1
|
Bortolami FP, Zuma AA, de Souza W, Motta MCM. Plant-derived compounds that target histone acetyltransferases inhibit Trypanosoma cruzi proliferation and viability and affect parasite ultrastructure. Micron 2024; 188:103729. [PMID: 39432977 DOI: 10.1016/j.micron.2024.103729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/02/2024] [Accepted: 10/15/2024] [Indexed: 10/23/2024]
Abstract
Trypanosoma cruzi, the causative agent of Chagas disease, exhibits a chromatin structure and organization similar to that of other eukaryotes, undergoing certain epigenetic modifications, such as histone acetylation and deacetylation. Histone acetyltransferase inhibitors have been frequently applied as therapy agents against tumor cells, but their effects on protozoa have not yet been adequately explored. In this study, the effects of three acetyltransferase inhibitors, curcumin, triptolide and anacardic acid, were investigated on T. cruzi. Curcumin was able to inhibit epimastigote and amastigote proliferation and was the most effective compound. Triptolide also impaired T. cruzi proliferation and, along with curcumin, promoted the unpacking of nuclear heterochromatin and nucleolus disorganization. Anacardic acid did not alter parasite growth or viability, but caused ultrastructural changes, such as mitochondrial swelling and cristae enlargement. None of these compounds affected the microtubule cytoskeleton. These findings indicate that histone acetyltransferase inhibitors, especially curcumin, display the potential to be applied in chemotherapeutic studies against T. cruzi. Our results reinforce the necessity of developing new compounds that can be used successfully in therapy against neglected diseases.
Collapse
Affiliation(s)
- Fernanda Pereira Bortolami
- Laboratório de Ultraestrutura Celular Hertha Meyer, Centro de Pesquisa em Medicina de Precisão (CPMP), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro-UFRJ, Rio de Janeiro, RJ 21491-590, Brazil
| | - Aline Araujo Zuma
- Laboratório de Ultraestrutura Celular Hertha Meyer, Centro de Pesquisa em Medicina de Precisão (CPMP), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro-UFRJ, Rio de Janeiro, RJ 21491-590, Brazil.
| | - Wanderley de Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Centro de Pesquisa em Medicina de Precisão (CPMP), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro-UFRJ, Rio de Janeiro, RJ 21491-590, Brazil; Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, RJ, Brazil
| | - Maria Cristina Machado Motta
- Laboratório de Ultraestrutura Celular Hertha Meyer, Centro de Pesquisa em Medicina de Precisão (CPMP), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro-UFRJ, Rio de Janeiro, RJ 21491-590, Brazil; Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, RJ, Brazil
| |
Collapse
|
2
|
Batista DDGJ, de Almeida Fiuza LF, Klupsch F, da Costa KN, Batista MM, da Conceição K, Bouafia H, Vergoten G, Millet R, Thuru X, Bailly C, Soeiro MDNC. Activity of pyridyl-pyrazolone derivatives against Trypanosoma cruzi. Exp Parasitol 2024; 262:108787. [PMID: 38759776 DOI: 10.1016/j.exppara.2024.108787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 04/08/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
New affordable drugs are needed for the treatment of infection with the protozoan parasite Trypanosoma cruzi responsible for the Chagas disease (CD). Only two old drugs are currently available, nifurtimox and benznidazole (Bz) but they exhibit unwanted side effects and display a weak activity in the late chronic phase of the disease. In this context, we evaluated the activity of a series of aryl-pyrazolone derivatives against T cruzi, using both bloodstream trypomastigote and intracellular amastigote forms of the parasite. The test compounds originate from a series of anticancer agents targeting the immune checkpoint ligand PD-L1 and bear an analogy with known anti-trypanosomal pyrazolones. A first group of 6 phenyl-pyrazolones was tested, revealing the activity of a single pyridyl-pyrazolone derivative. Then a second group of 8 compounds with a common pyridyl-pyrazolone core was evaluated. The in vitro testing process led to the identification of two non-cytotoxic and highly potent molecules against the intracellular form of T. cruzi, with an activity comparable to Bz. Moreover, one compound revealed an activity largely superior to that of Bz against bloodstream trypomastigotes, while being non-cytotoxic (selectivity index >1000). Unfortunately, the compound showed little activity in vivo, most likely due to its very limited plasma stability. However, the study opens novel perspectives for the design of new anti-trypanosomal products and the mechanism of action of the compounds is discussed.
Collapse
Affiliation(s)
- Denise da Gama Jaen Batista
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, 210360-040, Brazil
| | | | - Frédérique Klupsch
- U1286-INFINITE-Institute for Translational Research in Inflammation, ICPAL, Inserm, University Lille, 59000, Lille, France
| | - Krislayne Nunes da Costa
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, 210360-040, Brazil
| | - Marcos Meuser Batista
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, 210360-040, Brazil
| | - Ketlym da Conceição
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, 210360-040, Brazil
| | - Hassiba Bouafia
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020 - UMR1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, 59000, Lille, France
| | - Gérard Vergoten
- U1286-INFINITE-Institute for Translational Research in Inflammation, ICPAL, Inserm, University Lille, 59000, Lille, France
| | - Régis Millet
- U1286-INFINITE-Institute for Translational Research in Inflammation, ICPAL, Inserm, University Lille, 59000, Lille, France
| | - Xavier Thuru
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020 - UMR1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, 59000, Lille, France
| | - Christian Bailly
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020 - UMR1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, 59000, Lille, France; University of Lille, Faculty of Pharmacy, Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL), 59000, Lille, France.
| | - Maria de Nazaré Correia Soeiro
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, 210360-040, Brazil.
| |
Collapse
|
3
|
Torchelsen FKVDS, Mazzeti AL, Mosqueira VCF. Drugs in preclinical and early clinical development for the treatment of Chagas´s disease: the current status. Expert Opin Investig Drugs 2024; 33:575-590. [PMID: 38686546 DOI: 10.1080/13543784.2024.2349289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/25/2024] [Indexed: 05/02/2024]
Abstract
INTRODUCTION Chagas disease is spreading faster than expected in different countries, and little progress has been reported in the discovery of new drugs to combat Trypanosoma cruzi infection in humans. Recent clinical trials have ended with small hope. The pathophysiology of this neglected disease and the genetic diversity of parasites are exceptionally complex. The only two drugs available to treat patients are far from being safe, and their efficacy in the chronic phase is still unsatisfactory. AREAS COVERED This review offers a comprehensive examination and critical review of data reported in the last 10 years, and it is focused on findings of clinical trials and data acquired in vivo in preclinical studies. EXPERT OPINION The in vivo investigations classically in mice and dog models are also challenging and time-consuming to attest cure for infection. Poorly standardized protocols, availability of diagnosis methods and disease progression markers, the use of different T. cruzi strains with variable benznidazole sensitivities, and animals in different acute and chronic phases of infection contribute to it. More synchronized efforts between research groups in this field are required to put in evidence new promising substances, drug combinations, repurposing strategies, and new pharmaceutical formulations to impact the therapy.
Collapse
Affiliation(s)
- Fernanda Karoline Vieira da Silva Torchelsen
- School of Pharmacy, Federal University of Ouro Preto, Ouro Preto, Brazil
- Post-Graduation Program in Pharmaceutical Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Ana Lia Mazzeti
- Department of Biomedical Sciences and Health, Academic Unit of Passos, University of Minas Gerais State, Passos, Brazil
| | | |
Collapse
|
4
|
Trometer N, Pecourneau J, Feng L, Navarro-Huerta JA, Lazarin-Bidóia D, de Oliveira Silva Lautenschlager S, Maes L, Fortes Francisco A, Kelly JM, Meunier B, Cal M, Mäser P, Kaiser M, Davioud-Charvet E. Synthesis and Anti-Chagas Activity Profile of a Redox-Active Lead 3-Benzylmenadione Revealed by High-Content Imaging. ACS Infect Dis 2024; 10:1808-1838. [PMID: 38606978 DOI: 10.1021/acsinfecdis.4c00137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Chagas disease, or American trypanosomiasis, is a neglected tropical disease which is a top priority target of the World Health Organization. The disease, endemic mainly in Latin America, is caused by the protozoan Trypanosoma cruzi and has spread around the globe due to human migration. There are multiple transmission routes, including vectorial, congenital, oral, and iatrogenic. Less than 1% of patients have access to treatment, relying on two old redox-active drugs that show poor pharmacokinetics and severe adverse effects. Hence, the priorities for the next steps of R&D include (i) the discovery of novel drugs/chemical classes, (ii) filling the pipeline with drug candidates that have new mechanisms of action, and (iii) the pressing need for more research and access to new chemical entities. In the present work, we first identified a hit (4a) with a potent anti-T. cruzi activity from a library of 3-benzylmenadiones. We then designed a synthetic strategy to build a library of 49 3-(4-monoamino)benzylmenadione derivatives via reductive amination to obtain diazacyclic benz(o)ylmenadiones. Among them, we identified by high content imaging an anti-amastigote "early lead" 11b (henceforth called cruzidione) revealing optimized pharmacokinetic properties and enhanced specificity. Studies in a yeast model revealed that a cruzidione metabolite, the 3-benzoylmenadione (cruzidione oxide), enters redox cycling with the NADH-dehydrogenase, generating reactive oxygen species, as hypothesized for the early hit (4a).
Collapse
Affiliation(s)
- Nathan Trometer
- UMR7042 CNRS-Unistra-UHA, Laboratoire d'Innovation Moléculaire et Applications (LIMA), Bio(in)organic & Medicinal Chemistry Team, European School of Chemistry, Polymers and Materials (ECPM), 25, rue Becquerel, F-67087 Strasbourg, France
| | - Jérémy Pecourneau
- UMR7042 CNRS-Unistra-UHA, Laboratoire d'Innovation Moléculaire et Applications (LIMA), Bio(in)organic & Medicinal Chemistry Team, European School of Chemistry, Polymers and Materials (ECPM), 25, rue Becquerel, F-67087 Strasbourg, France
| | - Liwen Feng
- UMR7042 CNRS-Unistra-UHA, Laboratoire d'Innovation Moléculaire et Applications (LIMA), Bio(in)organic & Medicinal Chemistry Team, European School of Chemistry, Polymers and Materials (ECPM), 25, rue Becquerel, F-67087 Strasbourg, France
| | - José A Navarro-Huerta
- UMR7042 CNRS-Unistra-UHA, Laboratoire d'Innovation Moléculaire et Applications (LIMA), Bio(in)organic & Medicinal Chemistry Team, European School of Chemistry, Polymers and Materials (ECPM), 25, rue Becquerel, F-67087 Strasbourg, France
| | - Danielle Lazarin-Bidóia
- Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos, Departamento de Ciências Básicas da Saúde, Universidade Estadual de Maringá, CEP 87020-900 Paraná, Brazil
| | - Sueli de Oliveira Silva Lautenschlager
- Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos, Departamento de Ciências Básicas da Saúde, Universidade Estadual de Maringá, CEP 87020-900 Paraná, Brazil
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, CDE-S7.27 Universiteitsplein 1, B-2610 Antwerp, Belgium
| | - Amanda Fortes Francisco
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - John M Kelly
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Brigitte Meunier
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, F-91198 Gif-sur-Yvette cedex, France
| | - Monica Cal
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, CH-4123 Allschwil, Switzerland
- University of Basel, Petersgraben 1, CH-4001 Basel, Switzerland
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, CH-4123 Allschwil, Switzerland
- University of Basel, Petersgraben 1, CH-4001 Basel, Switzerland
| | - Marcel Kaiser
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, CH-4123 Allschwil, Switzerland
- University of Basel, Petersgraben 1, CH-4001 Basel, Switzerland
| | - Elisabeth Davioud-Charvet
- UMR7042 CNRS-Unistra-UHA, Laboratoire d'Innovation Moléculaire et Applications (LIMA), Bio(in)organic & Medicinal Chemistry Team, European School of Chemistry, Polymers and Materials (ECPM), 25, rue Becquerel, F-67087 Strasbourg, France
| |
Collapse
|
5
|
Berhe H, Kumar Cinthakunta Sridhar M, Zerihun M, Qvit N. The Potential Use of Peptides in the Fight against Chagas Disease and Leishmaniasis. Pharmaceutics 2024; 16:227. [PMID: 38399281 PMCID: PMC10892537 DOI: 10.3390/pharmaceutics16020227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/28/2023] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Chagas disease and leishmaniasis are both neglected tropical diseases that affect millions of people around the world. Leishmaniasis is currently the second most widespread vector-borne parasitic disease after malaria. The World Health Organization records approximately 0.7-1 million newly diagnosed leishmaniasis cases each year, resulting in approximately 20,000-30,000 deaths. Also, 25 million people worldwide are at risk of Chagas disease and an estimated 6 million people are infected with Trypanosoma cruzi. Pentavalent antimonials, amphotericin B, miltefosine, paromomycin, and pentamidine are currently used to treat leishmaniasis. Also, nifurtimox and benznidazole are two drugs currently used to treat Chagas disease. These drugs are associated with toxicity problems such as nephrotoxicity and cardiotoxicity, in addition to resistance problems. As a result, the discovery of novel therapeutic agents has emerged as a top priority and a promising alternative. Overall, there is a need for new and effective treatments for Chagas disease and leishmaniasis, as the current drugs have significant limitations. Peptide-based drugs are attractive due to their high selectiveness, effectiveness, low toxicity, and ease of production. This paper reviews the potential use of peptides in the treatment of Chagas disease and leishmaniasis. Several studies have demonstrated that peptides are effective against Chagas disease and leishmaniasis, suggesting their use in drug therapy for these diseases. Overall, peptides have the potential to be effective therapeutic agents against Chagas disease and leishmaniasis, but more research is needed to fully investigate their potential.
Collapse
Affiliation(s)
| | | | | | - Nir Qvit
- The Azrieli Faculty of Medicine in the Galilee, Bar-Ilan University, Safed 1311502, Israel; (H.B.); (M.K.C.S.); (M.Z.)
| |
Collapse
|
6
|
Jia H, Hu L, Zhang J, Huang X, Jiang Y, Dong G, Liu C, Liu X, Kim M, Zhan P. Recent advances of phenotypic screening strategies in the application of anti-influenza virus drug discovery. RSC Med Chem 2024; 15:70-80. [PMID: 38283223 PMCID: PMC10809416 DOI: 10.1039/d3md00513e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/07/2023] [Indexed: 01/30/2024] Open
Abstract
Seasonal and pandemic influenza virus infections not only pose a serious threat to human health but also cause tremendous economic losses and social burdens. However, due to the inherent high variability of influenza virus RNA genomes, the existing anti-influenza virus drugs have been frequently faced with the clinical issue of emerging drug-resistant mutants. Therefore, there is an urgent need to develop efficient and broad-spectrum antiviral agents against wild-type and drug-resistant mutant strains. Phenotypic screening has been widely employed as a reliable strategy to evaluate antiviral efficacy of novel agents independent of their modes of action, either directly targeting viral proteins or regulating cellular factors involved in the virus life cycle. Here, from the point of view of medicinal chemistry, we review the research progress of phenotypic screening strategies by focusing direct acting antivirals against influenza virus. It could provide scientific insights into discovery of a distinctive class of therapeutic candidates that ensure high efficiency but low cytotoxicity, and address issues from circulation of drug-resistant influenza viruses in the future.
