1
|
Lombardo M, Aiello G, Fratantonio D, Karav S, Baldelli S. Functional Role of Extracellular Vesicles in Skeletal Muscle Physiology and Sarcopenia: The Importance of Physical Exercise and Nutrition. Nutrients 2024; 16:3097. [PMID: 39339697 PMCID: PMC11435357 DOI: 10.3390/nu16183097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/05/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND/OBJECTIVES Extracellular vesicles (EVs) play a key role in intercellular communication by transferring miRNAs and other macromolecules between cells. Understanding how diet and exercise modulate the release and content of skeletal muscle (SM)-derived EVs could lead to novel therapeutic strategies to prevent age-related muscle decline and other chronic diseases, such as sarcopenia. This review aims to provide an overview of the role of EVs in muscle function and to explore how nutritional and physical interventions can optimise their release and function. METHODS A literature review of studies examining the impact of exercise and nutritional interventions on MS-derived EVs was conducted. Major scientific databases, including PubMed, Scopus and Web of Science, were searched using keywords such as 'extracellular vesicles', 'muscle', 'exercise', 'nutrition' and 'sarcopenia'. The selected studies included randomised controlled trials (RCTs), clinical trials and cohort studies. Data from these studies were synthesised to identify key findings related to the release of EVs, their composition and their potential role as therapeutic targets. RESULTS Dietary patterns, specific foods and supplements were found to significantly modulate EV release and composition, affecting muscle health and metabolism. Exercise-induced changes in EV content were observed after both acute and chronic interventions, with a marked impact on miRNAs and proteins related to muscle growth and inflammation. Nutritional interventions, such as the Mediterranean diet and omega-3 fatty acids, have also shown the ability to alter EV profiles, suggesting their potential to improve cardiovascular health and reduce inflammation. CONCLUSIONS EVs are emerging as critical mediators of the beneficial effects of diet and exercise on muscle health. Both exercise and nutritional interventions can modulate the release and content of MS-derived EVs, offering promising avenues for the development of novel therapeutic strategies targeting sarcopenia and other muscle diseases. Future research should focus on large-scale RCT studies with standardised methodologies to better understand the role of EVs as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Mauro Lombardo
- Department for the Promotion of Human Science and Quality of Life, San Raffaele Open University, Via di Val Cannuta, 247, 00166 Rome, Italy
| | - Gilda Aiello
- Department for the Promotion of Human Science and Quality of Life, San Raffaele Open University, Via di Val Cannuta, 247, 00166 Rome, Italy
| | - Deborah Fratantonio
- Department of Medicine and Surgery, LUM University, S.S. 100 Km 18, 70100 Casamassima, Italy
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye
| | - Sara Baldelli
- Department for the Promotion of Human Science and Quality of Life, San Raffaele Open University, Via di Val Cannuta, 247, 00166 Rome, Italy
- IRCCS San Raffaele Roma, 00166 Rome, Italy
| |
Collapse
|
2
|
Giloteaux L, Glass KA, Germain A, Franconi CJ, Zhang S, Hanson MR. Dysregulation of extracellular vesicle protein cargo in female myalgic encephalomyelitis/chronic fatigue syndrome cases and sedentary controls in response to maximal exercise. J Extracell Vesicles 2024; 13:e12403. [PMID: 38173127 PMCID: PMC10764978 DOI: 10.1002/jev2.12403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/27/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024] Open
Abstract
In healthy individuals, physical exercise improves cardiovascular health and muscle strength, alleviates fatigue and reduces the risk of chronic diseases. Although exercise is suggested as a lifestyle intervention to manage various chronic illnesses, it negatively affects people with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), who suffer from exercise intolerance. We hypothesized that altered extracellular vesicle (EV) signalling in ME/CFS patients after an exercise challenge may contribute to their prolonged and exacerbated negative response to exertion (post-exertional malaise). EVs were isolated by size exclusion chromatography from the plasma of 18 female ME/CFS patients and 17 age- and BMI-matched female sedentary controls at three time points: before, 15 min, and 24 h after a maximal cardiopulmonary exercise test. EVs were characterized using nanoparticle tracking analysis and their protein cargo was quantified using Tandem Mass Tag-based (TMT) proteomics. The results show that exercise affects the EV proteome in ME/CFS patients differently than in healthy individuals and that changes in EV proteins after exercise are strongly correlated with symptom severity in ME/CFS. Differentially abundant proteins in ME/CFS patients versus controls were involved in many pathways and systems, including coagulation processes, muscle contraction (both smooth and skeletal muscle), cytoskeletal proteins, the immune system and brain signalling.
