1
|
Müllerová M, Tarach P, Strašák T, Cuřínová P, Petrickovic R, Závodná T, Topinka J, Janaszewska A, Klajnert-Maculewicz B, Červenková Št’astná L. Comparative Study of Functionalized Carbosilane Dendrimers for siRNA Delivery: Synthesis, Cytotoxicity, and Biophysical Properties. ACS OMEGA 2025; 10:1047-1060. [PMID: 39829590 PMCID: PMC11740622 DOI: 10.1021/acsomega.4c08314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 01/06/2025]
Abstract
Efficient and safe carriers of genetic material are crucial for advancing gene therapy. Three new series of cationic dendritic nanocarriers based on a carbosilane scaffold, differentiated by peripheral modifications: saccharide (CS-glyco), amine (CS-N), and phosphonium dendrimers (CS-P) were designed for binding, protecting, and releasing polyanionic compounds like therapeutic siRNA. Besides introducing synthetic methodology, this study brings a unique direct interstructural comparison of 16 dendritic nanovector's characteristics, addressing a gap in typical research that focuses on uniform structural types. The study evaluates the dendrimer's in vitro cytotoxicity, biophysical properties, and complexation capabilities in comparison with widely used PAMAM dendrimers. CS-glyco and PAMAMs were significantly less toxic to MCF-7 and THP-1 cell lines than were CS-N and CS-P, despite having the same peripheral charge density. Notably, CS-glyco maintained biocompatibility comparable to analogous neutral CS glycodendrimers, underscoring the exceptional capability of sugar coating to reduce toxicity. Dendriplexes formed from these nanocarriers protected siRNA from RNase degradation and facilitated its release in the presence of heparin, highlighting its potential in gene delivery applications. The study provides a background for future in-depth investigations into the introduced dendritic nanocarriers, which show significant potential for advancing drug delivery.
Collapse
Affiliation(s)
- Monika Müllerová
- Institute
of Chemical Process Fundamentals Czech Academy of Sciences, Rozvojová 135, Prague 165 02, Czech Republic
- Institute
of Experimental Medicine, Czech Academy
of Sciences, Vídeňská
1083, Prague 142 00, Czech Republic
| | - Piotr Tarach
- Faculty of
Biology and Environmental Protection, Department of General Biophysics, University of Lodz, Pomorska 141/143, Lodz 90-236, Poland
| | - Tomáš Strašák
- Institute
of Chemical Process Fundamentals Czech Academy of Sciences, Rozvojová 135, Prague 165 02, Czech Republic
| | - Petra Cuřínová
- Institute
of Chemical Process Fundamentals Czech Academy of Sciences, Rozvojová 135, Prague 165 02, Czech Republic
- Department
of Organic Chemistry, University of Chemistry
and Technology Prague, Technická 5, Prague 6 166 28, Czech Republic
| | - Roman Petrickovic
- Institute
of Chemical Process Fundamentals Czech Academy of Sciences, Rozvojová 135, Prague 165 02, Czech Republic
| | - Táňa Závodná
- Institute
of Experimental Medicine, Czech Academy
of Sciences, Vídeňská
1083, Prague 142 00, Czech Republic
| | - Jan Topinka
- Institute
of Experimental Medicine, Czech Academy
of Sciences, Vídeňská
1083, Prague 142 00, Czech Republic
| | - Anna Janaszewska
- Faculty of
Biology and Environmental Protection, Department of General Biophysics, University of Lodz, Pomorska 141/143, Lodz 90-236, Poland
| | - Barbara Klajnert-Maculewicz
- Faculty of
Biology and Environmental Protection, Department of General Biophysics, University of Lodz, Pomorska 141/143, Lodz 90-236, Poland
| | - Lucie Červenková Št’astná
- Institute
of Chemical Process Fundamentals Czech Academy of Sciences, Rozvojová 135, Prague 165 02, Czech Republic
| |
Collapse
|
2
|
Edr A, Wrobel D, Krupková A, Št′astná LČ, Apartsin E, Hympánová M, Marek J, Malý J, Malý M, Strašák T. Adaptive Synthesis, Supramolecular Behavior, and Biological Properties of Amphiphilic Carbosilane-Phosphonium Dendrons with Tunable Structure. Biomacromolecules 2024; 25:7799-7813. [PMID: 39526947 PMCID: PMC11632778 DOI: 10.1021/acs.biomac.4c01092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Here, we present a modular synthesis as well as physicochemical and biological evaluation of a new series of amphiphilic dendrons carrying triphenylphosphonium groups at their periphery. Within the series, the size and mutual balance of lipophilic and hydrophilic domains are systematically varied, changing the dendron shape from cylindrical to conical. In physiological solution, the dendrons exhibit very low critical micelle concentrations (2.6-4.9 μM) and form stable and uniform micelles 6-12 nm in diameter, depending on dendron shape; the results correlate well with molecular dynamics simulations. The compounds show relatively high cytotoxicity (IC50 1.2-21.0 μM) associated with micelle formation and inversely related to the size of assembled particles. Depending on their shape, the dendrons show promising results in terms of dendriplex formation and antibacterial activity. In addition to simple amphiphilic dendrons, a fluorescently labeled analogue was also prepared and utilized as an additive visualizing the dendron's cellular uptake.