Collapse
Affiliation(s)
- Huinan Jia
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University 44 West Culture Road 250012 Jinan Shandong P.R. China
| | - Lide Hu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University 44 West Culture Road 250012 Jinan Shandong P.R. China
| | - Jiwei Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University 44 West Culture Road 250012 Jinan Shandong P.R. China
| | - Xing Huang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University 44 West Culture Road 250012 Jinan Shandong P.R. China
| | - Yuanmin Jiang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University 44 West Culture Road 250012 Jinan Shandong P.R. China
| | - Guanyu Dong
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University 44 West Culture Road 250012 Jinan Shandong P.R. China
| | - Chuanfeng Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University 44 West Culture Road 250012 Jinan Shandong P.R. China
- Suzhou Research Institute of Shandong University Room 607, Building B of NUSP, No. 388 Ruoshui Road, SIP Suzhou Jiangsu 215123 P.R. China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University 44 West Culture Road 250012 Jinan Shandong P.R. China
| | - Meehyein Kim
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT) Daejeon 34114 Korea
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University 44 West Culture Road 250012 Jinan Shandong P.R. China
| |
Collapse
|
7
|
García-Torres I, De la Mora-De la Mora I, López-Velázquez G, Cabrera N, Flores-López LA, Becker I, Herrera-López J, Hernández R, Pérez-Montfort R, Enríquez-Flores S. Repurposing of rabeprazole as an anti- Trypanosoma cruzi drug that targets cellular triosephosphate isomerase. J Enzyme Inhib Med Chem 2023; 38:2231169. [PMID: 37401012 PMCID: PMC10351538 DOI: 10.1080/14756366.2023.2231169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/23/2023] [Accepted: 06/25/2023] [Indexed: 07/05/2023] Open
Abstract
Trypanosoma cruzi is the causative agent of American trypanosomiasis, which mainly affects populations in Latin America. Benznidazole is used to control the disease, with severe effects in patients receiving this chemotherapy. Previous studies have demonstrated the inhibition of triosephosphate isomerase from T. cruzi, but cellular enzyme inhibition has yet to be established. This study demonstrates that rabeprazole inhibits both cell viability and triosephosphate isomerase activity in T. cruzi epimastigotes. Our results show that rabeprazole has an IC50 of 0.4 µM, which is 14.5 times more effective than benznidazole. Additionally, we observed increased levels of methyl-glyoxal and advanced glycation end products after the inhibition of cellular triosephosphate isomerase by rabeprazole. Finally, we demonstrate that the inactivation mechanisms of rabeprazole on triosephosphate isomerase of T. cruzi can be achieved through the derivatization of three of its four cysteine residues. These results indicate that rabeprazole is a promising candidate against American trypanosomiasis.
Collapse
Affiliation(s)
- Itzhel García-Torres
- Laboratorio de Biomoléculas y Salud Infantil, Instituto Nacional de Pediatría, CDMX, México
| | | | | | - Nallely Cabrera
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, CDMX, México
| | - Luis Antonio Flores-López
- CONAHCYT Instituto Nacional de Pediatría, Laboratorio de Biomoléculas y Salud Infantil, CDMX, México
| | - Ingeborg Becker
- Centro de Medicina Tropical, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, México
| | - Juliana Herrera-López
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, CDMX, México
| | - Roberto Hernández
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, CDMX, México
| | - Ruy Pérez-Montfort
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, CDMX, México
| | - Sergio Enríquez-Flores
- Laboratorio de Biomoléculas y Salud Infantil, Instituto Nacional de Pediatría, CDMX, México
| |
Collapse
|
8
|
Mosquillo F, Scalese G, Moreira R, Denis PA, Machado I, Paulino M, Gambino D, Pérez-Díaz L. Platinum and Palladium Organometallic Compounds: Disrupting the Ergosterol Pathway in Trypanosoma cruzi. Chembiochem 2023; 24:e202300406. [PMID: 37382991 DOI: 10.1002/cbic.202300406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/22/2023] [Accepted: 06/27/2023] [Indexed: 06/30/2023]
Abstract
Current treatment for Chagas' disease is based on two drugs, Nifurtimox and Benznidazol, which have limitations that reduce the effectiveness and continuity of treatment. Thus, there is an urgent need to develop new, safe and effective drugs. In previous work, two new metal-based compounds with trypanocidal activity, Pd-dppf-mpo and Pt-dppf-mpo, were fully characterized. To unravel the mechanism of action of these two analogous metal-based drugs, high-throughput omics studies were performed. A multimodal mechanism of action was postulated with several candidates as molecular targets. In this work, we validated the ergosterol biosynthesis pathway as a target for these compounds through the determination of sterol levels by HPLC in treated parasites. To understand the molecular level at which these compounds participate, two enzymes that met eligibility criteria at different levels were selected for further studies: phosphomevalonate kinase (PMK) and lanosterol 14-α demethylase (CYP51). Molecular docking processes were carried out to search for potential sites of interaction for both enzymes. To validate these candidates, a gain-of-function strategy was used through the generation of overexpressing PMK and CYP51 parasites. Results here presented confirm that the mechanism of action of Pd-dppf-mpo and Pt-dppf-mpo compounds involves the inhibition of both enzymes.
Collapse
Affiliation(s)
- Florencia Mosquillo
- Sección Genómica Funcional, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, 4225 Iguá St., Montevideo, 11400, Uruguay
| | - Gonzalo Scalese
- Sección Genómica Funcional, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, 4225 Iguá St., Montevideo, 11400, Uruguay
- Área Química Inorgánica, Facultad de Química, Universidad de la República, 2124 Gral. Flores Av., Montevideo, 11800, Uruguay
| | - Rodrigo Moreira
- Área Química Inorgánica, Facultad de Química, Universidad de la República, 2124 Gral. Flores Av., Montevideo, 11800, Uruguay
| | - Pablo A Denis
- Nanotecnología Computacional, DETEMA, Facultad de Química, Universidad de la República, 2124 Gral. Flores Av., Montevideo, 11800, Uruguay
| | - Ignacio Machado
- Área Química Analítica, Facultad de Química, Universidad de la República, 2124 Gral. Flores Av., Montevideo, 11800, Uruguay
| | - Margot Paulino
- Centro de Bioinformática, Facultad de Química, Universidad de la República, 2124 Gral. Flores Av., Montevideo, 11800, Uruguay
| | - Dinorah Gambino
- Área Química Inorgánica, Facultad de Química, Universidad de la República, 2124 Gral. Flores Av., Montevideo, 11800, Uruguay
| | - Leticia Pérez-Díaz
- Sección Genómica Funcional, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, 4225 Iguá St., Montevideo, 11400, Uruguay
| |
Collapse
|
9
|
Gabaldón-Figueira JC, Martinez-Peinado N, Escabia E, Ros-Lucas A, Chatelain E, Scandale I, Gascon J, Pinazo MJ, Alonso-Padilla J. State-of-the-Art in the Drug Discovery Pathway for Chagas Disease: A Framework for Drug Development and Target Validation. Res Rep Trop Med 2023; 14:1-19. [PMID: 37337597 PMCID: PMC10277022 DOI: 10.2147/rrtm.s415273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/03/2023] [Indexed: 06/21/2023] Open
Abstract
Chagas disease is the most important protozoan infection in the Americas, and constitutes a significant public health concern throughout the world. Development of new medications against its etiologic agent, Trypanosoma cruzi, has been traditionally slow and difficult, lagging in comparison with diseases caused by other kinetoplastid parasites. Among the factors that explain this are the incompletely understood mechanisms of pathogenesis of T. cruzi infection and its complex set of interactions with the host in the chronic stage of the disease. These demand the performance of a variety of in vitro and in vivo assays as part of any drug development effort. In this review, we discuss recent breakthroughs in the understanding of the parasite's life cycle and their implications in the search for new chemotherapeutics. For this, we present a framework to guide drug discovery efforts against Chagas disease, considering state-of-the-art preclinical models and recently developed tools for the identification and validation of molecular targets.
Collapse
Affiliation(s)
| | - Nieves Martinez-Peinado
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, Barcelona, Spain
| | - Elisa Escabia
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, Barcelona, Spain
| | - Albert Ros-Lucas
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, Barcelona, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), Madrid, Spain
| | - Eric Chatelain
- Drugs for Neglected Diseases Initiative (DNDi), Geneva, Switzerland
| | - Ivan Scandale
- Drugs for Neglected Diseases Initiative (DNDi), Geneva, Switzerland
| | - Joaquim Gascon
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, Barcelona, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), Madrid, Spain
| | - María-Jesús Pinazo
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), Madrid, Spain
- Drugs for Neglected Diseases Initiative (DNDi), Geneva, Switzerland
| | - Julio Alonso-Padilla
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, Barcelona, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), Madrid, Spain
| |
Collapse
|
10
|
Araujo-Lima CF, Carvalho RDCC, Peres RB, Fiuza LFDA, Galvão BVD, Castelo-Branco FS, Bastos MM, Boechat N, Felzenszwalb I, Soeiro MDNC. In silico and in vitro assessment of anti-Trypanosoma cruzi efficacy, genotoxicity and pharmacokinetics of pentasubstituted pyrrolic Atorvastatin-aminoquinoline hybrid compounds. Acta Trop 2023; 242:106924. [PMID: 37037291 DOI: 10.1016/j.actatropica.2023.106924] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 04/12/2023]
Abstract
Atorvastatin (AVA) is a third-generation statin with several pleiotropic effects, considered the last synthetic pharmaceutical blockbuster. Recently, our group described the effects of AVA on DNA damage prevention and against Trypanosoma cruzi infection. In this study, our aim was to evaluate the efficacy, safety, and in silico pharmacokinetic profile of four hybrids of aminoquinolines with AVA 4a-d against T. cruzi using in vitro and in silico models. These synthetic compounds were designed by hybridization of the pentapyrrolic moiety of AVA with the aminoquinolinic unit of chloroquine or primaquine. Pharmacokinetics (ADME) and toxicity parameters were predicted by SwissADME, admetSAR and LAZAR in silico algorithms. The trypanocidal activity of AVA-quinoline hybrids were evaluated in vitro against amastigotes and trypomastigotes of T. cruzi, from Y (Tc II) and Tulahuen (Tc VI) strains. In vitro cardiocytotoxicity was assessed using primary cultures of mouse embryonic cardiac cells and in vitro hepatocytotoxicity on bidimensional and 3D-cultured HepG2 cells. Genotoxicity was evaluated by Ames test and micronucleus assay. Despite the overall good in silico ADMET profile, all tested compounds were predicted to be hepatotoxic. All hybrid derivatives presented high trypanocidal activity, against both trypomastigote and intracellular forms of T. cruzi, presenting EC50's lower than 1 µM besides superior selectivity than the reference drug, without evidences of cardiotoxicity in vitro. The compounds 4a and 4b presented a time-dependent toxicity in monolayer culture of HepG2 but no detectable toxic effects in their spheroids, opposing to the in silico prediction. We can conclude that the AVA-aminoquinoline hybrids presented a hit profile as antiparasitic agents in synthetic pharmaceutical innovation platforms.
Collapse
Affiliation(s)
- Carlos Fernando Araujo-Lima
- Laboratory of Environmental Mutagenesis, Department of Biophysics and Biometry, University of the State of Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Laboratory of Cell Biology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil; Department of Genetics and Molecular Biology, Rio de Janeiro State Federal University, Rio de Janeiro, RJ, Brazil
| | - Rita de Cássia Castro Carvalho
- Laboratorio de Sintese de Farmacos- LASFAR, Instituto de Tecnologia em Farmacos - Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Raiza Brandão Peres
- Laboratory of Cell Biology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | | | - Bárbara Verena Dias Galvão
- Laboratory of Environmental Mutagenesis, Department of Biophysics and Biometry, University of the State of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Frederico S Castelo-Branco
- Laboratorio de Sintese de Farmacos- LASFAR, Instituto de Tecnologia em Farmacos - Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Mônica Macedo Bastos
- Laboratorio de Sintese de Farmacos- LASFAR, Instituto de Tecnologia em Farmacos - Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Nubia Boechat
- Laboratorio de Sintese de Farmacos- LASFAR, Instituto de Tecnologia em Farmacos - Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil.
| | - Israel Felzenszwalb
- Laboratory of Environmental Mutagenesis, Department of Biophysics and Biometry, University of the State of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | | |
Collapse
|
11
|
Soba M, Scalese G, Casuriaga F, Pérez N, Veiga N, Echeverría GA, Piro OE, Faccio R, Pérez-Díaz L, Gasser G, Machado I, Gambino D. Multifunctional organometallic compounds for the treatment of Chagas disease: Re(I) tricarbonyl compounds with two different bioactive ligands. Dalton Trans 2023; 52:1623-1641. [PMID: 36648116 DOI: 10.1039/d2dt03869b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Chagas' disease (American Trypanosomiasis) is an ancient and endemic illness in Latin America caused by the protozoan parasite Trypanosoma cruzi. Although there is an urgent need for more efficient and less toxic chemotherapeutics, no new drugs to treat this disease have entered the clinic in the last decades. Searching for metal-based prospective antichagasic drugs, in this work, multifunctional Re(I) tricarbonyl compounds bearing two different bioactive ligands were designed: a polypyridyl NN derivative of 1,10-phenanthroline and a monodentate azole (Clotrimazole CTZ or Ketoconazol KTZ). Five fac-[Re(CO)3(NN)(CTZ)](PF6) compounds and a fac-[Re(CO)3(NN)(KTZ)](PF6) were synthesized and fully characterized. They showed activity against epimastigotes (IC50 3.48-9.42 μM) and trypomastigotes of T. cruzi (IC50 0.61-2.79 μM) and moderate to good selectivity towards the parasite compared to the VERO mammalian cell model. In order to unravel the mechanism of action of our compounds, two potential targets were experimentally and theoretically studied, namely DNA and one of the enzymes involved in the parasite ergosterol biosynthetic pathway, CYP51 (lanosterol 14-α-demethylase). As hypothesized, the multifunctional compounds shared in vitro a similar mode of action as that disclosed for the single bioactive moieties included in the new chemical entities. Additionally, two relevant physicochemical properties of biological interest in prospective drug development, namely lipophilicity and stability in solution in different media, were determined. The whole set of results demonstrates the potentiality of these Re(I) tricarbonyls as promising candidates for further antitrypanosomal drug development.
