health, Harvard School of Public Health, Boston, MA 02115 USA
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003 USA
| | - Philip Demokritou
- Center for Nanotechnology and Nanotoxicology, HSPH-NIEHS Nanosafety Research Center, Department of Environmental Health, Harvard School of Public Health, Boston, MA 02115 USA
| |
Collapse
|