Collapse
Affiliation(s)
- Antonín Edr
- The
Czech Academy of Sciences, Institute of
Chemical Process Fundamentals, 165 02 Prague, Czech Republic
| | - Dominika Wrobel
- Centre
for Nanomaterials and Biotechnology Faculty of Science, Jan Evangelista Purkyně University in Ústí
nad Labem, Pasteurova
3632/15, 400 96 Ústí nad Labem, Czech
Republic
| | - Alena Krupková
- The
Czech Academy of Sciences, Institute of
Chemical Process Fundamentals, 165 02 Prague, Czech Republic
| | - Lucie Červenková Št′astná
- The
Czech Academy of Sciences, Institute of
Chemical Process Fundamentals, 165 02 Prague, Czech Republic
| | - Evgeny Apartsin
- Université
Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France
| | - Michaela Hympánová
- Biomedical
Research Centre, University Hospital Hradec
Králové, Sokolská 581, 500 05 Hradec Králové, Czech Republic
| | - Jan Marek
- Biomedical
Research Centre, University Hospital Hradec
Králové, Sokolská 581, 500 05 Hradec Králové, Czech Republic
- Department
of Epidemiology, Military Faculty of Medicine, University of Defence, Třebešská 1575, 500 05 Hradec Králové, Czech Republic
| | - Jan Malý
- Centre
for Nanomaterials and Biotechnology Faculty of Science, Jan Evangelista Purkyně University in Ústí
nad Labem, Pasteurova
3632/15, 400 96 Ústí nad Labem, Czech
Republic
| | - Marek Malý
- Department
of Physics, University of Jan Evangelista
Purkyně in Ústí nad Labem, 400 96 Ústí nad
Labem, Czech Republic
| | - Tomáš Strašák
- The
Czech Academy of Sciences, Institute of
Chemical Process Fundamentals, 165 02 Prague, Czech Republic
| |
Collapse
|
3
|
Santos N, Oliveira M, Domingues I. Influence of exposure scenario on the sensitivity to caffeine. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:122808-122821. [PMID: 37978123 PMCID: PMC10724325 DOI: 10.1007/s11356-023-30945-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
The chorion acts as a protective barrier, restricting some chemical absorption into the embryo and the surrounding fluids. In this sense, larvae may only have direct contact with some chemicals after dechorionation. This study aimed to evaluate the effects of caffeine (CAF) (0, 13, 20, 44, 67, and 100 mg.L-1) under different exposure scenarios (embryos with chorion or embryos/larvae already hatched) and rank the stage sensitivity. Thus, three scenarios were investigated: from 2 to 120 hours post fertilization (hpf) (5 days of exposure- 5dE), from 72 to 120 hpf (2dE), and from 96 to 120 hpf (1dE). Heart rate (48 hpf) and energy reserves (120 hpf) were measured in the 5dE scenario, and behavior and acetylcholinesterase (AChE) activity were evaluated at 120 hpf in all scenarios (5dE, 2dE, and 1dE). At 120 hpf, some of the fish was transferred to clean medium for a 10 days depuration period (10dPE). Behavior and AChE activity were assessed after this period. In the 5dE scenario, CAF increased heartbeat (13, 20, and 30 mg.L-1) and reduced carbohydrates (67, and 100 mg.L-1), while inhibiting AChE activity (100 mg.L-1) in the 5dE, 2dE, and 1dE scenarios. CAF reduced the total distance moved in the 5dE (67, and 100 mg.L-1), 2dE (20, 30, 44, 67, and 100 mg.L-1), and 1dE fish (67, and 100 mg.L-1) and increased erratic movements. Based on the lowest observed effect concentration (LOEC) for total distance moved (20 mg.L-1) and higher inhibition of AChE activity (100 mg.L-1) (65%), 2dE fish appear to be more sensitive to CAF. After 10dPE, a recovery in behavior was detected in all scenarios (5dE, 2dE, and 1dE). AChE activity remained inhibited in the 2dE scenario while increasing in the 1dE scenario. This study demonstrated that the presence of the chorion is an important factor for the analysis of CAF toxicity. After the loss of the chorion, organisms show greater sensitivity to CAF and can be used to evaluate the toxicity of various substances, including nanomaterials or chemicals with low capacity to cross the chorion. Therefore, the use of hatched embryos in toxicity tests is suggested, as they allow a shorter and less expensive exposure scenario that provides similar outcome as the conventional scenario.
Collapse
Affiliation(s)
- Niedja Santos
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - Miguel Oliveira
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Inês Domingues
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|
4
|
Žmudová Z, Šanderová Z, Liegertová M, Vinopal S, Herma R, Sušický L, Müllerová M, Strašák T, Malý J. Biodistribution and toxicity assessment of methoxyphenyl phosphonium carbosilane dendrimers in 2D and 3D cell cultures of human cancer cells and zebrafish embryos. Sci Rep 2023; 13:15477. [PMID: 37726330 PMCID: PMC10509138 DOI: 10.1038/s41598-023-42850-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 09/15/2023] [Indexed: 09/21/2023] Open
Abstract
The consideration of human and environmental exposure to dendrimers, including cytotoxicity, acute toxicity, and cell and tissue accumulation, is essential due to their significant potential for various biomedical applications. This study aimed to evaluate the biodistribution and toxicity of a novel methoxyphenyl phosphonium carbosilane dendrimer, a potential mitochondria-targeting vector for cancer therapeutics, in 2D and 3D cancer cell cultures and zebrafish embryos. We assessed its cytotoxicity (via MTT, ATP, and Spheroid growth inhibition assays) and cellular biodistribution. The dendrimer cytotoxicity was higher in cancer cells, likely due to its specific targeting to the mitochondrial compartment. In vivo studies using zebrafish demonstrated dendrimer distribution within the vascular and gastrointestinal systems, indicating a biodistribution profile that may be beneficial for systemic therapeutic delivery strategies. The methoxyphenyl phosphonium carbosilane dendrimer shows promise for applications in cancer cell delivery, but additional studies are required to confirm these findings using alternative labelling methods and more physiologically relevant models. Our results contribute to the growing body of evidence supporting the potential of carbosilane dendrimers as vectors for cancer therapeutics.