Collapse
Affiliation(s)
- Mariano Soba
- Área Química Inorgánica, DEC, Facultad de Química, Universidad de la República, Uruguay. .,Programa de Posgrado en Química, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Gonzalo Scalese
- Área Química Inorgánica, DEC, Facultad de Química, Universidad de la República, Uruguay.
| | - Federico Casuriaga
- Área Química Inorgánica, DEC, Facultad de Química, Universidad de la República, Uruguay.
| | - Nicolás Pérez
- Área Química Inorgánica, DEC, Facultad de Química, Universidad de la República, Uruguay.
| | - Nicolás Veiga
- Área Química Inorgánica, DEC, Facultad de Química, Universidad de la República, Uruguay.
| | - Gustavo A Echeverría
- Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata and Institute IFLP (CONICET, CCT-La Plata), La Plata, Argentina
| | - Oscar E Piro
- Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata and Institute IFLP (CONICET, CCT-La Plata), La Plata, Argentina
| | - Ricardo Faccio
- Área Física, DETEMA, Facultad de Química, Universidad de la República, Uruguay
| | - Leticia Pérez-Díaz
- Laboratorio de Interacciones Moleculares, Facultad de Ciencias, Universidad de la República, Uruguay
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, France
| | - Ignacio Machado
- Área Química Analítica, DEC, Facultad de Química, Universidad de la República, Uruguay.
| | - Dinorah Gambino
- Área Química Inorgánica, DEC, Facultad de Química, Universidad de la República, Uruguay.
| |
Collapse
|
12
|
Identification of Aryl Polyamines Derivatives as Anti- Trypanosoma cruzi Agents Targeting Iron Superoxide Dismutase. Pharmaceutics 2022; 15:pharmaceutics15010140. [PMID: 36678771 PMCID: PMC9863987 DOI: 10.3390/pharmaceutics15010140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/13/2022] [Accepted: 12/22/2022] [Indexed: 01/04/2023] Open
Abstract
Chagas disease (CD) is a tropical and potentially fatal infection caused by Trypanosoma cruzi. Although CD was limited to Latin America as a silent disease, CD has become widespread as a result of globalization. Currently, 6-8 million people are infected worldwide, and no effective treatment is available. Here, we identify new effective agents against T. cruzi. In short, 16 aryl polyamines were screened in vitro against different T. cruzi strains, and lead compounds were evaluated in vivo after oral administration in both the acute and chronic infections. The mode of action was also evaluated at the energetic level, and its high activity profile could be ascribed to a mitochondria-dependent bioenergetic collapse and redox stress by inhibition of the Fe-SOD enzyme. We present compound 15 as a potential compound that provides a step forward for the development of new agents to combat CD.
Collapse
|
13
|
Carvalho DB, das Neves AR, Portapilla GB, Soares O, Santos LBB, Oliveira JRS, Vianna LS, Judice WAS, Cardoso IA, Luccas PH, Nonato MC, Lopes NP, de Albuquerque S, Baroni ACM. Repurposing of 5‐nitrofuran‐3,5‐disubstituted isoxazoles: A thriving scaffold to antitrypanosomal agents. Arch Pharm (Weinheim) 2022; 356:e2200472. [PMID: 36534890 DOI: 10.1002/ardp.202200472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022]
Abstract
Chagas disease (CD) is a neglected disease caused by the protozoan Trypanosoma cruzi. The two drugs used in the treatment schedules exhibit adverse effects and severe toxicity. Thus, searching for new antitrypanosomal agents is urgent to provide improved treatments to those affected by this disease. 5-Nitrofuran-isoxazole analogs were synthesized by cycloaddition reactions [3+2] between chloro-oximes and acetylenes in satisfactory yields. We analyzed the structure-activity relationship of the analogs based on Hammett's and Hansch's parameters. The 5-nitrofuran-isoxazole analogs exhibited relevant in vitro antitrypanosomal activity against the amastigote forms of T. cruzi. Analog 7s was the trending hit of the series, showing an IC50 value of 40 nM and a selectivity index of 132.50. A possible explanation for this result may be the presence of an electrophile near the isoxazole core. Moreover, the most active analogs proved to act as an in vitro substrate of type I nitroreductase rather than the cruzain, enzymes commonly investigated in molecular target studies of CD drug discovery. These findings suggest that 5-nitrofuran-isoxazole analogs are promising in the studies of agents for CD treatment.
Collapse
Affiliation(s)
- Diego B. Carvalho
- Laboratório de Síntese e Química Medicinal (LASQUIM), Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição Universidade Federal de Mato Grossso do Sul (UFMS) Campo Grande Mato Grosso do Sul Brazil
| | - Amarith R. das Neves
- Laboratório de Síntese e Química Medicinal (LASQUIM), Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição Universidade Federal de Mato Grossso do Sul (UFMS) Campo Grande Mato Grosso do Sul Brazil
- Laboratório de Parasitologia Humana, Instituto de Biociências Universidade Federal de Mato Grossso do Sul (UFMS) Campo Grande Mato Grosso do Sul Brazil
| | - Gisele B. Portapilla
- Departamento de Análises Clínicas Toxicológicas e Bromatológicas Faculdade de Ciências Farmacêuticas de Ribeirão Preto—Universidade de São Paulo Ribeirão Preto São Paulo Brazil
| | - Ozildeia Soares
- Laboratório de Síntese e Química Medicinal (LASQUIM), Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição Universidade Federal de Mato Grossso do Sul (UFMS) Campo Grande Mato Grosso do Sul Brazil
| | - Larissa B. B. Santos
- Laboratório de Síntese e Química Medicinal (LASQUIM), Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição Universidade Federal de Mato Grossso do Sul (UFMS) Campo Grande Mato Grosso do Sul Brazil
| | - Jefferson R. S. Oliveira
- Laboratório de Síntese e Química Medicinal (LASQUIM), Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição Universidade Federal de Mato Grossso do Sul (UFMS) Campo Grande Mato Grosso do Sul Brazil
| | - Luan S. Vianna
- Interdisciplinary Center for Biochemical Research University of Mogi das Cruzes (UMC) Mogi das Cruzes SP Brazil
| | - Wagner A. S. Judice
- Interdisciplinary Center for Biochemical Research University of Mogi das Cruzes (UMC) Mogi das Cruzes SP Brazil
| | - Iara A. Cardoso
- Laboratório de Cristalografia de Proteínas, Departamento de Ciências BioMoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto Universidade de São Paulo Ribeirão Preto SP Brazil
| | - Pedro H. Luccas
- Laboratório de Cristalografia de Proteínas, Departamento de Ciências BioMoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto Universidade de São Paulo Ribeirão Preto SP Brazil
| | - M. Cristina Nonato
- Laboratório de Cristalografia de Proteínas, Departamento de Ciências BioMoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto Universidade de São Paulo Ribeirão Preto SP Brazil
| | - Norberto P. Lopes
- Núcleo de Pesquisas em Produtos Naturais e Sintéticos, Departamento de Ciências Biomoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto Universidade de São Paulo Ribeirão Preto SP Brazil
| | - Sergio de Albuquerque
- Departamento de Análises Clínicas Toxicológicas e Bromatológicas Faculdade de Ciências Farmacêuticas de Ribeirão Preto—Universidade de São Paulo Ribeirão Preto São Paulo Brazil
| | - Adriano C. M. Baroni
- Laboratório de Síntese e Química Medicinal (LASQUIM), Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição Universidade Federal de Mato Grossso do Sul (UFMS) Campo Grande Mato Grosso do Sul Brazil
| |
Collapse
|
14
|
Sharma A, Cipriano M, Ferrins L, Hajduk SL, Mensa-Wilmot K. Hypothesis-generating proteome perturbation to identify NEU-4438 and acoziborole modes of action in the African Trypanosome. iScience 2022; 25:105302. [PMID: 36304107 PMCID: PMC9593816 DOI: 10.1016/j.isci.2022.105302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 07/24/2022] [Accepted: 09/29/2022] [Indexed: 11/29/2022] Open
Abstract
NEU-4438 is a lead for the development of drugs against Trypanosoma brucei, which causes human African trypanosomiasis. Optimized with phenotypic screening, targets of NEU-4438 are unknown. Herein, we present a cell perturbome workflow that compares NEU-4438's molecular modes of action to those of SCYX-7158 (acoziborole). Following a 6 h perturbation of trypanosomes, NEU-4438 and acoziborole reduced steady-state amounts of 68 and 92 unique proteins, respectively. After analysis of proteomes, hypotheses formulated for modes of action were tested: Acoziborole and NEU-4438 have different modes of action. Whereas NEU-4438 prevented DNA biosynthesis and basal body maturation, acoziborole destabilized CPSF3 and other proteins, inhibited polypeptide translation, and reduced endocytosis of haptoglobin-hemoglobin. These data point to CPSF3-independent modes of action for acoziborole. In case of polypharmacology, the cell-perturbome workflow elucidates modes of action because it is target-agnostic. Finally, the workflow can be used in any cell that is amenable to proteomic and molecular biology experiments.
Collapse
Affiliation(s)
- Amrita Sharma
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA 30144, USA
| | - Michael Cipriano
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Lori Ferrins
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Stephen L. Hajduk
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Kojo Mensa-Wilmot
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA 30144, USA,Corresponding author
| |
Collapse
|
15
|
Ros-Lucas A, Martinez-Peinado N, Bastida J, Gascón J, Alonso-Padilla J. The Use of AlphaFold for In Silico Exploration of Drug Targets in the Parasite Trypanosoma cruzi. Front Cell Infect Microbiol 2022; 12:944748. [PMID: 35909956 PMCID: PMC9329570 DOI: 10.3389/fcimb.2022.944748] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/23/2022] [Indexed: 11/23/2022] Open
Abstract
Chagas disease is a devastating neglected disease caused by the parasite Trypanosoma cruzi, which affects millions of people worldwide. The two anti-parasitic drugs available, nifurtimox and benznidazole, have a good efficacy against the acute stage of the infection. But this is short, usually asymptomatic and often goes undiagnosed. Access to treatment is mostly achieved during the chronic stage, when the cardiac and/or digestive life-threatening symptoms manifest. Then, the efficacy of both drugs is diminished, and their long administration regimens involve frequently associated adverse effects that compromise treatment compliance. Therefore, the discovery of safer and more effective drugs is an urgent need. Despite its advantages over lately used phenotypic screening, target-based identification of new anti-parasitic molecules has been hampered by incomplete annotation and lack of structures of the parasite protein space. Presently, the AlphaFold Protein Structure Database is home to 19,036 protein models from T. cruzi, which could hold the key to not only describe new therapeutic approaches, but also shed light on molecular mechanisms of action for known compounds. In this proof-of-concept study, we screened the AlphaFold T. cruzi set of predicted protein models to find prospective targets for a pre-selected list of compounds with known anti-trypanosomal activity using docking-based inverse virtual screening. The best receptors (targets) for the most promising ligands were analyzed in detail to address molecular interactions and potential drugs’ mode of action. The results provide insight into the mechanisms of action of the compounds and their targets, and pave the way for new strategies to finding novel compounds or optimize already existing ones.
Collapse
Affiliation(s)
- Albert Ros-Lucas
- Barcelona Institute for Global Health (ISGlobal), Hospital Clinic - University of Barcelona, Barcelona, Spain
- *Correspondence: Albert Ros-Lucas, ; Nieves Martinez-Peinado, ; Julio Alonso-Padilla,
| | - Nieves Martinez-Peinado
- Barcelona Institute for Global Health (ISGlobal), Hospital Clinic - University of Barcelona, Barcelona, Spain
- *Correspondence: Albert Ros-Lucas, ; Nieves Martinez-Peinado, ; Julio Alonso-Padilla,
| | - Jaume Bastida
- Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l´Alimentació, Universitat de Barcelona, Barcelona, Spain
| | - Joaquim Gascón
- Barcelona Institute for Global Health (ISGlobal), Hospital Clinic - University of Barcelona, Barcelona, Spain
- CIBERINFEC, ISCIII—CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Julio Alonso-Padilla
- Barcelona Institute for Global Health (ISGlobal), Hospital Clinic - University of Barcelona, Barcelona, Spain
- CIBERINFEC, ISCIII—CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
- *Correspondence: Albert Ros-Lucas, ; Nieves Martinez-Peinado, ; Julio Alonso-Padilla,
| |
Collapse
|
16
|
Application of microwave plasma atomic emission spectrometry in bioanalytical chemistry of bioactive rhenium compounds. Talanta 2022; 244:123413. [DOI: 10.1016/j.talanta.2022.123413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 11/21/2022]
|
17
|
Sanz-Rodríguez CE, Hoffman B, Guyett PJ, Purmal A, Singh B, Pollastri MP, Mensa-Wilmot K. Physiologic Targets and Modes of Action for CBL0137, a Lead for Human African Trypanosomiasis Drug Development. Mol Pharmacol 2022; 102:1-16. [PMID: 35605992 PMCID: PMC9341264 DOI: 10.1124/molpharm.121.000430] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 04/20/2022] [Indexed: 08/15/2023] Open
Abstract
CBL0137 is a lead drug for human African trypanosomiasis, caused by Trypanosoma brucei Herein, we use a four-step strategy to 1) identify physiologic targets and 2) determine modes of molecular action of CBL0137 in the trypanosome. First, we identified fourteen CBL0137-binding proteins using affinity chromatography. Second, we developed hypotheses of molecular modes of action, using predicted functions of CBL0137-binding proteins as guides. Third, we documented effects of CBL0137 on molecular pathways in the trypanosome. Fourth, we identified physiologic targets of the drug by knocking down genes encoding CBL0137-binding proteins and comparing their molecular effects to those obtained when trypanosomes were treated with CBL0137. CBL0137-binding proteins included glycolysis enzymes (aldolase, glyceraldehyde-3-phosphate dehydrogenase, phosphofructokinase, phosphoglycerate kinase) and DNA-binding proteins [universal minicircle sequence binding protein 2, replication protein A1 (RPA1), replication protein A2 (RPA2)]. In chemical biology studies, CBL0137 did not reduce ATP level in the trypanosome, ruling out glycolysis enzymes as crucial targets for the drug. Thus, many CBL0137-binding proteins are not physiologic targets of the drug. CBL0137 inhibited 1) nucleus mitosis, 2) nuclear DNA replication, and 3) polypeptide synthesis as the first carbazole inhibitor of eukaryote translation. RNA interference (RNAi) against RPA1 inhibited both DNA synthesis and mitosis, whereas RPA2 knockdown inhibited mitosis, consistent with both proteins being physiologic targets of CBL0137. Principles used here to distinguish drug-binding proteins from physiologic targets of CBL0137 can be deployed with different drugs in other biologic systems. SIGNIFICANCE STATEMENT: To distinguish drug-binding proteins from physiologic targets in the African trypanosome, we devised and executed a multidisciplinary approach involving biochemical, genetic, cell, and chemical biology experiments. The strategy we employed can be used for drugs in other biological systems.