Collapse
Affiliation(s)
- Ludovic Giloteaux
- Department of Molecular Biology and GeneticsCornell UniversityIthacaNew YorkUSA
| | - Katherine A. Glass
- Department of Molecular Biology and GeneticsCornell UniversityIthacaNew YorkUSA
| | - Arnaud Germain
- Department of Molecular Biology and GeneticsCornell UniversityIthacaNew YorkUSA
| | - Carl J. Franconi
- Department of Molecular Biology and GeneticsCornell UniversityIthacaNew YorkUSA
| | - Sheng Zhang
- Proteomics and Metabolomics Facility, Institute of BiotechnologyCornell UniversityIthacaNew YorkUSA
| | - Maureen R. Hanson
- Department of Molecular Biology and GeneticsCornell UniversityIthacaNew YorkUSA
| |
Collapse
|
3
|
Tryfonos A, Cocks M, Browning N, Dawson EA. Post-exercise endothelial function is not associated with extracellular vesicle release in healthy young males. Appl Physiol Nutr Metab 2023; 48:209-218. [PMID: 36462215 DOI: 10.1139/apnm-2022-0278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Acute exercise can result in temporary decrease in endothelial functions, which may represent a transient period of risk. Numerous mechanisms underpinning these responses included release of extracellular vesicles (EVs) derived from apoptotic or activated endothelial cells and platelets. This study aims to compare the time course of endothelial responses to moderate-intensity continuous exercise (MICE) and high-intensity interval exercise (HIIE) and the associations with EV release. Eighteen young healthy males (age: 22.6 ± 3.7 years, BMI: 25.6 ± 2.5 m2/kg, and VO2peak: 38.6 ± 6.5 mL/kg/min) completed two randomly assigned exercises: HIIE (10 × 1 min-@-90% heart rate reserve (HRR) and 1 min passive recovery) and MICE (30 min-@-70% HRR) on a cycle ergometer. Flow-mediated dilation (FMD) was used to assess endothelial function and blood samples were collected to evaluate endothelial cell-derived EV (CD62E+) and platelet-derived EV (CD41a+), 10, 60, and 120 min before and after exercise. There were similar increases but different time courses (P = 0.017) in FMD (increased 10 min post-HIIE, P < 0.0001 and 60 min post-MICE, P = 0.038). CD62E+ remained unchanged (P = 0.530), whereas overall CD41a+ release was reduced 60 min post-exercise (P = 0.040). FMD was not associated with EV absolute release or change (P > 0.05). Acute exercise resulted in similar improvements, but different time course in FMD following either exercise. Whilst EVs were not associated with FMD, the reduction in platelet-derived EVs may represent a protective mechanism following acute exercise.
Collapse
Affiliation(s)
- Andrea Tryfonos
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool L3 3AF, UK.,Department of Laboratory Medicine, Division of Clinical Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Matthew Cocks
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool L3 3AF, UK
| | | | - Ellen A Dawson
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool L3 3AF, UK
| |
Collapse
|
4
|
Nederveen JP, Warnier G, Di Carlo A, Nilsson MI, Tarnopolsky MA. Extracellular Vesicles and Exosomes: Insights From Exercise Science. Front Physiol 2021; 11:604274. [PMID: 33597890 PMCID: PMC7882633 DOI: 10.3389/fphys.2020.604274] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/10/2020] [Indexed: 12/20/2022] Open
Abstract
The benefits of exercise on health and longevity are well-established, and evidence suggests that these effects are partially driven by a spectrum of bioactive molecules released into circulation during exercise (e.g., exercise factors or 'exerkines'). Recently, extracellular vesicles (EVs), including microvesicles (MVs) and exosomes or exosome-like vesicles (ELVs), were shown to be secreted concomitantly with exerkines. These EVs have therefore been proposed to act as cargo carriers or 'mediators' of intercellular communication. Given these findings, there has been a rapidly growing interest in the role of EVs in the multi-systemic, adaptive response to exercise. This review aims to summarize our current understanding of the effects of exercise on MVs and ELVs, examine their role in the exercise response and long-term adaptations, and highlight the main methodological hurdles related to blood collection, purification, and characterization of ELVs.