Collapse
Affiliation(s)
- Zuzana Žmudová
- CENAB, Faculty of Science, Jan Evangelista Purkyně University in Ústí Nad Labem, Ústí nad Labem, Czech Republic
| | - Zuzana Šanderová
- CENAB, Faculty of Science, Jan Evangelista Purkyně University in Ústí Nad Labem, Ústí nad Labem, Czech Republic
| | - Michaela Liegertová
- CENAB, Faculty of Science, Jan Evangelista Purkyně University in Ústí Nad Labem, Ústí nad Labem, Czech Republic.
| | - Stanislav Vinopal
- CENAB, Faculty of Science, Jan Evangelista Purkyně University in Ústí Nad Labem, Ústí nad Labem, Czech Republic
| | - Regina Herma
- CENAB, Faculty of Science, Jan Evangelista Purkyně University in Ústí Nad Labem, Ústí nad Labem, Czech Republic
| | - Luděk Sušický
- CENAB, Faculty of Science, Jan Evangelista Purkyně University in Ústí Nad Labem, Ústí nad Labem, Czech Republic
| | - Monika Müllerová
- CENAB, Faculty of Science, Jan Evangelista Purkyně University in Ústí Nad Labem, Ústí nad Labem, Czech Republic
- Institute of Chemical Process Fundamentals of the CAS, Prague, Czech Republic
| | - Tomáš Strašák
- CENAB, Faculty of Science, Jan Evangelista Purkyně University in Ústí Nad Labem, Ústí nad Labem, Czech Republic
- Institute of Chemical Process Fundamentals of the CAS, Prague, Czech Republic
| | - Jan Malý
- CENAB, Faculty of Science, Jan Evangelista Purkyně University in Ústí Nad Labem, Ústí nad Labem, Czech Republic
| |
Collapse
|
5
|
Ardabevskaia SN, Chamkina ES, Krasnova IY, Milenin SA, Sukhova EA, Boldyrev KL, Bakirov AV, Serenko OA, Shifrina ZB, Muzafarov AM. Controllable Synthesis of Hybrid Dendrimers Composed of a Carbosilane Core and an Aromatic Shell: Does Size Matter? Int J Mol Sci 2022; 23:ijms232415461. [PMID: 36555101 PMCID: PMC9779566 DOI: 10.3390/ijms232415461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/29/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022] Open
Abstract
The controllable synthesis of novel hybrid dendrimers composed of flexible and rigid components was accomplished via effective Cu-catalyzed azide-alkyne cycloaddition ("click") reaction between azide-functionalized carbosilane cores of two generations and monoethynyl-substituted hexaphenylbenzene dendron. A comprehensive analysis of the thermal and phase behavior of dendrimers allows us to detect a similar performance of dendrimers of both generations which, in our opinion, can be due to the similar ratio of rigid and flexible blocks in the dendrimers regardless the generation of carbosilane cores. The propensity to crystallization and ordering after the annealing procedure was confirmed by DSC and SWAXS. We found that hybrid dendrimers have a tendency to order depending on their constituents of different structures. This is in contrast to homogeneous dendrimers whose propensity to order is determined by the dendrimer molecule as a whole.
Collapse
Affiliation(s)
- Sofia N. Ardabevskaia
- N.S. Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, 70 Profsouznaya St., 117393 Moscow, Russia
- Research Laboratory of New Silicone Materials and Technologies, Tula State Lev Tolstoy Pedagogical University, 125 Lenin Ave., Building 4, 300026 Tula, Russia
| | - Elena S. Chamkina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St., 119991 Moscow, Russia
| | - Irina Yu. Krasnova
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St., 119991 Moscow, Russia
| | - Sergey A. Milenin
- N.S. Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, 70 Profsouznaya St., 117393 Moscow, Russia
- Research Laboratory of New Silicone Materials and Technologies, Tula State Lev Tolstoy Pedagogical University, 125 Lenin Ave., Building 4, 300026 Tula, Russia
| | - Ekaterina A. Sukhova
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St., 119991 Moscow, Russia
| | - Konstantin L. Boldyrev
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St., 119991 Moscow, Russia
| | - Artem V. Bakirov
- N.S. Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, 70 Profsouznaya St., 117393 Moscow, Russia
- National Research Center “Kurchatov Institute”, Akademika Kurchatova pl., 1, 123182 Moscow, Russia
| | - Olga A. Serenko
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St., 119991 Moscow, Russia
| | - Zinaida B. Shifrina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St., 119991 Moscow, Russia
- Correspondence:
| | - Aziz M. Muzafarov
- N.S. Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, 70 Profsouznaya St., 117393 Moscow, Russia
| |
Collapse
|
6
|
Safety Challenges and Application Strategies for the Use of Dendrimers in Medicine. Pharmaceutics 2022; 14:pharmaceutics14061292. [PMID: 35745863 PMCID: PMC9230513 DOI: 10.3390/pharmaceutics14061292] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/11/2022] [Accepted: 06/15/2022] [Indexed: 01/07/2023] Open
Abstract
Dendrimers are used for a variety of applications in medicine but, due to their host–guest and entrapment characteristics, are particularly used for the delivery of genes and drugs. However, dendrimers are intrinsically toxic, thus creating a major limitation for their use in biological systems. To reduce such toxicity, biocompatible dendrimers have been designed and synthesized, and surface engineering has been used to create advantageous changes at the periphery of dendrimers. Although dendrimers have been reviewed previously in the literature, there has yet to be a systematic and comprehensive review of the harmful effects of dendrimers. In this review, we describe the routes of dendrimer exposure and their distribution in vivo. Then, we discuss the toxicity of dendrimers at the organ, cellular, and sub-cellular levels. In this review, we also describe how technology can be used to reduce dendrimer toxicity, by changing their size and surface functionalization, how dendrimers can be combined with other materials to generate a composite formulation, and how dendrimers can be used for the diagnosis of disease. Finally, we discuss future challenges, developments, and research directions in developing biocompatible and safe dendrimers for medical purposes.
Collapse
|
7
|
Edr A, Wrobel D, Krupková A, Šťastná LČ, Cuřínová P, Novák A, Malý J, Kalasová J, Malý J, Malý M, Strašák T. Adaptive Synthesis of Functional Amphiphilic Dendrons as a Novel Approach to Artificial Supramolecular Objects. Int J Mol Sci 2022; 23:ijms23042114. [PMID: 35216229 PMCID: PMC8877797 DOI: 10.3390/ijms23042114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/04/2022] [Accepted: 02/09/2022] [Indexed: 11/16/2022] Open
Abstract
Supramolecular structures, such as micelles, liposomes, polymerosomes or dendrimerosomes, are widely studied and used as drug delivery systems. The behavior of amphiphilic building blocks strongly depends on their spatial distribution and shape of polar and nonpolar component. This report is focused on the development of new versatile synthetic protocols for amphiphilic carbosilane dendrons (amp-CS-DDNs) capable of self-assembly to regular micelles and other supramolecular objects. The presented strategy enables the fine modification of amphiphilic structure in several ways and also enables the facile connection of a desired functionality. DLS experiments demonstrated correlations between structural parameters of amp-CS-DDNs and the size of formed nanoparticles. For detailed information about the organization and spatial distribution of amp-CS-DDNs assemblies, computer simulation models were studied by using molecular dynamics in explicit water.