Collapse
Affiliation(s)
- Carlos E Sanz-Rodríguez
- Department of Cellular Biology, University of Georgia, Athens, Georgia (C.E.S.-R., B.H., P.J.G., K.M.-W.); Buffalo Biolabs Inc, Buffalo, New York (A.P.); Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts (B.S., M.P.); and Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, Georgia (K.M.-W.)
| | - Benjamin Hoffman
- Department of Cellular Biology, University of Georgia, Athens, Georgia (C.E.S.-R., B.H., P.J.G., K.M.-W.); Buffalo Biolabs Inc, Buffalo, New York (A.P.); Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts (B.S., M.P.); and Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, Georgia (K.M.-W.)
| | - Paul J Guyett
- Department of Cellular Biology, University of Georgia, Athens, Georgia (C.E.S.-R., B.H., P.J.G., K.M.-W.); Buffalo Biolabs Inc, Buffalo, New York (A.P.); Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts (B.S., M.P.); and Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, Georgia (K.M.-W.)
| | - Andrei Purmal
- Department of Cellular Biology, University of Georgia, Athens, Georgia (C.E.S.-R., B.H., P.J.G., K.M.-W.); Buffalo Biolabs Inc, Buffalo, New York (A.P.); Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts (B.S., M.P.); and Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, Georgia (K.M.-W.)
| | - Baljinder Singh
- Department of Cellular Biology, University of Georgia, Athens, Georgia (C.E.S.-R., B.H., P.J.G., K.M.-W.); Buffalo Biolabs Inc, Buffalo, New York (A.P.); Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts (B.S., M.P.); and Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, Georgia (K.M.-W.)
| | - Michael P Pollastri
- Department of Cellular Biology, University of Georgia, Athens, Georgia (C.E.S.-R., B.H., P.J.G., K.M.-W.); Buffalo Biolabs Inc, Buffalo, New York (A.P.); Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts (B.S., M.P.); and Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, Georgia (K.M.-W.)
| | - Kojo Mensa-Wilmot
- Department of Cellular Biology, University of Georgia, Athens, Georgia (C.E.S.-R., B.H., P.J.G., K.M.-W.); Buffalo Biolabs Inc, Buffalo, New York (A.P.); Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts (B.S., M.P.); and Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, Georgia (K.M.-W.)
| |
Collapse
|
18
|
Martín-Escolano J, Marín C, Rosales MJ, Tsaousis AD, Medina-Carmona E, Martín-Escolano R. An Updated View of the Trypanosoma cruzi Life Cycle: Intervention Points for an Effective Treatment. ACS Infect Dis 2022; 8:1107-1115. [PMID: 35652513 PMCID: PMC9194904 DOI: 10.1021/acsinfecdis.2c00123] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Chagas disease (CD)
is a parasitic, systemic, chronic, and often
fatal illness caused by infection with the protozoan Trypanosoma
cruzi. The World Health Organization classifies CD as the
most prevalent of poverty-promoting neglected tropical diseases, the
most important parasitic one, and the third most infectious disease
in Latin America. Currently, CD is a global public health issue that
affects 6–8 million people. However, the current approved treatments
are limited to two nitroheterocyclic drugs developed more than 50
years ago. Many efforts have been made in recent decades to find new
therapies, but our limited understanding of the infection process,
pathology development, and long-term nature of this disease has made
it impossible to develop new drugs, effective treatment, or vaccines.
This Review aims to provide a comprehensive update on our understanding
of the current life cycle, new morphological forms, and genetic diversity
of T. cruzi, as well as identify intervention points
in the life cycle where new drugs and treatments could achieve a parasitic
cure.
Collapse
Affiliation(s)
- Javier Martín-Escolano
- Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, E41013 Seville, Spain
| | - Clotilde Marín
- Department of Parasitology, University of Granada, Severo Ochoa s/n, 18071 Granada, Spain
| | - María J. Rosales
- Department of Parasitology, University of Granada, Severo Ochoa s/n, 18071 Granada, Spain
| | - Anastasios D. Tsaousis
- Laboratory of Molecular & Evolutionary Parasitology, RAPID group, School of Biosciences, University of Kent, Canterbury CT2 7NJ, U.K
| | - Encarnación Medina-Carmona
- Department of Physical Chemistry, University of Granada, 18071 Granada, Spain
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, U.K
| | - Rubén Martín-Escolano
- Laboratory of Molecular & Evolutionary Parasitology, RAPID group, School of Biosciences, University of Kent, Canterbury CT2 7NJ, U.K
| |
Collapse
|
19
|
Dantas RF, Torres-Santos EC, Silva FP. Past and future of trypanosomatids high-throughput phenotypic screening. Mem Inst Oswaldo Cruz 2022; 117:e210402. [PMID: 35293482 PMCID: PMC8920514 DOI: 10.1590/0074-02760210402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 12/28/2021] [Indexed: 11/22/2022] Open
Abstract
Diseases caused by trypanosomatid parasites affect millions of people mainly living in developing countries. Novel drugs are highly needed since there are no vaccines and available treatment has several limitations, such as resistance, low efficacy, and high toxicity. The drug discovery process is often analogous to finding a needle in the haystack. In the last decades a so-called rational drug design paradigm, heavily dependent on computational approaches, has promised to deliver new drugs in a more cost-effective way. Paradoxically however, the mainstay of these computational methods is data-driven, meaning they need activity data for new compounds to be generated and available in databases. Therefore, high-throughput screening (HTS) of compounds still is a much-needed exercise in drug discovery to fuel other rational approaches. In trypanosomatids, due to the scarcity of validated molecular targets and biological complexity of these parasites, phenotypic screening has become an essential tool for the discovery of new bioactive compounds. In this article we discuss the perspectives of phenotypic HTS for trypanosomatid drug discovery with emphasis on the role of image-based, high-content methods. We also propose an ideal cascade of assays for the identification of new drug candidates for clinical development using leishmaniasis as an example.
Collapse
Affiliation(s)
- Rafael Ferreira Dantas
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Bioquímica Experimental de Computacional de Fármacos, Rio de Janeiro, RJ, Brasil
| | - Eduardo Caio Torres-Santos
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Bioquímica de Tripanosomatídeos, Rio de Janeiro, RJ, Brasil
| | - Floriano Paes Silva
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Bioquímica Experimental de Computacional de Fármacos, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
20
|
Lascano F, García Bournissen F, Altcheh J. Review of pharmacological options for the treatment of Chagas disease. Br J Clin Pharmacol 2022; 88:383-402. [PMID: 33314266 DOI: 10.1111/bcp.14700] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/09/2020] [Accepted: 12/02/2020] [Indexed: 12/20/2022] Open
Abstract
Chagas disease (CD) is a worldwide problem, with over 8 million people infected in both rural and urban areas. CD was first described over a century ago, but only two drugs are currently available for CD treatment: benznidazole (BZN) and nifurtimox (NF). Treating CD-infected patients, especially children and women of reproductive age, is vital in order to prevent long-term sequelae, such as heart and gastrointestinal dysfunction, but this aim is still far from being accomplished. Currently, the strongest data to support benefit-risk considerations come from trials in children. Treatment response biomarkers need further development as serology is being questioned as the best method to assess treatment response. This article is a narrative review on the pharmacology of drugs for CD, particularly BZN and NF. Data on drug biopharmaceutical characteristics, safety and efficacy of both drugs are summarized from a clinical perspective. Current data on alternative compounds under evaluation for CD treatment, and new possible treatment response biomarkers are also discussed. Early diagnosis and treatment of CD, especially in paediatric patients, is vital for an effective and safe use of the available drugs (i.e. BZN and NF). New biomarkers for CD are urgently needed for the diagnosis and evaluation of treatment efficacy, and to guide efforts from academia and pharmaceutical companies to accelerate the process of new drug development.
Collapse
Affiliation(s)
- Fernanda Lascano
- Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas (IMIPP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Gobierno de la Ciudad de la Nación Argentina, Buenos Aires, Argentina.,Servicio de Parasitología y Chagas, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Facundo García Bournissen
- Division of Pediatric Clinical Pharmacology, Department of Pediatrics, Schulich School of Medicine & Dentistry, University of Western Ontario, Canada
| | - Jaime Altcheh
- Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas (IMIPP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Gobierno de la Ciudad de la Nación Argentina, Buenos Aires, Argentina.,Servicio de Parasitología y Chagas, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| |
Collapse
|
21
|
Valdez MB, Bernal Giménez DM, Fernández LR, Musikant AD, Ferri G, Saenz D, Di Venosa G, Casas A, Avigliano E, Edreira MM, Palermo JA. New antiparasitic derivatives of the furoquinoline alkaloids kokusaginine and flindersiamine. ChemMedChem 2022; 17:e202100784. [PMID: 35001527 DOI: 10.1002/cmdc.202100784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Indexed: 11/10/2022]
Abstract
In this work is reported the synthesis of 16 new compounds obtained from kokusaginine and flindersiamine, the main alkaloids isolated from the bark of Balfourodendron riedelianum . The activity of the compounds against axenic cultures of Trypanosoma cruzi epimastigtotes and trypomastigotes, as well as intracellular amastigotes, is described, together with their cytotoxic activity against three different human cell lines. The synthetic strategy for the preparation of the new compounds was based on the reactivity at the position C-4 of the furoquinoline core towards nucleophiles. The new derivatives were synthesized by a Buchwald-Hartwig reaction, in most cases under green, solvent free conditions. Compounds 1c and 1e displayed better in-vitro activity against trypomastigotes than benznidazole and nifurtimox (positive controls) with IC 50 < 4 µM. In addition, both compounds were not cytotoxic activity against the three human cell lines K562 (erytroleukimia), LM2 (breast cancer) and HaCat (keratinocyte). Interestingly, when evaluated against intracellular amastigotes, compound 1c was able to significantly reduce the number of this parasite form, compared to the negative control.
Collapse
Affiliation(s)
- María Belén Valdez
- Universidad de Buenos Aires Facultad de Ciencias Exactas y Naturales, UMYMFOR- Departamento de Química Orgánica, ARGENTINA
| | - Diana María Bernal Giménez
- Universidad de Buenos Aires Facultad de Ciencias Exactas y Naturales, IQUIBICEN, Departamento de Química Biológica, ARGENTINA
| | - Lucía Raquel Fernández
- Universidad de Buenos Aires Facultad de Ciencias Exactas y Naturales, UMYMFOR, Departamento de Química Orgánica, ARGENTINA
| | - Alejandro Daniel Musikant
- Universidad de Buenos Aires Facultad de Ciencias Exactas y Naturales, IQUIBICEN, Departamento de Química Biológica, ARGENTINA
| | - Gabriel Ferri
- Universidad de Buenos Aires Facultad de Ciencias Exactas y Naturales, IQUIBICEN, Departamento de Química Biológica, ARGENTINA
| | - Daniel Saenz
- CIPYP: Centro de Investigaciones Sobre Porfirinas y Porfirias, CIPYP, ARGENTINA
| | - Gabriela Di Venosa
- CIPYP: Centro de Investigaciones Sobre Porfirinas y Porfirias, CiPYP, ARGENTINA
| | - Adriana Casas
- CIPYP: Centro de Investigaciones Sobre Porfirinas y Porfirias, CIPYP, ARGENTINA
| | - Esteban Avigliano
- Universidad de Buenos Aires Facultad de Ciencias Veterinarias, INPA, ARGENTINA
| | - Martin Miguel Edreira
- Universidad de Buenos Aires Facultad de Ciencias Exactas y Naturales, IQUIBICEN, Departamento de Química Biológica, ARGENTINA
| | - Jorge A Palermo
- UMYMFOR-Facultad de Ciencias Exactas y Naturales - Universidad de Buenos Aires, Química Orgánica, Ciudad Universiaria, Pabellón 2, 1428, Buenos Aires, ARGENTINA
| |
Collapse
|
22
|
Gambino D, Otero L. Facing Diseases Caused by Trypanosomatid Parasites: Rational Design of Pd and Pt Complexes With Bioactive Ligands. Front Chem 2022; 9:816266. [PMID: 35071192 PMCID: PMC8777014 DOI: 10.3389/fchem.2021.816266] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/15/2021] [Indexed: 12/26/2022] Open
Abstract
Human African Trypanosomiasis (HAT), Chagas disease or American Trypanosomiasis (CD), and leishmaniases are protozoan infections produced by trypanosomatid parasites belonging to the kinetoplastid order and they constitute an urgent global health problem. In fact, there is an urgent need of more efficient and less toxic chemotherapy for these diseases. Medicinal inorganic chemistry currently offers an attractive option for the rational design of new drugs and, in particular, antiparasitic ones. In this sense, one of the main strategies for the design of metal-based antiparasitic compounds has been the coordination of an organic ligand with known or potential biological activity, to a metal centre or an organometallic core. Classical metal coordination complexes or organometallic compounds could be designed as multifunctional agents joining, in a single molecule, different chemical species that could affect different parasitic targets. This review is focused on the rational design of palladium(II) and platinum(II) compounds with bioactive ligands as prospective drugs against trypanosomatid parasites that has been conducted by our group during the last 20 years.
Collapse
Affiliation(s)
- Dinorah Gambino
- Área Química Inorgánica, DEC, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Lucía Otero
- Área Química Inorgánica, DEC, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
23
|
Varela MT, Amaral M, Romanelli MM, de Castro Levatti EV, Tempone AG, Fernandes JPS. Optimization of physicochemical properties is a strategy to improve drug-likeness associated with activity: novel active and selective compounds against Trypanosoma cruzi. Eur J Pharm Sci 2022; 171:106114. [PMID: 34986415 DOI: 10.1016/j.ejps.2021.106114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/23/2021] [Accepted: 12/31/2021] [Indexed: 11/03/2022]
Abstract
Trypanosoma cruzi is the causing agent of Chagas disease, a parasitic infection without efficient treatment for chronic patients. Despite the efforts, no new drugs have been approved for this disease in the last 60 years. Molecular modifications based on a natural product led to the development of a series of compounds (LINS03 series) with promising antitrypanosomal activity, however previous chemometric analysis revealed a significant impact of excessive lipophilicity and low aqueous solubility on potency of amine and amide derivatives. Therefore, this work reports different modifications in the core structure to achieve adequate balance of the physicochemical properties along with biological activity. A set of 34 analogues were designed considering predicted properties related to lipophilicity/hydrosolubility and synthesized to assess their activity and selective toxicity towards the parasite. Results showed that this strategy contributed to improve the drug-likeness of the series while considerable impacts on potency were observed. The rational analysis of the obtained data led to the identification of seven active piperazine amides (28-34, IC50 8.7 to 35.3 µM against intracellular amastigotes), devoid of significant cytotoxicity to mammalian cells. The addition of water-solubilizing groups and privileged substructures such as piperazines improved the physicochemical properties and overall drug-likeness of these compounds, increased potency and maintained selectivity towards the parasite. The obtained results brought important structure-activity relationship (SAR) data and new lead structures for further modifications were identified to achieve improved antitrypanosoma compounds.