Collapse
Affiliation(s)
- Joshua P Nederveen
- Department of Pediatrics, McMaster University Medical Centre (MUMC), Hamilton, ON, Canada
| | - Geoffrey Warnier
- Institut of Neuroscience, UCLouvain, Université catholique de Louvain, Ottignies-Louvain-la-Neuve, Belgium
| | - Alessia Di Carlo
- Department of Pediatrics, McMaster University Medical Centre (MUMC), Hamilton, ON, Canada
| | - Mats I Nilsson
- Exerkine Corporation, McMaster University Medical Centre (MUMC), Hamilton, ON, Canada
| | - Mark A Tarnopolsky
- Department of Pediatrics, McMaster University Medical Centre (MUMC), Hamilton, ON, Canada.,Exerkine Corporation, McMaster University Medical Centre (MUMC), Hamilton, ON, Canada
| |
Collapse
|
5
|
Han X, Li T, Li Y, Yang J, Chen S, Zhu X, Wang B, Cheng W, Wang L, Lu Z, Wu X, Jiang Y, Pan G, Zhao M. Exercise and Circulating Microparticles in Healthy Subjects. J Cardiovasc Transl Res 2021; 14:841-856. [PMID: 33495962 DOI: 10.1007/s12265-021-10100-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/06/2021] [Indexed: 12/18/2022]
Abstract
This study aimed to explore the relationship between exercise and circulating microparticles (CMPs). PubMed, Web of Science, Embase, and the Cochrane Library databases were searched until August 13, 2020, using the terms "exercise" and "cell-derived microparticles." The Cochrane tool of risk of bias and the Methodological Index for Non-Randomized Studies were used to grade the studies. Twenty-six studies that met criteria were included in this review, including one before-after self-control study, 2 cohort studies, 4 randomized control trials, 5 case-control studies, and 14 descriptive studies. The studies were divided into a single bout and long-term exercise. The types of MPs contained endothelium-derived microparticles (EMPs), leukocyte-derived microparticles (LMPs), platelet-derived microparticles (PMPs), and erythrocyte-derived microparticles (ErMPs). This first systematic review found that the levels of CMPs continued to increase after a single bout of exercise in untrained subjects and were lower in trained subjects. PMPs expressed a transient increase after a single bout of exercise, and the proportion and duration of PMPs increment reduced in long-term exercise. Most studies showed a decline in LMPs in trained subjects after a single bout and long-term exercise, and variable changes were found in EMPs and ErMPs after exercise. A single bout of exercise drives the vessels exposed to high shear stress that promotes the formation of CMPs. However, the decline in CMPs in trained subjects may be attributed to the fact that they have a better ability to adapt to changes in hemodynamics and cellular function during exercise.
Collapse
Affiliation(s)
- Xiaowan Han
- Dongzhimen Hospital, Department of Cardiovascular Medicine, Beijing University of Chinese Medicine, Beijing, 100700, People's Republic of China
| | - Tong Li
- Dongzhimen Hospital, Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing University of Chinese Medicine, Beijing, 100700, People's Republic of China
| | - Yang Li
- Dongzhimen Hospital, Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing University of Chinese Medicine, Beijing, 100700, People's Republic of China
| | - Jingjing Yang
- Dongzhimen Hospital, Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing University of Chinese Medicine, Beijing, 100700, People's Republic of China
| | - Shiqi Chen
- Dongzhimen Hospital, Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing University of Chinese Medicine, Beijing, 100700, People's Republic of China
| | - Xiangyu Zhu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Baofu Wang
- Dongzhimen Hospital, Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing University of Chinese Medicine, Beijing, 100700, People's Republic of China
| | - Wenkun Cheng
- Dongzhimen Hospital, Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing University of Chinese Medicine, Beijing, 100700, People's Republic of China
| | - Lei Wang
- Dongzhimen Hospital, Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing University of Chinese Medicine, Beijing, 100700, People's Republic of China
| | - Ziwen Lu
- Dongzhimen Hospital, Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing University of Chinese Medicine, Beijing, 100700, People's Republic of China
| | - Xiaoxiao Wu
- Dongzhimen Hospital, Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing University of Chinese Medicine, Beijing, 100700, People's Republic of China
| | - Yangyang Jiang
- Dongzhimen Hospital, Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing University of Chinese Medicine, Beijing, 100700, People's Republic of China
| | - Guozhong Pan
- Dongzhimen Hospital, Department of Cardiovascular Medicine, Beijing University of Chinese Medicine, Beijing, 100700, People's Republic of China.