Collapse
Affiliation(s)
- Antonín Edr
- Institute of Chemical Process Fundamentals of the CAS, v.v.i., Rozvojová 135, 16502 Prague, Czech Republic; (A.E.); (A.K.); (L.Č.Š.); (P.C.)
- Faculty of Science, J.E. Purkyně University in Ústí nad Labem, Pasteurova 15, 40096 Ústí nad Labem, Czech Republic; (D.W.); (A.N.); (J.M.)
| | - Dominika Wrobel
- Faculty of Science, J.E. Purkyně University in Ústí nad Labem, Pasteurova 15, 40096 Ústí nad Labem, Czech Republic; (D.W.); (A.N.); (J.M.)
| | - Alena Krupková
- Institute of Chemical Process Fundamentals of the CAS, v.v.i., Rozvojová 135, 16502 Prague, Czech Republic; (A.E.); (A.K.); (L.Č.Š.); (P.C.)
- Faculty of Science, J.E. Purkyně University in Ústí nad Labem, Pasteurova 15, 40096 Ústí nad Labem, Czech Republic; (D.W.); (A.N.); (J.M.)
| | - Lucie Červenková Šťastná
- Institute of Chemical Process Fundamentals of the CAS, v.v.i., Rozvojová 135, 16502 Prague, Czech Republic; (A.E.); (A.K.); (L.Č.Š.); (P.C.)
- Faculty of Science, J.E. Purkyně University in Ústí nad Labem, Pasteurova 15, 40096 Ústí nad Labem, Czech Republic; (D.W.); (A.N.); (J.M.)
| | - Petra Cuřínová
- Institute of Chemical Process Fundamentals of the CAS, v.v.i., Rozvojová 135, 16502 Prague, Czech Republic; (A.E.); (A.K.); (L.Č.Š.); (P.C.)
- Faculty of Science, J.E. Purkyně University in Ústí nad Labem, Pasteurova 15, 40096 Ústí nad Labem, Czech Republic; (D.W.); (A.N.); (J.M.)
| | - Aleš Novák
- Faculty of Science, J.E. Purkyně University in Ústí nad Labem, Pasteurova 15, 40096 Ústí nad Labem, Czech Republic; (D.W.); (A.N.); (J.M.)
| | - Jan Malý
- Faculty of Chemical Technology, University of Chemistry and Technology Prague, Technická 5, 16828 Prague 6, Czech Republic; (J.M.); (J.K.)
| | - Jitka Kalasová
- Faculty of Chemical Technology, University of Chemistry and Technology Prague, Technická 5, 16828 Prague 6, Czech Republic; (J.M.); (J.K.)
| | - Jan Malý
- Faculty of Science, J.E. Purkyně University in Ústí nad Labem, Pasteurova 15, 40096 Ústí nad Labem, Czech Republic; (D.W.); (A.N.); (J.M.)
| | - Marek Malý
- Faculty of Science, J.E. Purkyně University in Ústí nad Labem, Pasteurova 15, 40096 Ústí nad Labem, Czech Republic; (D.W.); (A.N.); (J.M.)
- Correspondence: (M.M.); (T.S.)
| | - Tomáš Strašák
- Institute of Chemical Process Fundamentals of the CAS, v.v.i., Rozvojová 135, 16502 Prague, Czech Republic; (A.E.); (A.K.); (L.Č.Š.); (P.C.)
- Faculty of Science, J.E. Purkyně University in Ústí nad Labem, Pasteurova 15, 40096 Ústí nad Labem, Czech Republic; (D.W.); (A.N.); (J.M.)
- Correspondence: (M.M.); (T.S.)
| |
Collapse
|
8
|
Müllerová M, Maciel D, Nunes N, Wrobel D, Stofik M, Červenková Št Astná L, Krupková A, Cuřínová P, Nováková K, Božík M, Malý M, Malý J, Rodrigues J, Strašák T. Carbosilane Glycodendrimers for Anticancer Drug Delivery: Synthetic Route, Characterization, and Biological Effect of Glycodendrimer-Doxorubicin Complexes. Biomacromolecules 2022; 23:276-290. [PMID: 34928129 DOI: 10.1021/acs.biomac.1c01264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The complexity of drug delivery mechanisms calls for the development of new transport system designs. Here, we report a robust synthetic procedure toward stable glycodendrimer (glyco-DDM) series bearing glucose, galactose, and oligo(ethylene glycol)-modified galactose peripheral units. In vitro cytotoxicity assays showed exceptional biocompatibility of the glyco-DDMs. To demonstrate applicability in drug delivery, the anticancer agent doxorubicin (DOX) was encapsulated in the glyco-DDM structure. The anticancer activity of the resulting glyco-DDM/DOX complexes was evaluated on the noncancerous (BJ) and cancerous (MCF-7 and A2780) cell lines, revealing their promising generation- and concentration-dependent effect. The glyco-DDM/DOX complexes show gradual and pH-dependent DOX release profiles. Fluorescence spectra elucidated the encapsulation process. Confocal fluorescence microscopy demonstrated preferential cancer cell internalization of the glyco-DDM/DOX complexes. The conclusions were supported by computer modeling. Overall, our results are consistent with the assumption that novel glyco-DDMs and their drug complexes are very promising in drug delivery and related applications.