Collapse
Affiliation(s)
- Marina T Varela
- Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo, Rua São Nicolau 210, 09913-030 Diadema SP, Brazil
| | - Maiara Amaral
- Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-000, Brazil
| | - Maiara M Romanelli
- Centre for Parasitology and Mycology, Instituto Adolfo Lutz, Av. Dr. Arnaldo 351, 01246-000 São Paulo SP, Brazil
| | - Erica V de Castro Levatti
- Centre for Parasitology and Mycology, Instituto Adolfo Lutz, Av. Dr. Arnaldo 351, 01246-000 São Paulo SP, Brazil
| | - Andre G Tempone
- Centre for Parasitology and Mycology, Instituto Adolfo Lutz, Av. Dr. Arnaldo 351, 01246-000 São Paulo SP, Brazil
| | - João Paulo S Fernandes
- Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo, Rua São Nicolau 210, 09913-030 Diadema SP, Brazil.
| |
Collapse
|
24
|
de Oliveira RG, Cruz LR, Mollo MC, Dias LC, Kratz JM. Chagas Disease Drug Discovery in Latin America-A Mini Review of Antiparasitic Agents Explored Between 2010 and 2021. Front Chem 2021; 9:771143. [PMID: 34778217 PMCID: PMC8581468 DOI: 10.3389/fchem.2021.771143] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 10/15/2021] [Indexed: 11/13/2022] Open
Abstract
Chagas disease is a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi that endangers almost 70 million people worldwide. The only two drugs that are currently approved for its treatment, benznidazole and nifurtimox, have controversial efficacy in adults and restricting safety issues, leaving thousands of patients without a suitable treatment. The neglect of Chagas disease is further illustrated by the lack of a robust and diverse drug discovery and development portfolio of new chemical entities, and it is of paramount importance to build a strong research and development network for antichagasic drugs. Focusing on drug discovery programs led by scientists based in Latin America, the main endemic region for this disease, we discuss herein what has been published in the last decade in terms of identification of new antiparasitic drugs to treat Chagas disease, shining a spotlight on the origin, chemical diversity, level of characterization of hits, and strategies used for optimization of lead compounds. Finally, we identify strengths and weaknesses in these drug discovery campaigns and highlight the importance of multidisciplinary collaboration and knowledge sharing.
Collapse
Affiliation(s)
- Ramon G. de Oliveira
- Laboratory of Synthetic Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, Brazil
| | - Luiza R. Cruz
- Laboratory of Synthetic Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, Brazil
| | - María C. Mollo
- Laboratory of Synthetic Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, Brazil
| | - Luiz C. Dias
- Laboratory of Synthetic Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, Brazil
| | - Jadel M. Kratz
- Drugs for Neglected Diseases Initiative (DNDi) Latin America, Rio de Janeiro, Brazil
| |
Collapse
|
25
|
Scalese G, Machado I, Salinas G, Pérez-Díaz L, Gambino D. Heteroleptic Oxidovanadium(V) Complexes with Activity against Infective and Non-Infective Stages of Trypanosoma cruzi. Molecules 2021; 26:5375. [PMID: 34500808 PMCID: PMC8433833 DOI: 10.3390/molecules26175375] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 12/18/2022] Open
Abstract
Five heteroleptic compounds, [VVO(IN-2H)(L-H)], where L are 8-hydroxyquinoline derivatives and IN is a Schiff base ligand, were synthesized and characterized in both the solid and solution state. The compounds were evaluated on epimastigotes and trypomastigotes of Trypanosoma cruzi as well as on VERO cells, as a mammalian cell model. Compounds showed activity against trypomastigotes with IC50 values of 0.29-3.02 μM. IN ligand and the new [VVO2(IN-H)] complex showed negligible activity. The most active compound [VVO(IN-2H)(L2-H)], with L2 = 5-chloro-7-iodo-8-hydroxyquinoline, showed good selectivity towards the parasite and was selected to carry out further biological studies. Stability studies suggested a partial decomposition in solution. [VVO(IN-2H)(L2-H)] affects the infection potential of cell-derived trypomastigotes. Low total vanadium uptake by parasites and preferential accumulation in the soluble proteins fraction were determined. A trypanocide effect was observed when incubating epimastigotes with 10 × IC50 values of [VVO(IN-2H)(L2-H)] and the generation of ROS after treatments was suggested. Fluorescence competition measurements with DNA:ethidium bromide adduct showed a moderate DNA interaction of the complexes. In vivo toxicity study on C. elegans model showed no toxicity up to a 100 μM concentration of [VVO(IN-2H)(L2-H)]. This compound could be considered a prospective anti-T. cruzi agent that deserves further research.
Collapse
Affiliation(s)
- Gonzalo Scalese
- Área Química Inorgánica, Facultad de Química, Universidad de la República, Montevideo 11800, Uruguay;
- Programa de Posgrados de la Facultad de Química, Universidad de la República, Montevideo 11800, Uruguay
| | - Ignacio Machado
- Área Química Analítica, Facultad de Química, Universidad de la República, Montevideo 11800, Uruguay;
| | - Gustavo Salinas
- Worm Biology Lab, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay;
- Departamento de Biociencias, Facultad de Química, Montevideo 11800, Uruguay
| | - Leticia Pérez-Díaz
- Laboratorio de Interacciones Moleculares, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay;
| | - Dinorah Gambino
- Área Química Inorgánica, Facultad de Química, Universidad de la República, Montevideo 11800, Uruguay;
| |
Collapse
|
26
|
Gulin JEN, Rocco DM, Alonso V, Cribb P, Altcheh J, García-Bournissen F. Optimization and biological validation of an in vitro assay using the transfected Dm28c/pLacZ Trypanosoma cruzi strain. Biol Methods Protoc 2021; 6:bpab004. [PMID: 34386588 PMCID: PMC8355463 DOI: 10.1093/biomethods/bpab004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/15/2021] [Accepted: 07/01/2021] [Indexed: 12/03/2022] Open
Abstract
There is an urgent need to develop safer and more effective drugs for Chagas disease, as the current treatment relies on benznidazole (BZ) and nifurtimox (NFX). Using the Trypanosoma cruzi Dm28c strain genetically engineered to express the Escherichia coli β-galactosidase gene, lacZ, we have adapted and validated an easy, quick and reliable in vitro assay suitable for high-throughput screening for candidate compounds with anti-T. cruzi activity. In vitro studies were conducted to determine trypomastigotes sensitivity to BZ and NFX from Dm28c/pLacZ strain by comparing the conventional labour-intensive microscopy counting method with the colourimetric assay. Drug concentrations producing the lysis of 50% of trypomastigotes (lytic concentration 50%) were 41.36 and 17.99 µM for BZ and NFX, respectively, when measured by microscopy and 44.74 and 38.94 µM, for the colourimetric method, respectively. The optimal conditions for the amastigote development inhibitory assay were established considering the parasite–host relationship (i.e. multiplicity of infection) and interaction time, the time for colourimetric readout and the incubation time with the β-galactosidase substrate. The drug concentrations resulting in 50% amastigote development inhibition obtained with the colourimetric assay were 2.31 µM for BZ and 0.97 µM for NFX, similar to the reported values for the Dm28c wild strain (2.80 and 1.5 µM, respectively). In summary, a colourimetric assay using the Dm28c/pLacZ strain of T. cruzi has been set up, obtaining biologically meaningful sensibility values with the reference compounds on both trypomastigotes and amastigotes forms. This development could be applied to high-throughput screening programmes aiming to identify compounds with anti-T. cruzi in vitro activity.
Collapse
Affiliation(s)
- Julián Ernesto Nicolás Gulin
- Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas (IMIPP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Gobierno de la Ciudad de Buenos Aires (GCBA), Gallo 1330 (C1425EFD), Buenos Aires, Argentina.,Servicio de Parasitología y Enfermedad de Chagas, Hospital de Niños "Dr. Ricardo Gutiérrez", Gallo 1330 (C1425EFD), Buenos Aires, Argentina.,Instituto de Investigaciones Biomédicas (INBIOMED), Universidad de Buenos Aires (UBA) Facultad de Medicina-CONICET, Paraguay 2155 (C1121ABG), Buenos Aires, Argentina
| | - Daniela Marisa Rocco
- Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas (IMIPP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Gobierno de la Ciudad de Buenos Aires (GCBA), Gallo 1330 (C1425EFD), Buenos Aires, Argentina.,Servicio de Parasitología y Enfermedad de Chagas, Hospital de Niños "Dr. Ricardo Gutiérrez", Gallo 1330 (C1425EFD), Buenos Aires, Argentina
| | - Victoria Alonso
- Instituto de Biología Molecular y Celular de Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (IBR-CONICET-UNR), Suipacha 531 (2000), Rosario, Argentina
| | - Pamela Cribb
- Instituto de Biología Molecular y Celular de Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (IBR-CONICET-UNR), Suipacha 531 (2000), Rosario, Argentina
| | - Jaime Altcheh
- Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas (IMIPP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Gobierno de la Ciudad de Buenos Aires (GCBA), Gallo 1330 (C1425EFD), Buenos Aires, Argentina.,Servicio de Parasitología y Enfermedad de Chagas, Hospital de Niños "Dr. Ricardo Gutiérrez", Gallo 1330 (C1425EFD), Buenos Aires, Argentina
| | - Facundo García-Bournissen
- Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas (IMIPP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Gobierno de la Ciudad de Buenos Aires (GCBA), Gallo 1330 (C1425EFD), Buenos Aires, Argentina.,Servicio de Parasitología y Enfermedad de Chagas, Hospital de Niños "Dr. Ricardo Gutiérrez", Gallo 1330 (C1425EFD), Buenos Aires, Argentina.,Division of Paediatric Clinical Pharmacology, Department of Paediatrics, Schulich School of Medicine & Dentistry, University of Western Ontario, 800 Commissioners Rd. E., Rm. B1-437, London, Canada
| |
Collapse
|
27
|
Zuma AA, Dos Santos Barrias E, de Souza W. Basic Biology of Trypanosoma cruzi. Curr Pharm Des 2021; 27:1671-1732. [PMID: 33272165 DOI: 10.2174/1381612826999201203213527] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/01/2020] [Accepted: 10/08/2020] [Indexed: 11/22/2022]
Abstract
The present review addresses basic aspects of the biology of the pathogenic protozoa Trypanosoma cruzi and some comparative information of Trypanosoma brucei. Like eukaryotic cells, their cellular organization is similar to that of mammalian hosts. However, these parasites present structural particularities. That is why the following topics are emphasized in this paper: developmental stages of the life cycle in the vertebrate and invertebrate hosts; the cytoskeleton of the protozoa, especially the sub-pellicular microtubules; the flagellum and its attachment to the protozoan body through specialized junctions; the kinetoplast-mitochondrion complex, including its structural organization and DNA replication; glycosome and its role in the metabolism of the cell; acidocalcisome, describing its morphology, biochemistry, and functional role; cytostome and the endocytic pathway; the organization of the endoplasmic reticulum and Golgi complex; the nucleus, describing its structural organization during interphase and division; and the process of interaction of the parasite with host cells. The unique characteristics of these structures also make them interesting chemotherapeutic targets. Therefore, further understanding of cell biology aspects contributes to the development of drugs for chemotherapy.
Collapse
Affiliation(s)
- Aline A Zuma
- Laboratorio de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho - Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Emile Dos Santos Barrias
- Laboratorio de Metrologia Aplicada a Ciencias da Vida, Diretoria de Metrologia Aplicada a Ciencias da Vida - Instituto Nacional de Metrologia, Qualidade e Tecnologia (Inmetro), Rio de Janeiro, Brazil
| | - Wanderley de Souza
- Laboratorio de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho - Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
28
|
de Oliveira Santos J, Zuma AA, de Souza W, Motta MCM. Tubastatin A, a deacetylase inhibitor, as a tool to study the division, cell cycle and microtubule cytoskeleton of trypanosomatids. Eur J Protistol 2021; 80:125821. [PMID: 34144311 DOI: 10.1016/j.ejop.2021.125821] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 11/15/2022]
Abstract
Trypanosoma cruzi is a protozoan of great medical interest since it is the causative agent of Chagas disease, an endemic condition in Latin America. This parasite undergoes epigenetic events, such as phosphorylation, methylation and acetylation, which play a role in several cellular processes including replication, transcription and gene expression. Histone deacetylases (HDAC) are involved in chromatin compaction and post-translational modifications of cytoplasmic proteins, such as tubulin. Tubastatin A (TST) is a specific HDAC6 inhibitor that affects cell growth and promotes structural modifications in cancer cells and parasites. In the present study, we demonstrated that T. cruzi epimastigote cell proliferation and viability are reduced after 72 h of TST treatment. The results obtained through different microscopy methodologies suggest that this inhibitor impairs the polymerization dynamics of cytoskeleton microtubules, generating protozoa displaying atypical morphology and cellular patterns that include polynucleated parasites. Furthermore, the microtubules of treated protozoa were more intensely acetylated, especially at the anterior portion of the cell body. A cell cycle analysis demonstrated an increase in the number of trypanosomatids in the G2/M phase. Together, our results suggest that TST should be explored as a tool to study trypanosomatid cell biology, including microtubule cytoskeleton dynamics, and as an antiparasitic drug.
Collapse
Affiliation(s)
- Jean de Oliveira Santos
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro-UFRJ, 21491-590 Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia e Núcleo de Biologia Estrutural e Bioimagens - CENABIO, UFRJ, RJ, Brazil
| | - Aline Araujo Zuma
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro-UFRJ, 21491-590 Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia e Núcleo de Biologia Estrutural e Bioimagens - CENABIO, UFRJ, RJ, Brazil
| | - Wanderley de Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro-UFRJ, 21491-590 Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia e Núcleo de Biologia Estrutural e Bioimagens - CENABIO, UFRJ, RJ, Brazil
| | - Maria Cristina M Motta
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro-UFRJ, 21491-590 Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia e Núcleo de Biologia Estrutural e Bioimagens - CENABIO, UFRJ, RJ, Brazil.
| |
Collapse
|
29
|
Mensa-Wilmot K. How Physiologic Targets Can Be Distinguished from Drug-Binding Proteins. Mol Pharmacol 2021; 100:1-6. [PMID: 33941662 DOI: 10.1124/molpharm.120.000186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 04/09/2021] [Indexed: 01/04/2023] Open
Abstract
In clinical trials, some drugs owe their effectiveness to off-target activity. This and other observations raise a possibility that many studies identifying targets of drugs are incomplete. If off-target proteins are pharmacologically important, it will be worthwhile to identify them early in the development process to gain a better understanding of the molecular basis of drug action. Herein, we outline a multidisciplinary strategy for systematic identification of physiologic targets of drugs in cells. A drug-binding protein whose genetic disruption yields very similar molecular effects as treatment of cells with the drug may be defined as a physiologic target of the drug. For a drug developed with a rational approach, it is desirable to verify experimentally that a protein used for hit optimization in vitro remains the sole polypeptide recognized by the drug in a cell. SIGNIFICANCE STATEMENT: A body of evidence indicates that inactivation of many drug-binding proteins may not cause the pharmacological effects triggered by the drugs. A multidisciplinary cell-based approach can be of great value in identifying the physiologic targets of drugs, including those developed with target-based strategies.