| | - Mingjing Zhao
- Dongzhimen Hospital, Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing University of Chinese Medicine, Beijing, 100700, People's Republic of China.
| |
Collapse
|
6
|
Effect of Physical Exercise on the Release of Microparticles with Angiogenic Potential. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10144871] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cellular communication has a fundamental role in both human physiological and pathological states and various mechanisms are involved in the crosstalk between organs. Among these, microparticles (MPs) have an important involvement. MPs are a subtype of extracellular vesicles produced by a variety of cells following activation or apoptosis. They are normally present in physiological conditions, but their concentration varies in pathological states such as cardiovascular disease, diabetes mellitus, or cancer. Acute and chronic physical exercise are able to modify MPs amounts as well. Among various actions, exercise-responsive MPs affect angiogenesis, the process through which new blood vessels grow from pre-existing vessels. Usually, the neo vascular growth has functional role; but an aberrant neovascularization accompanies several oncogenic, ischemic, or inflammatory diseases. In addition, angiogenesis is one of the key adaptations to physical exercise and training. In the present review, we report evidence regarding the effect of various typologies of exercise on circulating MPs that are able to affect angiogenesis.
Collapse
|
7
|
Sapp RM, Evans WS, Eagan LE, Chesney CA, Zietowski EM, Prior SJ, Ranadive SM, Hagberg JM. The effects of moderate and high-intensity exercise on circulating markers of endothelial integrity and activation in young, healthy men. J Appl Physiol (1985) 2019; 127:1245-1256. [PMID: 31487226 DOI: 10.1152/japplphysiol.00477.2019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Endothelial function typically exhibits a hormetic response to exercise. It is unknown whether endothelial damage occurs in response to acute exercise and could be a contributing mechanism. We sought to determine the effects of acute exercise on endothelial-derived circulating factors proposed to reflect endothelial integrity and activation. Young, healthy men (n = 10) underwent 30-min moderate continuous (MOD) and high-intensity interval (HII) cycling exercise bouts. Venous blood samples were taken immediately before and after exercise for quantification of circulating endothelial cells (CECs), circulating angiogenic cells (CACs), apoptotic and activated endothelial microvesicles (EMVs), thrombomodulin (TM), von Willebrand factor (vWF), syndecan-1, and circulating microRNAs (ci-miRs) 126-3p and 126-5p. Endothelial function was assessed by flow-mediated dilation (FMD) of the brachial artery before, 10 min after, and 60 min after exercise. Numbers of CECs and EMVs were unchanged by either exercise bout (P > 0.05). Numbers of all measured CAC subtypes decreased in response to MOD (21%-34%, P < 0.05), whereas only CD31+/34+/45dim/- CACs decreased following HII (21%, P < 0.05). TM and syndecan-1 increased with both exercise intensities (both ~20%, P < 0.05). HII, but not MOD, increased vWF (88%, P < 0.001), ci-miR-126-3p (92%, P = 0.009) and ci-miR-126-5p (110%, P = 0.01). The changes in several circulating factors correlated with changes in FMD following either one or both intensities. Changes in circulating factors do not support the concept of exercise-induced endothelial cell denudation, apoptosis, or activation, though slight disruption of endothelial glycocalyx and membrane integrity may occur. A related loss of mechanotransduction along with mechanisms underlying endothelial activation and ci-miR-126 secretion may relate to changes in endothelial function.NEW & NOTEWORTHY Using circulating endothelial-derived factors, we show that endothelial denudation, apoptosis, and activation do not appear to increase, whereas disrupted endothelial glycocalyx and membrane integrity may occur during both high-intensity interval and moderate intensity cycling. Increases in factors nonspecific to endothelial damage, including von Willebrand factor and microRNA-126, occurred only after high-intensity interval exercise. These results shed light on the hypothesis that disrupted endothelial integrity contributes to the endothelial function response to exercise.