Collapse
Affiliation(s)
- Monika Müllerová
- The Czech Academy of Sciences, Institute of Chemical Process Fundamentals, Rozvojová 135, 165 02 Prague, Czech Republic
- Faculty of Science, University of Jan Evangelista Purkyně in Ústí nad Labem, Pasteurova 1, 400 96 Ústí nad Labem, Czech Republic
| | - Dina Maciel
- CQM-Centro de Química da Madeira, Universidade da Madeira Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Nádia Nunes
- CQM-Centro de Química da Madeira, Universidade da Madeira Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Dominika Wrobel
- Faculty of Science, University of Jan Evangelista Purkyně in Ústí nad Labem, Pasteurova 1, 400 96 Ústí nad Labem, Czech Republic
| | - Marcel Stofik
- Faculty of Science, University of Jan Evangelista Purkyně in Ústí nad Labem, Pasteurova 1, 400 96 Ústí nad Labem, Czech Republic
| | - Lucie Červenková Št Astná
- The Czech Academy of Sciences, Institute of Chemical Process Fundamentals, Rozvojová 135, 165 02 Prague, Czech Republic
- Faculty of Science, University of Jan Evangelista Purkyně in Ústí nad Labem, Pasteurova 1, 400 96 Ústí nad Labem, Czech Republic
| | - Alena Krupková
- The Czech Academy of Sciences, Institute of Chemical Process Fundamentals, Rozvojová 135, 165 02 Prague, Czech Republic
- Faculty of Science, University of Jan Evangelista Purkyně in Ústí nad Labem, Pasteurova 1, 400 96 Ústí nad Labem, Czech Republic
| | - Petra Cuřínová
- The Czech Academy of Sciences, Institute of Chemical Process Fundamentals, Rozvojová 135, 165 02 Prague, Czech Republic
- Faculty of Science, University of Jan Evangelista Purkyně in Ústí nad Labem, Pasteurova 1, 400 96 Ústí nad Labem, Czech Republic
| | - Kateřina Nováková
- The Czech Academy of Sciences, Institute of Organic Chemistry and Biochemistry, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Matěj Božík
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Praha-Suchdol, Czech Republic
| | - Marek Malý
- Faculty of Science, University of Jan Evangelista Purkyně in Ústí nad Labem, Pasteurova 1, 400 96 Ústí nad Labem, Czech Republic
| | - Jan Malý
- Faculty of Science, University of Jan Evangelista Purkyně in Ústí nad Labem, Pasteurova 1, 400 96 Ústí nad Labem, Czech Republic
| | - João Rodrigues
- CQM-Centro de Química da Madeira, Universidade da Madeira Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Tomáš Strašák
- The Czech Academy of Sciences, Institute of Chemical Process Fundamentals, Rozvojová 135, 165 02 Prague, Czech Republic
- Faculty of Science, University of Jan Evangelista Purkyně in Ústí nad Labem, Pasteurova 1, 400 96 Ústí nad Labem, Czech Republic
| |
Collapse
|
9
|
Müllerová M, Maciel D, Nunes N, Wrobel D, Stofik M, Červenková Št́astná L, Krupková A, Cuřínová P, Nováková K, Božík M, Malý M, Malý J, Rodrigues J, Strašák T. Carbosilane Glycodendrimers for Anticancer Drug Delivery: Synthetic Route, Characterization, and Biological Effect of Glycodendrimer–Doxorubicin Complexes. Biomacromolecules 2021. [DOI: https://doi.org/10.1021/acs.biomac.1c01264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Monika Müllerová
- The Czech Academy of Sciences, Institute of Chemical Process Fundamentals, Rozvojová 135, 165 02 Prague, Czech Republic
- Faculty of Science, University of Jan Evangelista Purkyně in Ústí nad Labem, Pasteurova 1, 400 96 Ústí nad Labem, Czech Republic
| | - Dina Maciel
- CQM-Centro de Química da Madeira, Universidade da Madeira Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Nádia Nunes
- CQM-Centro de Química da Madeira, Universidade da Madeira Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Dominika Wrobel
- Faculty of Science, University of Jan Evangelista Purkyně in Ústí nad Labem, Pasteurova 1, 400 96 Ústí nad Labem, Czech Republic
| | - Marcel Stofik
- Faculty of Science, University of Jan Evangelista Purkyně in Ústí nad Labem, Pasteurova 1, 400 96 Ústí nad Labem, Czech Republic
| | - Lucie Červenková Št́astná
- The Czech Academy of Sciences, Institute of Chemical Process Fundamentals, Rozvojová 135, 165 02 Prague, Czech Republic
- Faculty of Science, University of Jan Evangelista Purkyně in Ústí nad Labem, Pasteurova 1, 400 96 Ústí nad Labem, Czech Republic
| | - Alena Krupková
- The Czech Academy of Sciences, Institute of Chemical Process Fundamentals, Rozvojová 135, 165 02 Prague, Czech Republic
- Faculty of Science, University of Jan Evangelista Purkyně in Ústí nad Labem, Pasteurova 1, 400 96 Ústí nad Labem, Czech Republic
| | - Petra Cuřínová
- The Czech Academy of Sciences, Institute of Chemical Process Fundamentals, Rozvojová 135, 165 02 Prague, Czech Republic
- Faculty of Science, University of Jan Evangelista Purkyně in Ústí nad Labem, Pasteurova 1, 400 96 Ústí nad Labem, Czech Republic
| | - Kateřina Nováková
- The Czech Academy of Sciences, Institute of Organic Chemistry and Biochemistry, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Matěj Božík
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Praha-Suchdol, Czech Republic
| | - Marek Malý
- Faculty of Science, University of Jan Evangelista Purkyně in Ústí nad Labem, Pasteurova 1, 400 96 Ústí nad Labem, Czech Republic
| | - Jan Malý
- Faculty of Science, University of Jan Evangelista Purkyně in Ústí nad Labem, Pasteurova 1, 400 96 Ústí nad Labem, Czech Republic
| | - João Rodrigues
- CQM-Centro de Química da Madeira, Universidade da Madeira Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Tomáš Strašák
- The Czech Academy of Sciences, Institute of Chemical Process Fundamentals, Rozvojová 135, 165 02 Prague, Czech Republic
- Faculty of Science, University of Jan Evangelista Purkyně in Ústí nad Labem, Pasteurova 1, 400 96 Ústí nad Labem, Czech Republic
| |
Collapse
|
10
|
Salvadori K, Krupková A, Šťastná LČ, Müllerová M, Eigner V, Strašák T, Cuřínová P. Controlled Anchoring of (Phenylureido)sulfonamide-Based Receptor Moieties: An Impact of Binding Site Multiplication on Complexation Properties. Molecules 2021; 26:5670. [PMID: 34577148 PMCID: PMC8468139 DOI: 10.3390/molecules26185670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/10/2021] [Accepted: 09/15/2021] [Indexed: 12/04/2022] Open
Abstract
The repetition of urea-based binding units within the receptor structure does not only lead to monomer properties multiplication. As confirmed by spectroscopic studies, UV-Vis and 1H-NMR in classical or competitive titration mode, the attachment to a carrier allocates the active moieties to mutual positions predetermining the function of the whole receptor molecule. Bivalent receptors form self-aggregates. Dendritic receptors with low dihydrogen phosphate loadings offer a cooperative complexation mode associated with a positive dendritic effect. In higher dihydrogen phosphate concentrations, the dendritic branches act independently and the binding mode changes to 1:1 anion: complexation site. Despite the anchoring, the dendritic receptors retain the superior efficiency and selectivity of a monomer, paving the way to recyclable receptors, desirable for economic and ecological reasons.
