1
|
Hosseinkhani S, Amandadi M, Ghanavatian P, Zarein F, Ataei F, Nikkhah M, Vandenabeele P. Harnessing luciferase chemistry in regulated cell death modalities and autophagy: overview and perspectives. Chem Soc Rev 2024; 53:11557-11589. [PMID: 39417351 DOI: 10.1039/d3cs00743j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Regulated cell death is a fate of cells in (patho)physiological conditions during which extrinsic or intrinsic signals or redox equilibrium pathways following infection, cellular stress or injury are coupled to cell death modalities like apoptosis, necroptosis, pyroptosis or ferroptosis. An immediate survival response to cellular stress is often induction of autophagy, a process that deals with removal of aggregated proteins and damaged organelles by a lysosomal recycling process. These cellular processes and their regulation are crucial in several human diseases. Exploiting high-throughput assays which discriminate distinct cell death modalities and autophagy are critical to identify potential therapeutic agents that modulate these cellular responses. In the past few years, luciferase-based assays have been widely developed for assessing regulated cell death and autophagy pathways due to their simplicity, sensitivity, known chemistry, different spectral properties and high-throughput potential. Here, we review basic principles of bioluminescent reactions from a mechanistic perspective, along with their implication in vitro and in vivo for probing cell death and autophagy pathways. These include applying luciferase-, luciferin-, and ATP-based biosensors for investigating regulated cell death modalities. We discuss multiplex bioluminescence platforms which simultaneously distinguish between the various cell death phenomena and cellular stress recovery processes such as autophagy. We also highlight the recent technological achievements of bioluminescent tools for the prediction of drug effectiveness in pathways associated with regulated cell death.
Collapse
Affiliation(s)
- Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Mojdeh Amandadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Parisa Ghanavatian
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Fateme Zarein
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Farangis Ataei
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Maryam Nikkhah
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Peter Vandenabeele
- Cell Death and Inflammation Unit, VIB-UGent Center for Inflammation Research (IRC), Ghent, Belgium
- Department of Biomedical Molecular Biology (DBMB), Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
2
|
Zhang H, Gao J, Tang Y, Jin T, Tao J. Inflammasomes cross-talk with lymphocytes to connect the innate and adaptive immune response. J Adv Res 2023; 54:181-193. [PMID: 36681114 DOI: 10.1016/j.jare.2023.01.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 10/15/2022] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Innate and adaptive immunity are two different parts of the immune system that have different characteristics and work together to provide immune protection. Inflammasomes are a major part of the innate immune system that are expressed widely in myeloid cells and are responsible for inflammatory responses. Recent studies have shown that inflammasomes are also expressed and activated in lymphocytes, especially in T and B cells, to regulate the adaptive immune response. Activation of inflammasomes is also under the control of lymphocytes. Therefore, we propose that inflammasomes act as a bridge and they provide crosstalk between the innate and adaptive immune systems to obtain a fine balance in immune responses. AIM OF REVIEW This review systematially summarizes the interaction between inflammasomes and lymphocytes and describes the crosstalk between the innate and adaptive immune systems induced by inflammasomes, with the aim of providing new directions and important areas for further research. KEY SCIENTIFIC CONCEPTS OF REVIEW When considering the novel function of inflammasomes in various lymphocytes, attention should be given to the activity of specific inflammasomes in studies of lymphocyte function. Moreover, research on the function of various inflammasomes in lymphocytes will help advance knowledge on the mechanisms and treatment of various diseases, including autoimmune diseases and tumors. In addition, when studying inflammatory responses, inflammasomes in both lymphocytes and myeloid cells need to be considered.