Collapse
Affiliation(s)
- Ryan M Sapp
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, Maryland
| | - William S Evans
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, Maryland
| | - Lauren E Eagan
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, Maryland
| | - Catalina A Chesney
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, Maryland
| | - Evelyn M Zietowski
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, Maryland.,Department of Biology, University of Maryland, College Park, Maryland
| | - Steven J Prior
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, Maryland.,Baltimore Veterans Affairs Geriatric Research, Education and Clinical Center, Baltimore, Maryland
| | - Sushant M Ranadive
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, Maryland
| | - James M Hagberg
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, Maryland
| |
Collapse
|
8
|
Wilhelm EN, Mourot L, Rakobowchuk M. Exercise-Derived Microvesicles: A Review of the Literature. Sports Med 2018; 48:2025-2039. [PMID: 29868992 DOI: 10.1007/s40279-018-0943-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Initially suggested as simple cell debris, cell-derived microvesicles (MVs) have now gained acceptance as recognized players in cellular communication and physiology. Shed by most, and perhaps all, human cells, these tiny lipid-membrane vesicles carry bioactive agents, such as proteins, lipids and microRNA from their cell source, and are produced under orchestrated events in response to a myriad of stimuli. Physical exercise introduces systemic physiological challenges capable of acutely disrupting cell homeostasis and stimulating the release of MVs into the circulation. The novel and promising field of exercise-derived MVs is expanding quickly, and the following work provides a review of the influence of exercise on circulating MVs, considering both acute and chronic aspects of exercise and training. Potential effects of the MV response to exercise are highlighted and future directions suggested as exercise and sports sciences extend the realm of extracellular vesicles.
Collapse
Affiliation(s)
- Eurico N Wilhelm
- School of Physical Education, UFPel, Rua Luís de Camões, 625, Três Vendas, Pelotas, RS, 96055-630, Brazil.
| | - Laurent Mourot
- EA3920 Prognostic Factors and Regulatory Factors of Cardiac and Vascular Pathologies, (Exercise Performance Health Innovation-EPHI), University of Bourgogne Franche-Comté, 25000, Besançon, France.,Tomsk Polytechnic University, Tomsk, Russia
| | - Mark Rakobowchuk
- Department of Biological Sciences, Faculty of Science, Thompson Rivers University, Kamloops, BC, Canada
| |
Collapse
|
9
|
Wilhelm EN, González-Alonso J, Chiesa ST, Trangmar SJ, Kalsi KK, Rakobowchuk M. Whole-body heat stress and exercise stimulate the appearance of platelet microvesicles in plasma with limited influence of vascular shear stress. Physiol Rep 2018; 5:5/21/e13496. [PMID: 29122961 PMCID: PMC5688785 DOI: 10.14814/phy2.13496] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 10/13/2017] [Indexed: 01/02/2023] Open
Abstract
Intense, large muscle mass exercise increases circulating microvesicles, but our understanding of microvesicle dynamics and mechanisms inducing their release remains limited. However, increased vascular shear stress is generally thought to be involved. Here, we manipulated exercise‐independent and exercise‐dependent shear stress using systemic heat stress with localized single‐leg cooling (low shear) followed by single‐leg knee extensor exercise with the cooled or heated leg (Study 1, n = 8) and whole‐body passive heat stress followed by cycling (Study 2, n = 8). We quantified femoral artery shear rates (SRs) and arterial and venous platelet microvesicles (PMV–CD41+) and endothelial microvesicles (EMV–CD62E+). In Study 1, mild passive heat stress while one leg remained cooled did not affect [microvesicle] (P ≥ 0.05). Single‐leg knee extensor exercise increased active leg SRs by ~12‐fold and increased arterial and venous [PMVs] by two‐ to threefold, even in the nonexercising contralateral leg (P < 0.05). In Study 2, moderate whole‐body passive heat stress increased arterial [PMV] compared with baseline (mean±SE, from 19.9 ± 1.5 to 35.5 ± 5.4 PMV.μL−1.103, P < 0.05), and cycling with heat stress increased [PMV] further in the venous circulation (from 27.5 ± 2.2 at baseline to 57.5 ± 7.2 PMV.μL−1.103 during cycling with heat stress, P < 0.05), with a tendency for increased appearance of PMV across exercising limbs. Taken together, these findings demonstrate that whole‐body heat stress may increase arterial [PMV], and intense exercise engaging either large or small muscle mass promote PMV formation locally and systemically, with no influence upon [EMV]. Local shear stress, however, does not appear to be the major stimulus modulating PMV formation in healthy humans.