Collapse
Affiliation(s)
- Kojo Mensa-Wilmot
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, Georgia, and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia
| |
Collapse
|
30
|
Gontijo TB, de Carvalho RL, Dantas-Pereira L, Menna-Barreto RFS, Rogge T, Ackermann L, da Silva Júnior EN. Ruthenium(II)- and Palladium(II)-catalyzed position-divergent CH oxygenations of arylated quinones: Identification of hydroxylated quinonoid compounds with potent trypanocidal activity. Bioorg Med Chem 2021; 40:116164. [PMID: 34020276 DOI: 10.1016/j.bmc.2021.116164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/11/2021] [Accepted: 04/13/2021] [Indexed: 10/21/2022]
Abstract
A diversity-oriented synthesis of hydroxylated aryl-quinones via CH oxygenation reactions and their evaluation against Trypanosoma cruzi, the etiological agent of Chagas disease, was accomplished. With the use of ruthenium(II)- or palladium(II)-based catalysts, complementary regioselectivities were observed in the hydroxylation reactions and we have identified 9 compounds more potent than benznidazole (Bz) among these novel arylated and hydroxylated quinones. For instance, 5-hydroxy-2-[4-(trifluoromethyl)phenyl]-1,4-naphthoquinone (4h) with an IC50/24 h value of 22.8 µM is 4.5-fold more active than the state-of-the-art drug Bz. This article provides the first example of the application of CH activation for the position-selective hydroxylation of arylated quinones and the identification of these compounds as trypanocidal drug candidates.
Collapse
Affiliation(s)
- Talita B Gontijo
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany; Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Renato L de Carvalho
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany; Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Luiza Dantas-Pereira
- Laboratory of Cellular Biology, IOC, FIOCRUZ, Rio de Janeiro, RJ 21045-900, Brazil
| | | | - Torben Rogge
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany; DZHK (German Center for Cardiovascular Research), Potsdamer Strasse 58, 10785 Berlin, Germany.
| | - Eufrânio N da Silva Júnior
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais, CEP 31270-901, Belo Horizonte, MG, Brazil.
| |
Collapse
|
31
|
Bouton J, Ferreira de Almeida Fiuza L, Cardoso Santos C, Mazzarella MA, Soeiro MDNC, Maes L, Karalic I, Caljon G, Van Calenbergh S. Revisiting Pyrazolo[3,4- d]pyrimidine Nucleosides as Anti- Trypanosoma cruzi and Antileishmanial Agents. J Med Chem 2021; 64:4206-4238. [PMID: 33784107 DOI: 10.1021/acs.jmedchem.1c00135] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Chagas disease and visceral leishmaniasis are two neglected tropical diseases responsible for numerous deaths around the world. For both, current treatments are largely inadequate, resulting in a continued need for new drug discovery. As both kinetoplastid parasites are incapable of de novo purine synthesis, they depend on purine salvage pathways that allow them to acquire and process purines from the host to meet their demands. Purine nucleoside analogues therefore constitute a logical source of potential antiparasitic agents. Earlier optimization efforts of the natural product tubercidin (7-deazaadenosine) involving modifications to the nucleobase 7-position and the ribofuranose 3'-position led to analogues with potent anti-Trypanosoma brucei and anti-Trypanosoma cruzi activities. In this work, we report the design and synthesis of pyrazolo[3,4-d]pyrimidine nucleosides with 3'- and 7-modifications and assess their potential as anti-Trypanosoma cruzi and antileishmanial agents. One compound was selected for in vivo evaluation in an acute Chagas disease mouse model.
Collapse
Affiliation(s)
- Jakob Bouton
- Laboratory for Medicinal Chemistry (Campus Heymans), Ghent University, Ottergemsesteenweg 460, B-9000 Gent, Belgium
| | - Ludmila Ferreira de Almeida Fiuza
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz (FIOCRUZ), Fundação Oswaldo Cruz, Rio de Janeiro, Avenida Brasil 4365, Manguinhos, 21040-360 Rio de Janeiro, Brazil
| | - Camila Cardoso Santos
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz (FIOCRUZ), Fundação Oswaldo Cruz, Rio de Janeiro, Avenida Brasil 4365, Manguinhos, 21040-360 Rio de Janeiro, Brazil
| | - Maria Angela Mazzarella
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, Perugia 06100, Italy
| | - Maria de Nazaré Correia Soeiro
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz (FIOCRUZ), Fundação Oswaldo Cruz, Rio de Janeiro, Avenida Brasil 4365, Manguinhos, 21040-360 Rio de Janeiro, Brazil
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Izet Karalic
- Laboratory for Medicinal Chemistry (Campus Heymans), Ghent University, Ottergemsesteenweg 460, B-9000 Gent, Belgium
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Serge Van Calenbergh
- Laboratory for Medicinal Chemistry (Campus Heymans), Ghent University, Ottergemsesteenweg 460, B-9000 Gent, Belgium
| |
Collapse
|
32
|
In vitro study of the trypanocidal activity of anilinophenanthrolines against Trypanosoma cruzi. Parasitol Int 2021; 83:102338. [PMID: 33766741 DOI: 10.1016/j.parint.2021.102338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 02/25/2021] [Accepted: 03/17/2021] [Indexed: 01/07/2023]
Abstract
Chagas disease is present in Latin America, North America, Europe, and Asia, where between 6 and 7 million people are infected. This illness is transmitted mainly by the insect vector during blood feeding and by oral transmission. Chagas disease is treated with benznidazole and its effectiveness depends on which phase of the disease the treatment starts. Therefore, the identification of new compounds with anti-Chagas activities is important. Protozoan parasites present cysteine proteases, important for host cell infection and differentiation, which have been explored as valid targets against pathogenic parasites. In the present study, the effects of 10 new 1,10-phenanthroline derivatives were evaluated on T. cruzi. Three of them were effective against amastigotes (IC50 from 0.5 to 3 μM), epimastigotes (IC50 from 0.5 to at least 10 μM) and trypomastigotes (and LD50 from 1 to 10 μM), and they were not toxic to mammalian cells (CC50 ≥ 20 μM). These compounds also promoted the formation of autophagosomes, alter the level of heterochromatin condensation, caused the loss of kDNA topology, and the elongated cell body shape. Apart from ultrastructural alterations, an increased generation of ROS and decreased mitochondrial membrane potential were observed. Therefore, these drugs revealed potential trypanocidal effects and warrant further antiparasitic studies against Chagas disease.
Collapse
|
33
|
Zuma AA, Teixeira de Macedo-Silva S, Achari A, Vinayagam J, Bhattacharjee P, Chatterjee S, Gupta VK, Cristina de Sousa Leite A, Souza de Castro L, Jaisankar P, de Souza W. Furan derivatives impair proliferation and affect ultrastructural organization of Trypanosoma cruzi and Leishmania amazonensis. Exp Parasitol 2021; 224:108100. [PMID: 33744229 DOI: 10.1016/j.exppara.2021.108100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 02/26/2021] [Accepted: 03/08/2021] [Indexed: 11/17/2022]
Abstract
Chagas disease and leishmaniasis are neglected diseases caused by parasites of the Trypanosomatidae family and together they affect millions of people in the five continents. The treatment of Chagas disease is based on benznidazole, whereas for leishmaniasis few drugs are available, such as amphotericin B and miltefosine. In both cases, the current treatment is not entirely efficient due to toxicity or side effects. Encouraged by the need to discover valid targets and new treatment options, we evaluated 8 furan compounds against Trypanosoma cruzi and Leishmania amazonensis, considering their effects against proliferation, infection, and ultrastructure. Many of them were able to impair T. cruzi and L. amazonensis proliferation, as well as cause ultrastructural alterations, such as Golgi apparatus disorganization, autophagosome formation, and mitochondrial swelling. Taken together, the results obtained so far make these compounds eligible for further steps of chemotherapy study.
Collapse
Affiliation(s)
- Aline Araujo Zuma
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Cidade Universitária, Rio de Janeiro, CEP 21941-902, Brazil; Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Av. Carlos Chagas Filho, 373, Cidade Universitária, Rio de Janeiro, CEP 21941-902, Brazil
| | - Sara Teixeira de Macedo-Silva
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Cidade Universitária, Rio de Janeiro, CEP 21941-902, Brazil; Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Av. Carlos Chagas Filho, 373, Cidade Universitária, Rio de Janeiro, CEP 21941-902, Brazil
| | - Anushree Achari
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata, 700 032, India
| | - Jayaraman Vinayagam
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata, 700 032, India
| | - Pinaki Bhattacharjee
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata, 700 032, India
| | - Sourav Chatterjee
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata, 700 032, India
| | - Vivek Kumar Gupta
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata, 700 032, India
| | - Amanda Cristina de Sousa Leite
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Cidade Universitária, Rio de Janeiro, CEP 21941-902, Brazil; Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Av. Carlos Chagas Filho, 373, Cidade Universitária, Rio de Janeiro, CEP 21941-902, Brazil
| | - Lucas Souza de Castro
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Cidade Universitária, Rio de Janeiro, CEP 21941-902, Brazil; Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Av. Carlos Chagas Filho, 373, Cidade Universitária, Rio de Janeiro, CEP 21941-902, Brazil
| | - Parasuraman Jaisankar
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata, 700 032, India.
| | - Wanderley de Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Cidade Universitária, Rio de Janeiro, CEP 21941-902, Brazil; Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Av. Carlos Chagas Filho, 373, Cidade Universitária, Rio de Janeiro, CEP 21941-902, Brazil.
| |
Collapse
|
34
|
Rocha-Hasler M, de Oliveira GM, da Gama AN, Fiuza LFDA, Fesser AF, Cal M, Rocchetti R, Peres RB, Guan XL, Kaiser M, Soeiro MDNC, Mäser P. Combination With Tomatidine Improves the Potency of Posaconazole Against Trypanosoma cruzi. Front Cell Infect Microbiol 2021; 11:617917. [PMID: 33747979 PMCID: PMC7970121 DOI: 10.3389/fcimb.2021.617917] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/15/2021] [Indexed: 11/23/2022] Open
Abstract
Azoles such as posaconazole (Posa) are highly potent against Trypanosoma cruzi. However, when tested in chronic Chagas disease patients, a high rate of relapse after Posa treatment was observed. It appears that inhibition of T. cruzi cytochrome CYP51, the target of azoles, does not deliver sterile cure in monotherapy. Looking for suitable combination partners of azoles, we have selected a set of inhibitors of sterol and sphingolipid biosynthetic enzymes. A small-scale phenotypic screening was conducted in vitro against the proliferative forms of T. cruzi, extracellular epimastigotes and intracellular amastigotes. Against the intracellular, clinically relevant forms, four out of 15 tested compounds presented higher or equal activity as benznidazole (Bz), with EC50 values ≤2.2 μM. Ro48-8071, an inhibitor of lanosterol synthase (ERG7), and the steroidal alkaloid tomatidine (TH), an inhibitor of C-24 sterol methyltransferase (ERG6), exhibited the highest potency and selectivity indices (SI = 12 and 115, respectively). Both were directed to combinatory assays using fixed-ratio protocols with Posa, Bz, and fexinidazole. The combination of TH with Posa displayed a synergistic profile against amastigotes, with a mean ΣFICI value of 0.2. In vivo assays using an acute mouse model of T. cruzi infection demonstrated lack of antiparasitic activity of TH alone in doses ranging from 0.5 to 5 mg/kg. As observed in vitro, the best combo proportion in vivo was the ratio 3 TH:1 Posa. The combination of Posa at 1.25 mpk plus TH at 3.75 mpk displayed suppression of peak parasitemia of 80% and a survival rate of 60% in the acute infection model, as compared to 20% survival for Posa at 1.25 mpk alone and 40% for Posa at 10 mpk alone. These initial results indicate a potential for the combination of posaconazole with tomatidine against T. cruzi.
Collapse
Affiliation(s)
- Marianne Rocha-Hasler
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz (IOC/Fiocruz), Pavilhão Cardoso Fontes, Rio de Janeiro, Brazil.,Parasite Chemotherapy Unit, Swiss Tropical and Public Health Institute, Medical Parasitology and Infection Biology, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Gabriel Melo de Oliveira
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz (IOC/Fiocruz), Pavilhão Cardoso Fontes, Rio de Janeiro, Brazil
| | - Aline Nefertiti da Gama
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz (IOC/Fiocruz), Pavilhão Cardoso Fontes, Rio de Janeiro, Brazil
| | | | - Anna Frieda Fesser
- Parasite Chemotherapy Unit, Swiss Tropical and Public Health Institute, Medical Parasitology and Infection Biology, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Monica Cal
- Parasite Chemotherapy Unit, Swiss Tropical and Public Health Institute, Medical Parasitology and Infection Biology, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Romina Rocchetti
- Parasite Chemotherapy Unit, Swiss Tropical and Public Health Institute, Medical Parasitology and Infection Biology, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Raiza Brandão Peres
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz (IOC/Fiocruz), Pavilhão Cardoso Fontes, Rio de Janeiro, Brazil
| | - Xue Li Guan
- Systems Biology of Lipid Metabolism in Human Health and Diseases Laboratory, Lee Kong Chian School of Medicine, Singapore, Singapore
| | - Marcel Kaiser
- Parasite Chemotherapy Unit, Swiss Tropical and Public Health Institute, Medical Parasitology and Infection Biology, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | | | - Pascal Mäser
- Parasite Chemotherapy Unit, Swiss Tropical and Public Health Institute, Medical Parasitology and Infection Biology, Basel, Switzerland.,University of Basel, Basel, Switzerland
| |
Collapse
|
35
|
Zuma AA, de Souza W. Chagas Disease Chemotherapy: What Do We Know So Far? Curr Pharm Des 2021; 27:3963-3995. [PMID: 33593251 DOI: 10.2174/1381612827666210216152654] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/13/2021] [Indexed: 11/22/2022]
Abstract
Chagas disease is a Neglected Tropical Disease (NTD), and although endemic in Latin America, affects around 6-7 million people infected worldwide. The treatment of Chagas disease is based on benznidazole and nifurtimox, which are the only available drugs. However, they are not effective during the chronic phase and cause several side effects. Furthermore, BZ promotes cure in 80% of the patients in the acute phase, but the cure rate drops to 20% in adults in the chronic phase of the disease. In this review, we present several studies published in the last six years, which describes the antiparasitic potential of distinct drugs, from the synthesis of new compounds aiming to target the parasite, as well as the repositioning and the combination of drugs. We highlight several compounds for having shown results that are equivalent or superior to BZ, which means that they should be further studied, either in vitro or in vivo. Furthermore, we stand out the differences in the effects of BZ on the same strain of T. cruzi, which might be related to methodological differences such as parasite and cell ratios, host cell type and the time of adding the drug. In addition, we discuss the wide variety of strains and also the cell types used as a host cell, which makes it difficult to compare the trypanocidal effect of the compounds.