Collapse
Affiliation(s)
- Karolína Salvadori
- Institute of Chemical Process Fundamentals of CAS, v.v.i., Rozvojová 135, 16502 Prague 6, Czech Republic; (K.S.); (A.K.); (L.Č.Š.); (M.M.); (T.S.)
- Department of Solid State Chemistry, University of Chemistry and Technology Prague, Technická 5, 16828 Prague 6, Czech Republic;
| | - Alena Krupková
- Institute of Chemical Process Fundamentals of CAS, v.v.i., Rozvojová 135, 16502 Prague 6, Czech Republic; (K.S.); (A.K.); (L.Č.Š.); (M.M.); (T.S.)
| | - Lucie Červenková Šťastná
- Institute of Chemical Process Fundamentals of CAS, v.v.i., Rozvojová 135, 16502 Prague 6, Czech Republic; (K.S.); (A.K.); (L.Č.Š.); (M.M.); (T.S.)
| | - Monika Müllerová
- Institute of Chemical Process Fundamentals of CAS, v.v.i., Rozvojová 135, 16502 Prague 6, Czech Republic; (K.S.); (A.K.); (L.Č.Š.); (M.M.); (T.S.)
| | - Václav Eigner
- Department of Solid State Chemistry, University of Chemistry and Technology Prague, Technická 5, 16828 Prague 6, Czech Republic;
| | - Tomáš Strašák
- Institute of Chemical Process Fundamentals of CAS, v.v.i., Rozvojová 135, 16502 Prague 6, Czech Republic; (K.S.); (A.K.); (L.Č.Š.); (M.M.); (T.S.)
| | - Petra Cuřínová
- Institute of Chemical Process Fundamentals of CAS, v.v.i., Rozvojová 135, 16502 Prague 6, Czech Republic; (K.S.); (A.K.); (L.Č.Š.); (M.M.); (T.S.)
| |
Collapse
|
11
|
Micro and Nano Plastics Distribution in Fish as Model Organisms: Histopathology, Blood Response and Bioaccumulation in Different Organs. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11135768] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Micro- and nano-plastic (MP/NP) pollution represents a threat not only to marine organisms and ecosystems, but also a danger for humans. The effects of these small particles resulting from the fragmentation of waste of various types have been well documented in mammals, although the consequences of acute and chronic exposure are not fully known yet. In this review, we summarize the recent results related to effects of MPs/NPs in different species of fish, both saltwater and freshwater, including zebrafish, used as model organisms for the evaluation of human health risk posed by MNPs. The expectation is that discoveries made in the model will provide insight regarding the risks of plastic particle toxicity to human health, with a focus on the effect of long-term exposure at different levels of biological complexity in various tissues and organs, including the brain. The current scientific evidence shows that plastic particle toxicity depends not only on factors such as particle size, concentration, exposure time, shape, and polymer type, but also on co-factors, which make the issue extremely complex. We describe and discuss the possible entry pathways of these particles into the fish body, as well as their uptake mechanisms and bioaccumulation in different organs and the role of blood response (hematochemical and hematological parameters) as biomarkers of micro- and nano-plastic water pollution.
Collapse
|
12
|
Cuřínová P, Winkler M, Krupková A, Císařová I, Budka J, Wun CN, Blechta V, Malý M, Červenková Št’astná L, Sýkora J, Strašák T. Transport of Anions across the Dialytic Membrane Induced by Complexation toward Dendritic Receptors. ACS OMEGA 2021; 6:15514-15522. [PMID: 34151129 PMCID: PMC8210436 DOI: 10.1021/acsomega.1c02142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 05/20/2021] [Indexed: 06/13/2023]
Abstract
A novel approach to inducing anion transport over the dialytic membrane was proposed and successfully tested using the dihydrogen phosphate anion. The anion receptor based on isophthalamide was anchored on a dendritic skeleton, resulting in a macromolecular structure with a limited possibility to cross the dialytic membrane. The dendritic receptor was placed in a compartment separated from a mother anion solution by a membrane. The resulting anion complexation reduced the actual concentration of the anion and induced the anion transfer across the membrane. The anion concentration in mother solution decreased, while it was found to be increased in the compartment with the dendritic receptor. This phenomenon was observed using dendritic receptors with four and eight complexation sites. A detailed analysis of a series of dialytic experiments by 1H NMR spectroscopy enabled an assessment of the complexation behavior of both receptors and an evaluation of the dendritic effect on the anion complexation.