Collapse
Affiliation(s)
- Hongliang Zhang
- Department of Rheumatology and Immunology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; College of Medicine and Health, Lishui University, No. 1 Xueyuan Road, Liandu District, Lishui 323000, China
| | - Jie Gao
- Department of Rheumatology and Immunology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yujie Tang
- Department of Rheumatology and Immunology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Tengchuan Jin
- Laboratory of Structural Immunology, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Jinhui Tao
- Department of Rheumatology and Immunology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
3
|
Mansoor F, Jabeen A, Shah SF, Simjee SU, Bano S, Faizi S. In-vitro inhibition of NLRP3 inflammasome by 3,6-dihydroxyflavone (3,6-DHF): a therapeutic strategy for the treatment of chronic inflammatory and autoimmune diseases. Mol Cell Biochem 2023; 478:555-570. [PMID: 35951149 DOI: 10.1007/s11010-022-04527-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 07/12/2022] [Indexed: 10/15/2022]
Abstract
Nucleotide-binding oligomerization domain (NOD)-like receptor family pyrin domain containing 3 (NLRP3) inflammasome complex has an important role in immune system and its abnormal activation is associated with the pathogenesis of various inflammatory and auto-immune diseases. The study reveals the anti-inflammatory effects of 3,6-dihydroxyflavone (3,6-DHF). Here, we aimed to determine the inhibitory effects of 3,6-DHF on NLRP3 inflammasome and its associated components, thereby determining the signaling pathways involved in the inhibition. Reactive oxygen species (ROS) and nitric oxide (NO) were quantified by chemiluminescence and Griess methods, respectively. Inflammatory cell model was induced in human leukemic monocytes (THP-1). mRNA levels were estimated through real-time RT-PCR, protein expressions were evaluated by protein slot blot and immunocytochemistry, MTT and alamar blue assays were employed for toxicity studies. The compound 3,6-DHF was found to be the potent inhibitor of NLRP3 inflammasome by targeting the molecules involve in its activation pathway. Anti-inflammatory effects were revealed by inhibition of ROS and NO, reduction in the transcription of caspase-1, ASC, IL-1β and TLR-4 was observed along with the marked inhibition of NLRP3, IL-18, NF-κB and pNF-κB at translational level. 3,6-DHF was non-toxic on normal human fibroblast (BJ) and THP-1 cells and, could be a potential therapeutic agent in NLRP3 inflammasome driven diseases.
Collapse
Affiliation(s)
- Farheen Mansoor
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Almas Jabeen
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| | - Syeda Farah Shah
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Shabana U Simjee
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Samina Bano
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Shaheen Faizi
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| |
Collapse
|
4
|
Yang Zhou J. Innate immunity and early liver inflammation. Front Immunol 2023; 14:1175147. [PMID: 37205101 PMCID: PMC10187146 DOI: 10.3389/fimmu.2023.1175147] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/30/2023] [Indexed: 05/21/2023] Open
Abstract
The innate system constitutes a first-line defence mechanism against pathogens. 80% of the blood supply entering the human liver arrives from the splanchnic circulation through the portal vein, so it is constantly exposed to immunologically active substances and pathogens from the gastrointestinal tract. Rapid neutralization of pathogens and toxins is an essential function of the liver, but so too is avoidance of harmful and unnecessary immune reactions. This delicate balance of reactivity and tolerance is orchestrated by a diverse repertoire of hepatic immune cells. In particular, the human liver is enriched in many innate immune cell subsets, including Kupffer cells (KCs), innate lymphoid cells (ILCs) like Natural Killer (NK) cells and ILC-like unconventional T cells - namely Natural Killer T cells (NKT), γδ T cells and Mucosal-associated Invariant T cells (MAIT). These cells reside in the liver in a memory-effector state, so they respond quickly to trigger appropriate responses. The contribution of aberrant innate immunity to inflammatory liver diseases is now being better understood. In particular, we are beginning to understand how specific innate immune subsets trigger chronic liver inflammation, which ultimately results in hepatic fibrosis. In this review, we consider the roles of specific innate immune cell subsets in early inflammation in human liver disease.
Collapse
Affiliation(s)
- Jordi Yang Zhou
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
- Leibniz Institute for Immunotherapy, Regensburg, Germany
- *Correspondence: Jordi Yang Zhou,
| |
Collapse
|
5
|
Liu Y, Tao X, Tao J. Strategies of Targeting Inflammasome in the Treatment of Systemic Lupus Erythematosus. Front Immunol 2022; 13:894847. [PMID: 35664004 PMCID: PMC9157639 DOI: 10.3389/fimmu.2022.894847] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by multiple organ dysfunction resulting from the production of multiple autoantibodies and adaptive immune system abnormalities involving T and B lymphocytes. In recent years, inflammasomes have been recognized as an important component of innate immunity and have attracted increasing attention because of their pathogenic role in SLE. In short, inflammasomes regulate the abnormal differentiation of immune cells, modulate pathogenic autoantibodies, and participate in organ damage. However, due to the clinical heterogeneity of SLE, the pathogenic roles of inflammasomes are variable, and thus, the efficacy of inflammasome-targeting therapies is uncertain. To provide a foundation for the development of such therapeutic strategies, in this paper, we review the role of different inflammasomes in the pathogenesis of SLE and their correlation with clinical phenotypes and propose some corresponding treatment strategies.