Collapse
Affiliation(s)
- Aline Araujo Zuma
- Laboratorio de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro. Av. Carlos Chagas Filho, 373, Centro de Ciências da Saúde, Cidade Universitária, Ilha do Fundão, 21491-590, Rio de Janeiro, RJ. Brazil
| | - Wanderley de Souza
- Laboratorio de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro. Av. Carlos Chagas Filho, 373, Centro de Ciências da Saúde, Cidade Universitária, Ilha do Fundão, 21491-590, Rio de Janeiro, RJ. Brazil
| |
Collapse
|
36
|
de Almeida Fiuza LF, Batista DDGJ, Nunes DF, Moreira OC, Cascabulho C, Soeiro MDNC. Benznidazole modulates release of inflammatory mediators by cardiac spheroids infected with Trypanosoma cruzi. Exp Parasitol 2020; 221:108061. [PMID: 33383023 DOI: 10.1016/j.exppara.2020.108061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/22/2020] [Indexed: 01/08/2023]
Abstract
Chagas disease (CD) caused by Trypanosoma cruzi remains a serious public health problem in Latin America. The available treatment is limited to two old drugs, benznidazole (Bz) and nifurtimox, which exhibit limited efficacy and trigger side effects, justifying the search for new therapies. Also, more accurate and sensitive experimental protocols for drug discovery programs are necessary to shrink the translational gaps found among pre-clinical and clinical trials. Presently, cardiac spheroids were used to evaluate host cell cytotoxicity and anti-T.cruzi activity of benznidazole, exploring its effect on the release of inflammatory mediators. Bz presented low toxic profile on 3D matrices (LC50 > 200 μM) and high potency in vitro (EC50 = 0.99 μM) evidenced by qPCR analysis of T.cruzi-infected cardiac spheroids. Flow cytometry appraisal of inflammatory mediators released at the cellular supernatant showed increases in IL - 6 and TNF contents (≈190 and ≈ 25-fold) in parasitized spheroids as compared to uninfected cultures. Bz at 10 μM suppressed parasite load (92%) concomitantly decreasing in IL-6 (36%) and TNF (68%). Our findings corroborate the successful use of 3D cardiac matrices for in vitro identification of novel anti-parasitic agents and potential impact in host cell physiology.
Collapse
Affiliation(s)
| | - Denise da Gama Jaen Batista
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daniela Ferreira Nunes
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Otacílio Cruz Moreira
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cynthia Cascabulho
- Laboratório de Inovações Em Terapias, Ensino e Bioprodutos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | | |
Collapse
|
37
|
Mansoldo FRP, Carta F, Angeli A, Cardoso VDS, Supuran CT, Vermelho AB. Chagas Disease: Perspectives on the Past and Present and Challenges in Drug Discovery. Molecules 2020; 25:E5483. [PMID: 33238613 PMCID: PMC7700143 DOI: 10.3390/molecules25225483] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/20/2022] Open
Abstract
Chagas disease still has no effective treatment option for all of its phases despite being discovered more than 100 years ago. The development of commercial drugs has been stagnating since the 1960s, a fact that sheds light on the question of how drug discovery research has progressed and taken advantage of technological advances. Could it be that technological advances have not yet been sufficient to resolve this issue or is there a lack of protocol, validation and standardization of the data generated by different research teams? This work presents an overview of commercial drugs and those that have been evaluated in studies and clinical trials so far. A brief review is made of recent target-based and phenotypic studies based on the search for molecules with anti-Trypanosoma cruzi action. It also discusses how proteochemometric (PCM) modeling and microcrystal electron diffraction (MicroED) can help in the case of the lack of a 3D protein structure; more specifically, Trypanosoma cruzi carbonic anhydrase.
Collapse
Affiliation(s)
- Felipe Raposo Passos Mansoldo
- BIOINOVAR-Biocatalysis, Bioproducts and Bioenergy, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (F.R.P.M.); (V.d.S.C.)
| | - Fabrizio Carta
- Neurofarba Department, Università degli Studi di Firenze, Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino (Florence), Italy; (F.C.); (A.A.)
| | - Andrea Angeli
- Neurofarba Department, Università degli Studi di Firenze, Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino (Florence), Italy; (F.C.); (A.A.)
- Centre of Advanced Research in Bionanoconjugates and Biopolymers Department, “Petru Poni” Institute of Macromolecular Chemistry, 700487 Iasi, Romania
| | - Veronica da Silva Cardoso
- BIOINOVAR-Biocatalysis, Bioproducts and Bioenergy, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (F.R.P.M.); (V.d.S.C.)
| | - Claudiu T. Supuran
- Neurofarba Department, Università degli Studi di Firenze, Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino (Florence), Italy; (F.C.); (A.A.)
| | - Alane Beatriz Vermelho
- BIOINOVAR-Biocatalysis, Bioproducts and Bioenergy, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (F.R.P.M.); (V.d.S.C.)
| |
Collapse
|
38
|
Martín-Escolano J, Medina-Carmona E, Martín-Escolano R. Chagas Disease: Current View of an Ancient and Global Chemotherapy Challenge. ACS Infect Dis 2020; 6:2830-2843. [PMID: 33034192 DOI: 10.1021/acsinfecdis.0c00353] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Chagas disease is a neglected tropical disease and a global public health issue. In terms of treatment, no progress has been made since the 1960s, when benznidazole and nifurtimox, two obsolete drugs still prescribed, were used to treat this disease. Hence, currently, there are no effective treatments available to tackle Chagas disease. Over the past 20 years, there has been an increasing interest in the disease. However, parasite genetic diversity, drug resistance, tropism, and complex life cycle, along with the limited understanding of the disease and inadequate methodologies and strategies, have resulted in the absence of new insights in drugs development and disappointing outcomes in clinical trials so far. In summary, new drugs are urgently needed. This Review considers the relevant aspects related to the lack of drugs for Chagas disease, resumes the advances in tools for drug discovery, and discusses the main features to be taken into account to develop new effective drugs.
Collapse
Affiliation(s)
- Javier Martín-Escolano
- Department of Parasitology, Instituto de Investigación Biosanitaria (ibs.Granada), Hospitales Universitarios De Granada/University of Granada, Severo Ochoa s/n, 18071 Granada, Spain
| | | | - Rubén Martín-Escolano
- Department of Parasitology, Instituto de Investigación Biosanitaria (ibs.Granada), Hospitales Universitarios De Granada/University of Granada, Severo Ochoa s/n, 18071 Granada, Spain
| |
Collapse
|
39
|
Thompson AM, O'Connor PD, Marshall AJ, Francisco AF, Kelly JM, Riley J, Read KD, Perez CJ, Cornwall S, Thompson RCA, Keenan M, White KL, Charman SA, Zulfiqar B, Sykes ML, Avery VM, Chatelain E, Denny WA. Re-evaluating pretomanid analogues for Chagas disease: Hit-to-lead studies reveal both in vitro and in vivo trypanocidal efficacy. Eur J Med Chem 2020; 207:112849. [PMID: 33007723 DOI: 10.1016/j.ejmech.2020.112849] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 09/08/2020] [Accepted: 09/12/2020] [Indexed: 01/08/2023]
Abstract
Phenotypic screening of a 900 compound library of antitubercular nitroimidazole derivatives related to pretomanid against the protozoan parasite Trypanosoma cruzi (the causative agent for Chagas disease) identified several structurally diverse hits with an unknown mode of action. Following initial profiling, a first proof-of-concept in vivo study was undertaken, in which once daily oral dosing of a 7-substituted 2-nitroimidazooxazine analogue suppressed blood parasitemia to low or undetectable levels, although sterile cure was not achieved. Limited hit expansion studies alongside counter-screening of new compounds targeted at visceral leishmaniasis laid the foundation for a more in-depth assessment of the best leads, focusing on both drug-like attributes (solubility, metabolic stability and safety) and maximal killing of the parasite in a shorter timeframe. Comparative appraisal of one preferred lead (58) in a chronic infection mouse model, monitored by highly sensitive bioluminescence imaging, provided the first definitive evidence of (partial) curative efficacy with this promising nitroimidazooxazine class.
Collapse
Affiliation(s)
- Andrew M Thompson
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.
| | - Patrick D O'Connor
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Andrew J Marshall
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Amanda F Francisco
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, United Kingdom
| | - John M Kelly
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, United Kingdom
| | - Jennifer Riley
- Drug Discovery Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, United Kingdom
| | - Kevin D Read
- Drug Discovery Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, United Kingdom
| | - Catherine J Perez
- Department of Parasitology & Veterinary Sciences, Murdoch University, South Street, Murdoch, Western Australia, 6150, Australia
| | - Scott Cornwall
- Department of Parasitology & Veterinary Sciences, Murdoch University, South Street, Murdoch, Western Australia, 6150, Australia
| | - R C Andrew Thompson
- Department of Parasitology & Veterinary Sciences, Murdoch University, South Street, Murdoch, Western Australia, 6150, Australia
| | - Martine Keenan
- Epichem Pty Ltd, Suite 5, 3 Brodie-Hall Drive, Technology Park, Bentley, Western Australia, 6102, Australia
| | - Karen L White
- Centre for Drug Candidate Optimisation, Monash University, 381 Royal Parade, Parkville, Victoria, 3052, Australia
| | - Susan A Charman
- Centre for Drug Candidate Optimisation, Monash University, 381 Royal Parade, Parkville, Victoria, 3052, Australia
| | - Bilal Zulfiqar
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Don Young Road, Nathan, Queensland, 4111, Australia
| | - Melissa L Sykes
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Don Young Road, Nathan, Queensland, 4111, Australia
| | - Vicky M Avery
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Don Young Road, Nathan, Queensland, 4111, Australia
| | - Eric Chatelain
- Drugs for Neglected Diseases initiative, 15 Chemin Louis Dunant, 1202, Geneva, Switzerland
| | - William A Denny
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| |
Collapse
|
40
|
Scarim CB, Chin CM. Current Approaches to Drug Discovery for Chagas Disease: Methodological Advances. Comb Chem High Throughput Screen 2020; 22:509-520. [PMID: 31608837 DOI: 10.2174/1386207322666191010144111] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/31/2019] [Accepted: 09/06/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND In recent years, there has been an improvement in the in vitro and in vivo methodology for the screening of anti-chagasic compounds. Millions of compounds can now have their activity evaluated (in large compound libraries) by means of high throughput in vitro screening assays. OBJECTIVE Current approaches to drug discovery for Chagas disease. METHOD This review article examines the contribution of these methodological advances in medicinal chemistry in the last four years, focusing on Trypanosoma cruzi infection, obtained from the PubMed, Web of Science, and Scopus databases. RESULTS Here, we have shown that the promise is increasing each year for more lead compounds for the development of a new drug against Chagas disease. CONCLUSION There is increased optimism among those working with the objective to find new drug candidates for optimal treatments against Chagas disease.
Collapse
Affiliation(s)
- Cauê B Scarim
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil.,Lapdesf - Laboratory of Research and Development of Drugs, Araraquara, São Paulo, Brazil
| | - Chung M Chin
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil.,Lapdesf - Laboratory of Research and Development of Drugs, Araraquara, São Paulo, Brazil
| |
Collapse
|
41
|
de Araújo JS, França da Silva C, Batista DDGJ, Nefertiti A, Fiuza LFDA, Fonseca-Berzal CR, Bernardino da Silva P, Batista MM, Sijm M, Kalejaiye TD, de Koning HP, Maes L, Sterk GJ, Leurs R, Soeiro MDNC. Efficacy of Novel Pyrazolone Phosphodiesterase Inhibitors in Experimental Mouse Models of Trypanosoma cruzi. Antimicrob Agents Chemother 2020; 64:e00414-20. [PMID: 32601163 PMCID: PMC7449165 DOI: 10.1128/aac.00414-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/20/2020] [Indexed: 11/20/2022] Open
Abstract
Pyrazolones are heterocyclic compounds with interesting biological properties. Some derivatives inhibit phosphodiesterases (PDEs) and thereby increase the cellular concentration of cyclic AMP (cAMP), which plays a vital role in the control of metabolism in eukaryotic cells, including the protozoan Trypanosoma cruzi, the etiological agent of Chagas disease (CD), a major neglected tropical disease. In vitro phenotypic screening identified a 4-bromophenyl-dihydropyrazole dimer as an anti-T. cruzi hit and 17 novel pyrazolone analogues with variations on the phenyl ring were investigated in a panel of phenotypic laboratory models. Potent activity against the intracellular forms (Tulahuen and Y strains) was obtained with 50% effective concentration (EC50) values within the 0.17 to 3.3 μM range. Although most were not active against bloodstream trypomastigotes, an altered morphology and loss of infectivity were observed. Pretreatment of the mammalian host cells with pyrazolones did not interfere with infection and proliferation, showing that the drug activity was not the result of changes to host cell metabolism. The pyrazolone NPD-227 increased the intracellular cAMP levels and was able to sterilize T. cruzi-infected cell cultures. Thus, due to its high potency and selectivity in vitro, and its additive interaction with benznidazole (Bz), NPD-227 was next assessed in the acute mouse model. Oral dosing for 5 days of NPD-227 at 10 mg/kg + Bz at 10 mg/kg not only reduced parasitemia (>87%) but also protected against mortality (>83% survival), hence demonstrating superiority to the monotherapy schemes. These data support these pyrazolone molecules as potential novel therapeutic alternatives for Chagas disease.
Collapse
Affiliation(s)
- Julianna Siciliano de Araújo
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cristiane França da Silva
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Denise da Gama Jaén Batista
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Aline Nefertiti
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Cristina Rosa Fonseca-Berzal
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Patrícia Bernardino da Silva
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcos Meuser Batista
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maarten Sijm
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecules, Medicines and Systems, VU University Amsterdam, Amsterdam, The Netherlands
| | - Titilola D Kalejaiye
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Harry P de Koning
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Louis Maes
- Laboratory for Microbiology, Parasitology and Hygiene, University of Antwerp, Antwerp, Belgium
| | - Geert Jan Sterk
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecules, Medicines and Systems, VU University Amsterdam, Amsterdam, The Netherlands
| | - Rob Leurs
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecules, Medicines and Systems, VU University Amsterdam, Amsterdam, The Netherlands
| | | |
Collapse
|
42
|
Chatelain E, Scandale I. Animal models of Chagas disease and their translational value to drug development. Expert Opin Drug Discov 2020; 15:1381-1402. [PMID: 32812830 DOI: 10.1080/17460441.2020.1806233] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION American trypanosomiasis, better known as Chagas disease, is a global public health issue. Current treatments targeting the causative parasite, Trypanosoma cruzi, are limited to two old nitroheterocyclic compounds; new, safer drugs are needed. New tools to identify compounds suitable for parasitological cure in humans have emerged through efforts in drug discovery. AREAS COVERED Animal disease models are an integral part of the drug discovery process. There are numerous experimental models of Chagas disease described and in use; rather than going through each of these and their specific features, the authors focus on developments in recent years, in particular the imaging technologies that have dramatically changed the Chagas R&D landscape, and provide a critical view on their value and limitations for moving compounds forward into further development. EXPERT OPINION The application of new technological advances to the field of drug development for Chagas disease has led to the implementation of new and robust/standardized in vivo models that contributed to a better understanding of host/parasite interactions. These new models should also build confidence in their translational value for moving compounds forward into clinical development.