Collapse
Affiliation(s)
- Petra Cuřínová
- Institute
of Chemical Process Fundamentals of CAS v.v.i., Rozvojová 135, Prague 6 165 02, Czech Republic
- Faculty
of Science, J. E. Purkyně University, České mládeže
8, Ùstí nad Labem 400 96, Czech Republic
| | - Maximilian Winkler
- Institute
of Chemical Process Fundamentals of CAS v.v.i., Rozvojová 135, Prague 6 165 02, Czech Republic
| | - Alena Krupková
- Institute
of Chemical Process Fundamentals of CAS v.v.i., Rozvojová 135, Prague 6 165 02, Czech Republic
- Faculty
of Science, J. E. Purkyně University, České mládeže
8, Ùstí nad Labem 400 96, Czech Republic
| | - Ivana Císařová
- Department
of Inorganic Chemistry, Faculty of Sciences, Charles University, Hlavova 2030, Prague 2 128 40, Czech Republic
| | - Jan Budka
- Department
of Organic Chemistry, University of Chemistry
and Technology Prague, Technická 5, Prague 6 166 28, Czech Republic
| | - Chang Nga Wun
- Department
of Organic Chemistry, University of Chemistry
and Technology Prague, Technická 5, Prague 6 166 28, Czech Republic
| | - Vratislav Blechta
- Institute
of Chemical Process Fundamentals of CAS v.v.i., Rozvojová 135, Prague 6 165 02, Czech Republic
| | - Marek Malý
- Faculty
of Science, J. E. Purkyně University, České mládeže
8, Ùstí nad Labem 400 96, Czech Republic
| | - Lucie Červenková Št’astná
- Institute
of Chemical Process Fundamentals of CAS v.v.i., Rozvojová 135, Prague 6 165 02, Czech Republic
- Faculty
of Science, J. E. Purkyně University, České mládeže
8, Ùstí nad Labem 400 96, Czech Republic
| | - Jan Sýkora
- Institute
of Chemical Process Fundamentals of CAS v.v.i., Rozvojová 135, Prague 6 165 02, Czech Republic
| | - Tomáš Strašák
- Institute
of Chemical Process Fundamentals of CAS v.v.i., Rozvojová 135, Prague 6 165 02, Czech Republic
- Faculty
of Science, J. E. Purkyně University, České mládeže
8, Ùstí nad Labem 400 96, Czech Republic
| |
Collapse
|
13
|
Eliso MC, Bergami E, Manfra L, Spagnuolo A, Corsi I. Toxicity of nanoplastics during the embryogenesis of the ascidian Ciona robusta (Phylum Chordata). Nanotoxicology 2020; 14:1415-1431. [PMID: 33186509 DOI: 10.1080/17435390.2020.1838650] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Nanoplastics are considered contaminants of emerging concern at the global scale. The recent evidence of their occurrence in seawater from the Mediterranean Sea calls for a thorough evaluation of their impact on marine life and in particular on vulnerable life stages such as planktonic embryos. Here, we investigated the impact of increasing nominal concentrations of 50 nm amino-modified (PS-NH2) and 60 nm carboxy-modified (PS-COOH) polystyrene nanoparticles (PS NPs) on the embryonic development of the ascidian Ciona robusta (phylum Chordata), a common benthic invertebrate living in Mediterranean coastal areas with the peculiarity of being an early chordate developmental model. A strong agglomeration of PS-COOH (approx. 1 µm) was observed in natural sea water (NSW) already at time 0, while PS-NH2 resulted still monodispersed (approx. 130 nm) but largely aggregated after 22 h with a microscale dimension similar to those negatively charged. However, their effect on C. robusta embryos development largely differed at 22 h: PS-COOH did not affect larvae phenotypes nor their development, while PS-NH2 caused a dose-dependent effect (EC50 (22 h) of 7.52 μg mL-1) with various degrees of phenotype malformations (from mild to severe) and impairment of larval swimming. Embryos (up to 30%) exposed to 15 µg mL-1 PS-NH2 resulted not developed and the majority was unable to hatch. Calculated PS-NH2 EC50 resulted higher than those available for other marine invertebrate species, suggesting a protective role of the egg envelopes surrounding C. robusta embryos toward nanoplastics exposure.
Collapse
Affiliation(s)
- Maria Concetta Eliso
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, Italy.,Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Elisa Bergami
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, Italy
| | - Loredana Manfra
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Naples, Italy.,Institute for Environmental Protection and Research (ISPRA), Rome, Italy
| | - Antonietta Spagnuolo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, Italy
| |
Collapse
|
14
|
Duan Z, Duan X, Zhao S, Wang X, Wang J, Liu Y, Peng Y, Gong Z, Wang L. Barrier function of zebrafish embryonic chorions against microplastics and nanoplastics and its impact on embryo development. JOURNAL OF HAZARDOUS MATERIALS 2020; 395:122621. [PMID: 32289630 DOI: 10.1016/j.jhazmat.2020.122621] [Citation(s) in RCA: 165] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/15/2020] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
Embryonic stage is important for the development of aquatic animals, and embryonic chorion is an efficient barrier against exogenous pollutants. The efficient barrier function of zebrafish (Danio rerio) embryonic chorions against micro- and nano- polystyrene (PS) particles was observed. Embryonic chorions presented high affinity to PS particles. The covering layer of PS particles on the outer surface of chorions affected the patency of pores in chorions, and the nano- PS particles exerted a considerable effect. The accelerated heart rate and blood flow velocity in the embryos indicated that the PS particles adhering to embryonic chorions might cause an internal hypoxic microenvironment in the embryos. The coating of PS particles on embryonic chorions also resulted in delayed hatching of the embryos. The observed development toxicity induced by the nano- and micro-PS particles was confirmed via the expressions of metabolic pathways related to antioxidant system. The pathways of biosynthesis of unsaturated fatty acid, linoleic acid metabolism and alanine, and aspartate and glutamate metabolism extensively altered when the embryos were exposed to PS particles, especially to the nano- PS particles. Although micro- and nano- plastic particles can be efficiently blocked by embryonic chorions, they can still affect the early development of aquatic organisms.