Collapse
Affiliation(s)
- Yaling Liu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xinyu Tao
- Department of Clinical Medicine "5 + 3" Integration, The First Clinical College, Anhui Medical University, Hefei, China
| | - Jinhui Tao
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
6
|
Xiao K, Shang J, Liu Y, Chen Z, Wang L, Long Q. Effect of NLRP3 repression on NLRP3 inflammasome activation in human corneal epithelial cells with black carbon exposure. Cutan Ocul Toxicol 2022; 41:107-112. [PMID: 35298317 DOI: 10.1080/15569527.2022.2050746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
PURPOSE To investigate the inhibitory effects of NLRP3 siRNA on NLRP3 inflammasome activation in human corneal epithelial cells (HCECs) with fresh black carbon (FBC) particles and ozone-oxidized BC (OBC) particles treatment. METHODS HCECs were transfected with NLRP3 siRNA or control siRNA for 48 h, followed by 200 μg/ml FBC or OBC suspension for an additional 72 h. Untreated controls were cells with no siRNA transfection or BC treatment. RT-qPCR and Western blot were used to measure mRNA and protein levels of components of the NLRP3 inflammasome (NLRP3, ASC, and Caspase-1) and downstream cytokine (IL-1β), respectively. RESULTS Compared with untreated control cells, mRNA levels of NLRP3, ASC, Caspase-1, and IL-1β were significantly higher (p < 0.05) in control siRNA transfected cells with BC treatments. Compared with the control siRNA transfected cells, NLRP3 siRNA transfection reduced the expression of NLRP3 and ASC, whereas it had a limited effect on the expression of Caspase-1 and IL-1β with FBC or OBC exposures. Under FBC treatment, the reductions of NLRP3 and Caspase-1 mRNA levels were 53.5% (p < 0.001) and 34.2% (p < 0. 01), respectively, and NLRP3 and ASC protein levels were lowered by 58.2% (p < 0.001) and 45.4% (p < 0.001), respectively. Under OBC treatment, the reductions of NLRP3 and Caspase-1 mRNA levels were 39.8% (p < 0.001) and 25.6% (p < 0.05), respectively, and NLRP3 and ASC protein levels were lowered by 44.8% (p < 0.001) and 41.7% (p < 0.001), respectively. Moreover, mRNA levels of ASC and IL-1β, the protein levels of Caspase-1 and IL-1β showed a tendency to decrease in NLRP3 siRNA transfected cells, it was statistically insignificant (p > 0.05). CONCLUSIONS NLRP3 siRNA transfection could partially reverse the increased mRNA levels of NLRP3 and Caspase-1, the protein levels of NLRP3 and ASC in HCECs with BC treatment, whereas the reductions of protein levels of Caspase-1 and IL-1β were not significant, indicating that NLRP3 siRNA has a limited inhibitory effect on the activation of NLRP3 inflammasome triggered by BC.
Collapse
Affiliation(s)
- Kang Xiao
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jing Shang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Ying Liu
- Department of Ophthalmology, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Zhengyu Chen
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Liqiang Wang
- Department of Ophthalmology, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Qin Long
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
7
|
Kargbo RB. Therapeutic Modulation of NLRP3 for Treatment of Cancer, Alzheimer's Disease, and Trauma. ACS Med Chem Lett 2021; 12:1075-1076. [PMID: 34267876 DOI: 10.1021/acsmedchemlett.1c00320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Indexed: 11/29/2022] Open
Affiliation(s)
- Robert B. Kargbo
- Usona Institute, 277 Granada Drive, San Luis Obispo, California 93401-7337, United States
| |
Collapse
|
8
|
Ali M, Gupta M, Wani A, Sharma A, Abdullaha M, Kour D, Choudhary S, Bharate SB, Singh G, Kumar A. IIIM-941, a Stilbene Derivative Inhibits NLRP3 Inflammasome Activation by Inducing Autophagy. Front Pharmacol 2021; 12:695712. [PMID: 34248643 PMCID: PMC8267097 DOI: 10.3389/fphar.2021.695712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/15/2021] [Indexed: 11/20/2022] Open
Abstract
Aberrant activation of NLRP3 inflammasome has been implicated in several inflammatory diseases. Autophagy is one of the primary mechanisms that regulate NLRP3 inflammasome activity. In this study, we attempted to target NLRP3 inflammasome activity by a synthetic compound IIIM-941. We found that IIIM-941 inhibits ATP induced NLRP3 inflammasome by induction of autophagy through AMPK pathway in bone marrow derived macrophages (BMDMs) and J774A.1 cells. It was interesting to observe that IIIM-941 did not show any inhibitory activity against LPS induced pro-inflammatory cytokines TNF-α and IL-6. The anti-NLRP3 activity of IIIM-941 was significantly reversed when we attempted to block autophagy by using either pharmacological inhibitor bafilomycin A1or by using siRNA against AMPK. Further, we found that IIIM-941 downregulated the expression of NLRP3 and prevented the oligomerization of ASC to exert its anti-NLRP3 inflammasome effect in J774A.1 cells. We validated inhibitory activity of IIIM-941 against NLRP3 in three different mice models. The anti-inflammatory effect of IIIM-941 was highly significant in ATP induced peritoneal inflammation model. IIIM-941 was similarly effective in suppressing MSU induced IL-1β in the air pouch model of inflammation without affecting the levels of TNF-α and IL-6. Finally, oral efficacy of IIIM-941 was also proved in MSU indued foot paw edema model of inflammation in mice at 10 and 20 mg/kg (b.w.). The compounds like IIIM-941 can be explored further for the development of therapies against diseases such as Alzheimer's disease and Parkinson's disease, where hampered autophagy and NLRP3 activation play a crucial role in the pathological development.