Collapse
Affiliation(s)
- Eric Chatelain
- R&D Department, Drugs for Neglected Diseases Initiative (DNDi) , Geneva, Switzerland
| | - Ivan Scandale
- R&D Department, Drugs for Neglected Diseases Initiative (DNDi) , Geneva, Switzerland
| |
Collapse
|
43
|
Wood JM, Satam NS, Almeida RG, Cristani VS, de Lima DP, Dantas-Pereira L, Salomão K, Menna-Barreto RF, Namboothiri IN, Bower JF, da Silva Júnior EN. Strategies towards potent trypanocidal drugs: Application of Rh-catalyzed [2 + 2 + 2] cycloadditions, sulfonyl phthalide annulation and nitroalkene reactions for the synthesis of substituted quinones and their evaluation against Trypanosoma cruzi. Bioorg Med Chem 2020; 28:115565. [DOI: 10.1016/j.bmc.2020.115565] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 02/08/2023]
|
44
|
Bhattacharya A, Corbeil A, do Monte-Neto RL, Fernandez-Prada C. Of Drugs and Trypanosomatids: New Tools and Knowledge to Reduce Bottlenecks in Drug Discovery. Genes (Basel) 2020; 11:genes11070722. [PMID: 32610603 PMCID: PMC7397081 DOI: 10.3390/genes11070722] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 12/15/2022] Open
Abstract
Leishmaniasis (Leishmania species), sleeping sickness (Trypanosoma brucei), and Chagas disease (Trypanosoma cruzi) are devastating and globally spread diseases caused by trypanosomatid parasites. At present, drugs for treating trypanosomatid diseases are far from ideal due to host toxicity, elevated cost, limited access, and increasing rates of drug resistance. Technological advances in parasitology, chemistry, and genomics have unlocked new possibilities for novel drug concepts and compound screening technologies that were previously inaccessible. In this perspective, we discuss current models used in drug-discovery cascades targeting trypanosomatids (from in vitro to in vivo approaches), their use and limitations in a biological context, as well as different examples of recently discovered lead compounds.
Collapse
Affiliation(s)
- Arijit Bhattacharya
- Department of Microbiology, Adamas University, Kolkata, West Bengal 700 126, India;
| | - Audrey Corbeil
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada;
| | | | - Christopher Fernandez-Prada
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada;
- Correspondence: ; Tel.: +1-450-773-8521 (ext. 32802)
| |
Collapse
|
45
|
Francisco AF, Jayawardhana S, Olmo F, Lewis MD, Wilkinson SR, Taylor MC, Kelly JM. Challenges in Chagas Disease Drug Development. Molecules 2020; 25:E2799. [PMID: 32560454 PMCID: PMC7355550 DOI: 10.3390/molecules25122799] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 02/08/2023] Open
Abstract
The protozoan parasite Trypanosoma cruzi causes Chagas disease, an important public health problem throughout Latin America. Current therapeutic options are characterised by limited efficacy, long treatment regimens and frequent toxic side-effects. Advances in this area have been compromised by gaps in our knowledge of disease pathogenesis, parasite biology and drug activity. Nevertheless, several factors have come together to create a more optimistic scenario. Drug-based research has become more systematic, with increased collaborations between the academic and commercial sectors, often within the framework of not-for-profit consortia. High-throughput screening of compound libraries is being widely applied, and new technical advances are helping to streamline the drug development pipeline. In addition, drug repurposing and optimisation of current treatment regimens, informed by laboratory research, are providing a basis for new clinical trials. Here, we will provide an overview of the current status of Chagas disease drug development, highlight those areas where progress can be expected, and describe how fundamental research is helping to underpin the process.
Collapse
Affiliation(s)
- Amanda F. Francisco
- Department of Infection Biology, London School of Hygiene and Tropical Medicine Keppel Street, London WC1E 7HT, UK; (A.F.F.); (S.J.); (F.O.); (M.D.L.); (M.C.T.)
| | - Shiromani Jayawardhana
- Department of Infection Biology, London School of Hygiene and Tropical Medicine Keppel Street, London WC1E 7HT, UK; (A.F.F.); (S.J.); (F.O.); (M.D.L.); (M.C.T.)
| | - Francisco Olmo
- Department of Infection Biology, London School of Hygiene and Tropical Medicine Keppel Street, London WC1E 7HT, UK; (A.F.F.); (S.J.); (F.O.); (M.D.L.); (M.C.T.)
| | - Michael D. Lewis
- Department of Infection Biology, London School of Hygiene and Tropical Medicine Keppel Street, London WC1E 7HT, UK; (A.F.F.); (S.J.); (F.O.); (M.D.L.); (M.C.T.)
| | - Shane R. Wilkinson
- School of Biological and Chemical Sciences, Queen Mary University of London Mile End Road, London E1 4NS, UK;
| | - Martin C. Taylor
- Department of Infection Biology, London School of Hygiene and Tropical Medicine Keppel Street, London WC1E 7HT, UK; (A.F.F.); (S.J.); (F.O.); (M.D.L.); (M.C.T.)
| | - John M. Kelly
- Department of Infection Biology, London School of Hygiene and Tropical Medicine Keppel Street, London WC1E 7HT, UK; (A.F.F.); (S.J.); (F.O.); (M.D.L.); (M.C.T.)
| |
Collapse
|
46
|
Nicoletti CD, Faria AFM, de Sá Haddad Queiroz M, Dos Santos Galvão RM, Souza ALA, Futuro DO, Faria RX, Ferreira VF. Synthesis and biological evaluation of β-lapachone and nor-β-lapachone complexes with 2-hydroxypropyl-β-cyclodextrin as trypanocidal agents. J Bioenerg Biomembr 2020; 52:185-197. [PMID: 32198699 DOI: 10.1007/s10863-020-09826-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 02/20/2020] [Indexed: 01/03/2023]
Abstract
We study βLAP and its derivative nor-β-Lapachone (NβL) complexes with 2-hydroxypropyl-β-cyclodextrin to increase the solubility and bioavailability. The formation of true inclusion complexes between βLAP or NβL in 2-HP-β-CD in solid solution was characterization by FT-IR, DSC, powder X-ray was and was confirmed by one- and two-dimensional 1H NMR experiments. Additionally, the biological activities of βLAP, NβL, ICβLAP, and ICNβL were investigated through trypanocidal assays with T. cruzi and cytotoxicity studies with mouse peritoneal macrophages. Originally, we tested these complexes against T. cruzi viability and observed higher biological activities and lower cytotoxicity when compared to βLAP and NβL. Thus, the complexation of βLAP and NβL with 2-HP-β-CD increases the drug solubility, in addition vectorization was observed, increasing the biological activity against epimastigotes and trypomastigotes T. cruzi forms. Reduced the toxicity of the compounds against mammalian cells. In addition, the selectivity indices higher of the inclusion complexes comparing to substance free and those of benznidazole.
Collapse
Affiliation(s)
- Caroline Deckmann Nicoletti
- Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, RJ, 24241-000, Brazil
| | - Ana Flávia Martins Faria
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Av. Brasil, n° 4365, Pavilhão Carlos Chagas, sala 208c, Manguinhos, Rio de Janeiro, RJ, 21045900, Brazil.,Postgraduate Program in Sciences and Biotechnology, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Marcella de Sá Haddad Queiroz
- Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, RJ, 24241-000, Brazil
| | - Raíssa Maria Dos Santos Galvão
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Av. Brasil, n° 4365, Pavilhão Carlos Chagas, sala 208c, Manguinhos, Rio de Janeiro, RJ, 21045900, Brazil.,Postgraduate Program in Sciences and Biotechnology, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | | | - Débora Omena Futuro
- Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, RJ, 24241-000, Brazil
| | - Robson Xavier Faria
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Av. Brasil, n° 4365, Pavilhão Carlos Chagas, sala 208c, Manguinhos, Rio de Janeiro, RJ, 21045900, Brazil. .,Postgraduate Program in Sciences and Biotechnology, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil.
| | - Vitor Francisco Ferreira
- Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, RJ, 24241-000, Brazil
| |
Collapse
|
47
|
da Silva Lima CH, de Araujo Vanelis Soares JC, de Sousa Ribeiro JL, Muri EMF, de Albuquerque S, Dias LRS. Anti-Trypanosoma cruzi Activity and Molecular Docking Studies of 1Hpyrazolo[ 3, 4-b]pyridine Derivatives. LETT DRUG DES DISCOV 2020. [DOI: 10.2174/1570180816666190305141733] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Untargeted studies led to the development of some pyrazolopyridine
derivatives for the antiparasitic profile, particularly the derivatives containing the structural
carbohydrazide subunit. In this work, we proceeded in the biological screening of 27 N’- (substitutedphenylmethylene)-
4-carbohydrazide-3-methyl-1-phenyl-1H-pyrazolo[3, 4-b]pyridine derivatives against
T. cruzi as well as the cytotoxic evaluation. To obtain more information about the trypanocidal
activity of this class of compounds, we carried out molecular docking simulations to get an insight
into putative targets in T. cruzi.
Methods:
The assays were evaluated against both trypomastigote and amastigote forms of T. cruzi
and cytotoxicity assays on LLCMK2 cells. The predominant conformational compounds were
analyzed and molecular docking simulations performed.
Results:
The results from trypanocidal activity screening of this series showed that just the
compounds with phenyl group at C-6 position exhibited activity and the N’-4-hydroxyphenylmethylene
derivative presented the best profile against both trypomastigote and amastigote
forms of T. cruzi. Docking simulation results showed that this compound has a binding affinity with
both CYP51 and cruzain targets of T. cruzi.
Conclusion:
Our results indicate that the hydroxyl substituent at the N’-substituted-phenylmethylene
moiety and the phenyl ring at C-6 of 1H-pyrazolo[3,4-b]pyridine system are relevant for the
trypanocidal activity of this class of compounds. Also, docking simulations showed that activity
presented can be related to more than one target of the parasite.
Collapse
Affiliation(s)
- Camilo Henrique da Silva Lima
- Laboratório de Quimica Medicinal, Universidade Federal Fluminense, Faculdade de Farmacia, Niteroi, Rio de Janeiro, Brazil
| | | | - Joana Lucius de Sousa Ribeiro
- Laboratório de Quimica Medicinal, Universidade Federal Fluminense, Faculdade de Farmacia, Niteroi, Rio de Janeiro, Brazil
| | - Estela Maris Freitas Muri
- Laboratório de Quimica Medicinal, Universidade Federal Fluminense, Faculdade de Farmacia, Niteroi, Rio de Janeiro, Brazil
| | - Sérgio de Albuquerque
- Universidade de Sao Paulo, Departamento de Analises Clinicas, Toxicologicas e Bromatologicas, Av. do Cafe s/n, Ribeirao Preto, SP, 14040-903, Brazil
| | - Luiza Rosaria Sousa Dias
- Laboratório de Quimica Medicinal, Universidade Federal Fluminense, Faculdade de Farmacia, Niteroi, Rio de Janeiro, Brazil
| |
Collapse
|
48
|
do Vale Chaves e Mello F, Castro Salomão Quaresma BM, Resende Pitombeira MC, Araújo de Brito M, Farias PP, Lisboa de Castro S, Salomão K, Silva de Carvalho A, Oliveira de Paula JI, de Brito Nascimento S, Peixoto Cupello M, Paes MC, Boechat N, Felzenszwalb I. Novel nitroimidazole derivatives evaluated for their trypanocidal, cytotoxic, and genotoxic activities. Eur J Med Chem 2020; 186:111887. [DOI: 10.1016/j.ejmech.2019.111887] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 01/03/2023]
|
49
|
Villalta F, Rachakonda G. Advances in preclinical approaches to Chagas disease drug discovery. Expert Opin Drug Discov 2019; 14:1161-1174. [PMID: 31411084 PMCID: PMC6779130 DOI: 10.1080/17460441.2019.1652593] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/02/2019] [Indexed: 12/21/2022]
Abstract
Introduction: Chagas disease affects 8-10 million people worldwide, mainly in Latin America. The current therapy for Chagas disease is limited to nifurtimox and benznidazole, which are effective in treating only the acute phase of the disease but with severe side effects. Therefore, there is an unmet need for new drugs and for the exploration of innovative approaches which may lead to the discovery of new effective and safe drugs for its treatment. Areas covered: The authors report and discuss recent approaches including structure-based design that have led to the discovery of new promising small molecule candidates for Chagas disease which affect prime targets that intervene in the sterol pathway of T. cruzi. Other trypanosome targets, phenotypic screening, the use of artificial intelligence and the challenges with Chagas disease drug discovery are also discussed. Expert opinion: The application of recent scientific innovations to the field of Chagas disease have led to the discovery of new promising drug candidates for Chagas disease. Phenotypic screening brought new hits and opportunities for drug discovery. Artificial intelligence also has the potential to accelerate drug discovery in Chagas disease and further research into this is warranted.
Collapse
Affiliation(s)
- Fernando Villalta
- Department of Microbiology, Immunology and Physiology, School of Medicine, Meharry Medical College , Nashville , TN , USA
| | - Girish Rachakonda
- Department of Microbiology, Immunology and Physiology, School of Medicine, Meharry Medical College , Nashville , TN , USA
| |
Collapse
|
50
|
Vermelho AB, Rodrigues GC, Supuran CT. Why hasn't there been more progress in new Chagas disease drug discovery? Expert Opin Drug Discov 2019; 15:145-158. [PMID: 31670987 DOI: 10.1080/17460441.2020.1681394] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Introduction: Chagas disease (CD) is a neglected disease caused by the protozoan parasite Trypanosoma cruzi. In terms of novel drug discovery, there has been no progress since the 1960s with the same two drugs, benznidazole and nifurtimox, still in use. The complex life cycle, genetic diversity of T. cruzi strains, different sensitivities to the available drugs, as well as little interest from pharmaceutical companies and inadequate methodologies for translating in vitro and in vivo findings to the discovery of new drugs have all contributed to the lack of progress.Areas covered: In this perspective, the authors give discussion to the relevant points connected to the lack of developments in CD drug discovery and provide their expert perspectives.Expert opinion: There are few drugs currently in the preclinical pipeline for the treatment of CD. Only three classes of compounds have been shown to achieve high cure rates in mouse models of infection: nitroimidazoles (fexinidazole), oxaborole DNDi-6148 and proteasome inhibitors (GNF6702). New biomarkers for Chagas' disease are urgently needed for the diagnosis and detection of cure/treatment efficacy. Efforts from academia and pharmaceutical companies are in progress and more intense interaction to accelerate the process of new drugs development is necessary.
Collapse
Affiliation(s)
- Alane Beatriz Vermelho
- BIOINOVAR - Biotechnology Laboratories: Biocatalysis, Bioproducts and Bioenergy, Institute of Microbiology Paulo de Góes,Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Giseli Capaci Rodrigues
- Postgraduate Program in Teaching of Sciences, University of Grande Rio, Duque de Caxias, Brazil
| | - Claudiu T Supuran
- Department of NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino (Firenze), Italy
| |
Collapse
|