Collapse
Affiliation(s)
- Eurico N Wilhelm
- Centre for Human Performance, Exercise, and Rehabilitation, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - José González-Alonso
- Centre for Human Performance, Exercise, and Rehabilitation, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom.,Division of Sport, Health and Exercise Sciences, Department of Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Scott T Chiesa
- Centre for Human Performance, Exercise, and Rehabilitation, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Steven J Trangmar
- Centre for Human Performance, Exercise, and Rehabilitation, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Kameljit K Kalsi
- Centre for Human Performance, Exercise, and Rehabilitation, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Mark Rakobowchuk
- Centre for Human Performance, Exercise, and Rehabilitation, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom .,Faculty of Science, Department of Biological Sciences, Thompson Rivers University, Kamloops, British Columbia, Canada
| |
Collapse
|
10
|
Adams V. CrossTalk proposal: Acute exercise elicits damage to the endothelial layer of systemic blood vessels in healthy individuals. J Physiol 2018; 596:537-539. [PMID: 29355949 DOI: 10.1113/jp274750] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Volker Adams
- Heart Center Dresden, University Hospital at the Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| |
Collapse
|
11
|
Wilhelm EN, González-Alonso J, Parris C, Rakobowchuk M. Exercise intensity modulates the appearance of circulating microvesicles with proangiogenic potential upon endothelial cells. Am J Physiol Heart Circ Physiol 2016; 311:H1297-H1310. [PMID: 27638881 DOI: 10.1152/ajpheart.00516.2016] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 09/12/2016] [Indexed: 12/22/2022]
Abstract
The effect of endurance exercise on circulating microvesicle dynamics and their impact on surrounding endothelial cells is unclear. Here we tested the hypothesis that exercise intensity modulates the time course of platelet (PMV) and endothelial-derived (EMV) microvesicle appearance in the circulation through hemodynamic and biochemical-related mechanisms, and that microvesicles formed during exercise would stimulate endothelial angiogenesis in vitro. Nine healthy young men had venous blood samples taken before, during, and throughout the recovery period after 1 h of moderate [46 ± 2% maximal oxygen uptake (V̇o2max)] or heavy (67 ± 2% V̇o2max) intensity semirecumbent cycling and a time-matched resting control trial. In vitro experiments were performed by incubating endothelial cells with rest and exercise-derived microvesicles to examine their effects on cell angiogenic capacities. PMVs (CD41+) increased from baseline only during heavy exercise (from 21 ± 1 × 103 to 55 ± 8 × 103 and 48 ± 6 × 103 PMV/μl at 30 and 60 min, respectively; P < 0.05), returning to baseline early in postexercise recovery (P > 0.05), whereas EMVs (CD62E+) were unchanged (P > 0.05). PMVs were related to brachial artery shear rate (r2 = 0.43) and plasma norepinephrine concentrations (r2 = 0.21) during exercise (P < 0.05). Exercise-derived microvesicles enhanced endothelial proliferation, migration, and tubule formation compared with rest microvesicles (P < 0.05). These results demonstrate substantial increases in circulating PMVs during heavy exercise and that exercise-derived microvesicles stimulate human endothelial cells by enhancing angiogenesis and proliferation. This involvement of microvesicles may be considered a novel mechanism through which exercise mediates vascular healing and adaptation.
Collapse
Affiliation(s)
- Eurico N Wilhelm
- Centre for Human Performance, Exercise and Rehabilitation, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - José González-Alonso
- Centre for Human Performance, Exercise and Rehabilitation, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Christopher Parris
- Institute for the Environment, Health and Societies, Brunel University London, Uxbridge, United Kingdom; and
| | - Mark Rakobowchuk
- Faculty of Science, Department of Biological Sciences, Thompson Rivers University Kamloops, British Columbia, Canada
| |
Collapse
|