Collapse
Affiliation(s)
- Mehboob Ali
- PK-PD-Toxicology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Mehak Gupta
- PK-PD-Toxicology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Abubakar Wani
- PK-PD-Toxicology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Department of Immunology, St Jude Children’s Hospital, Memphis, TN, United States
| | - Ankita Sharma
- PK-PD-Toxicology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Mohd Abdullaha
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Dilpreet Kour
- PK-PD-Toxicology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sushil Choudhary
- PK-PD-Toxicology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sandip B. Bharate
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Gurdarshan Singh
- PK-PD-Toxicology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ajay Kumar
- PK-PD-Toxicology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
9
|
Péladeau C, Sandhu JK. Aberrant NLRP3 Inflammasome Activation Ignites the Fire of Inflammation in Neuromuscular Diseases. Int J Mol Sci 2021; 22:ijms22116068. [PMID: 34199845 PMCID: PMC8200055 DOI: 10.3390/ijms22116068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 12/24/2022] Open
Abstract
Inflammasomes are molecular hubs that are assembled and activated by a host in response to various microbial and non-microbial stimuli and play a pivotal role in maintaining tissue homeostasis. The NLRP3 is a highly promiscuous inflammasome that is activated by a wide variety of sterile triggers, including misfolded protein aggregates, and drives chronic inflammation via caspase-1-mediated proteolytic cleavage and secretion of proinflammatory cytokines, interleukin-1β and interleukin-18. These cytokines further amplify inflammatory responses by activating various signaling cascades, leading to the recruitment of immune cells and overproduction of proinflammatory cytokines and chemokines, resulting in a vicious cycle of chronic inflammation and tissue damage. Neuromuscular diseases are a heterogeneous group of muscle disorders that involve injury or dysfunction of peripheral nerves, neuromuscular junctions and muscles. A growing body of evidence suggests that dysregulation, impairment or aberrant NLRP3 inflammasome signaling leads to the initiation and exacerbation of pathological processes associated with neuromuscular diseases. In this review, we summarize the available knowledge about the NLRP3 inflammasome in neuromuscular diseases that affect the peripheral nervous system and amyotrophic lateral sclerosis, which affects the central nervous system. In addition, we also examine whether therapeutic targeting of the NLRP3 inflammasome components is a viable approach to alleviating the detrimental phenotype of neuromuscular diseases and improving clinical outcomes.
Collapse
Affiliation(s)
- Christine Péladeau
- Human Health Therapeutics Research Centre, National Research Council Canada, 1200 Montreal Road, Ottawa, ON K1A 0R6, Canada;
| | - Jagdeep K. Sandhu
- Human Health Therapeutics Research Centre, National Research Council Canada, 1200 Montreal Road, Ottawa, ON K1A 0R6, Canada;
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
- Correspondence: ; Tel.: +1-613-993-5304
| |
Collapse
|
10
|
Zhang H, Tang Y, Tao J. Sex-Related Overactivation of NLRP3 Inflammasome Increases Lethality of the Male COVID-19 Patients. Front Mol Biosci 2021; 8:671363. [PMID: 34150848 PMCID: PMC8212049 DOI: 10.3389/fmolb.2021.671363] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/20/2021] [Indexed: 12/30/2022] Open
Abstract
The COVID-19 pandemic, caused by SARS-CoV-2 infection, remains a dramatic threat to human life and economic well-being worldwide. Significant heterogeneity in the severity of disease was observed for patients infected with SARS-CoV-2 ranging from asymptomatic to severe cases. Moreover, male patients had a higher probability of suffering from high mortality and severe symptoms linked to cytokine storm and excessive inflammation. The NLRP3 inflammasome is presumably critical to this process. Sex differences may directly affect the activation of NLRP3 inflammasome, impacting the severity of observed COVID-19 symptoms. To elucidate the potential mechanisms underlying sex based differences in NLRP3 activation during SARS-CoV-2 infection, this review summarizes the reported mechanisms and identifies potential therapeutic targets.
Collapse
Affiliation(s)
| | | | - Jinhui Tao
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|