Collapse
Affiliation(s)
- Zhenghua Duan
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Xinyue Duan
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Shuang Zhao
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Xiaoli Wang
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Jiao Wang
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Yubin Liu
- Ministry of Education, Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Yawen Peng
- Ministry of Education, Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Lei Wang
- Ministry of Education, Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
15
|
Zhang J, Teng F, Tang S, Zhang Y, Guo Y, Li J, Li Y, Zhang C, Xiong L. The Effect of Polymer Dots During Mammalian Early Embryo Development and Their Biocompatibility on Maternal Health. Macromol Biosci 2020; 20:e2000128. [PMID: 32567242 DOI: 10.1002/mabi.202000128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/23/2020] [Indexed: 12/19/2022]
Abstract
Conjugated polymer dots have excellent fluorescence properties in terms of their structural diversity and functional design, showing broad application prospects in the fields of biological imaging and biosensing. Polymer dots contain no heavy metals and are thought to be of low toxicity and good biocompatibility. Therefore, systematic studies on their potential toxicity are needed. Herein, the biocompatibility of poly[(9,9-dioctylfluorenyl-2,7diyl)-co-(1,4-benzo-{2,1',3}-thiadiazole)],10% benzothiadiazole(y) (PFBT) and poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) polymer dots on early embryo development as well as maternal health is studied in detail. The results show that prepared polymer dots are dose-dependently toxic to preimplantation embryos, and low-dose polymer dots can be used for cell labeling of early embryos without affecting the normal development of embryos into blastocysts. In addition, the in vivo distribution data show that the polymer dots accumulate mainly in the maternal liver, spleen, kidney, placenta, ovary, and lymph nodes of the pregnant mice. Histopathological examination and blood biochemical tests demonstrate that exposure of the maternal body to polymer dots at a dosage of 14 µg g-1 does not affect the normal function of the maternal organs and early fetal development. The research provides a safe basis for the wide application of polymer dots.
Collapse
Affiliation(s)
- Juxiang Zhang
- Shanghai Med-X Engineering Center for Medical Equipment and Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Fei Teng
- Shanghai Med-X Engineering Center for Medical Equipment and Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Shiyi Tang
- Shanghai Med-X Engineering Center for Medical Equipment and Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Yufan Zhang
- Shanghai Med-X Engineering Center for Medical Equipment and Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Yixiao Guo
- Shanghai Med-X Engineering Center for Medical Equipment and Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Jingru Li
- Shanghai Med-X Engineering Center for Medical Equipment and Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Yuqiao Li
- Shanghai Med-X Engineering Center for Medical Equipment and Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Chunfu Zhang
- Shanghai Med-X Engineering Center for Medical Equipment and Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Liqin Xiong
- Shanghai Med-X Engineering Center for Medical Equipment and Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| |
Collapse
|
16
|
Glucose-modified carbosilane dendrimers: Interaction with model membranes and human serum albumin. Int J Pharm 2020; 579:119138. [PMID: 32061725 DOI: 10.1016/j.ijpharm.2020.119138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 02/07/2020] [Accepted: 02/11/2020] [Indexed: 12/29/2022]
Abstract
Glycodendrimers are a novel group of dendrimers (DDMs) characterized by surface modifications with various types of glycosides. It has been shown previously that such modifications significantly decrease the cytotoxicity of DDMs. Here, we present an investigation of glucose-modified carbosilane DDMs (first-third-generation, DDM1-3Glu) interactions with two models of biological structures: lipid membranes (liposomes) and serum protein (human serum albumin, HSA). The changes in lipid membrane fluidity with increasing concentration of DDMs was monitored by spectrofluorimetry and calorimetry methods. The influence of glycodendrimers on serum protein was investigated by monitoring changes in protein fluorescence intensity (fluorescence quenching) and as protein secondary structure alterations by circular dichroism spectrometry. Generally, all generations of DDMGlu induced a decrease of membrane fluidity and interacted weakly with HSA. Interestingly, in contrast to other dendritic type polymers, the extent of the DDM interaction with both biological models was not related to DDM generation. The most significant interaction with protein was shown in the case of DDM2Glu, whereas DDM1Glu induced the highest number of changes in membrane fluidity. In conclusion, our results suggest that the flexibility of a DDM molecule, as well as its typical structure (hydrophobic interior and hydrophilic surface) along with the formation of larger aggregates of DDM2-3Glu, significantly affect the type and extent of interaction with biological structures.
Collapse
|
17
|
Comprehensive Toxicity Assessment of PEGylated Magnetic Nanoparticles for in vivo applications. Colloids Surf B Biointerfaces 2019; 177:253-259. [PMID: 30763790 DOI: 10.1016/j.colsurfb.2019.01.051] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/22/2019] [Accepted: 01/24/2019] [Indexed: 01/21/2023]
Abstract
Magnetic nanoparticles (MNPs) represent one of the greatest promises for the development of a new generation of diagnostic agents for magnetic resonance imaging, with improved specificity and safety. Indeed, during the last decade the number of studies published in this field has grown exponentially. However, the clinical translation achieved so far has been very limited. This situation is likely related to the fact that most studies are focused on the in vitro characterization of these new nanomaterials, and very few provide an exhaustive in vivo characterization, where key aspects, such as pharmacokinetics, bioavailability, and, most importantly, toxicity, are properly evaluated. In this work, we propose a protocol for the comprehensive assessment of the toxicity of MNPs, based on the use of zebrafish embryos as an intermediate screening step between cell culture assays and studies in rodents. MNPs with different cores, ferrite and manganese ferrite oxide, and sizes between 3 and 20 nm, were evaluated. Cell viability at a concentration of 50 μg/mL of PEGylated MNPs was above 90 % in all cases. However, the exposure of zebrafish embryos to manganese based MNPs at concentrations above 100 μg/mL showed a low survival rate (<50 %). In contrast, no mortality (survival rate ∼100 %) and normal hatching rate were obtained for the iron oxide MNPs. Based on these results, together with the physicochemical and magnetic properties (r2 = 153.6 mM-1·s-1), the PEGylated 20 nm cubic shape iron oxide MNPs were selected and tested in mice, showing very good MRI contrast and, as expected, absence of toxicity.
Collapse
|