1
|
Sánchez-Valdepeñas J, Cornejo-Daza PJ, Páez-Maldonado J, Rodiles-Guerrero L, Cano-Castillo C, Piqueras-Sanchiz F, González-Badillo JJ, Sáez de Villarreal E, Pareja-Blanco F. Acute Responses to Different Velocity-Loss Thresholds During Squat Training With and Without Blood-Flow Restriction. Int J Sports Physiol Perform 2025; 20:80-90. [PMID: 39637847 DOI: 10.1123/ijspp.2024-0236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/29/2024] [Accepted: 09/16/2024] [Indexed: 12/07/2024]
Abstract
PURPOSE To compare the acute effects on mechanical, metabolic, neuromuscular, and muscle contractile responses to different velocity-loss (VL) thresholds (20% and 40%) under distinct blood-flow conditions (free [FF] vs restricted [BFR]) in full squat (SQ). METHODS Twenty strength-trained men performed 4 SQ protocols with 60% 1-repetition maximum that differed in the VL within the set and in the blood-flow condition (FF20: FF with 20% VL; FF40: FF with 40% VL; BFR20: BFR with 20% VL; and BFR40: BFR with 40% VL). The level of BFR was 50% of the arterial occlusion pressure. Before and after the SQ protocols, the following tests were performed: (1) tensiomyography, (2) blood lactate, (3) countermovement jump, (4) maximal voluntary isometric SQ contraction, and (5) performance with the load that elicited a 1 m·s-1 at baseline measurements in SQ. RESULTS No "BFR × VL" interactions were observed. BFR protocols resulted in fewer repetitions and lower increases in lactate concentration than FF protocols. The 40% VL protocols completed more repetitions but resulted in lower mechanical performance and electromyography median frequency during the exercise than the 20% VL protocols. At postexercise, the 40% VL protocols also experienced greater blood lactate concentrations, higher alterations in tensiomyography-derived variables, and accentuated impairments in SQ and countermovement-jump performances. The 20% VL protocols showed an increased electromyography median frequency at postexercise maximal voluntary isometric contraction. CONCLUSIONS Despite BFR-accelerated fatigue development during exercise, a given VL magnitude induced similar impairments in the distinct performance indicators assessed, regardless of the blood-flow condition.
Collapse
Affiliation(s)
- Juan Sánchez-Valdepeñas
- Science-Based Training Research Group, Department of Sports and Computer Sciences, Universidad Pablo de Olavide, Seville, Spain
- Physical Performance & Sports Research Center, Universidad Pablo de Olavide, Seville, Spain
| | - Pedro J Cornejo-Daza
- Science-Based Training Research Group, Department of Sports and Computer Sciences, Universidad Pablo de Olavide, Seville, Spain
- Physical Performance & Sports Research Center, Universidad Pablo de Olavide, Seville, Spain
| | - José Páez-Maldonado
- Science-Based Training Research Group, Department of Sports and Computer Sciences, Universidad Pablo de Olavide, Seville, Spain
- University of Osuna (Center Attached to the University of Seville), Osuna, Spain
| | - Luis Rodiles-Guerrero
- Science-Based Training Research Group, Department of Sports and Computer Sciences, Universidad Pablo de Olavide, Seville, Spain
- Department of Human Movement and Sport Performance, University of Seville, Seville, Spain
| | - Clara Cano-Castillo
- Physical Performance & Sports Research Center, Universidad Pablo de Olavide, Seville, Spain
| | | | | | | | - Fernando Pareja-Blanco
- Science-Based Training Research Group, Department of Sports and Computer Sciences, Universidad Pablo de Olavide, Seville, Spain
- Physical Performance & Sports Research Center, Universidad Pablo de Olavide, Seville, Spain
| |
Collapse
|
2
|
Rolnick N, De Queiros VS, Moghaddam M, Marquette L, Taylor S, Walters J, Fedorko B, Werner T. Acute impact of autoregulation of applied blood flow restriction pressures on bilateral single-joint upper limb resistance exercise. J Sports Sci 2024:1-10. [PMID: 39462300 DOI: 10.1080/02640414.2024.2416793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/08/2024] [Indexed: 10/29/2024]
Abstract
To investigate the acute effects of 4 sets of autoregulated (AR-BFR) versus non-autoregulated (NAR-BFR) applied pressures during blood flow restriction (BFR) resistance exercise to volitional failure compared with low-load exercise without BFR. A randomized crossover design study was conducted on 32 healthy adults (20.8 ± 2.3 years; 11 females). Outcome measures were as follows: (1) arterial stiffness, (2) peak perceptual responses and likelihood to perform again, and (3) performance. Results: Post-exercise changes in central and brachial diastolic blood pressure were decreased in all groups. Post-exercise supine systolic blood pressure in no-BFR increased (mean difference (MD) = 4 ± 1 mmHg, 95% CI (1-7), p = 0.003, η2 = 0.13). Total repetitions performed and volume workload were similar between BFR conditions but less than no-BFR. AR-BFR reported significantly higher exertion (MD = 0.53 ± 0.2, 95% CI (0.04-1.0), p = 0.03, η2 = 0.19) than other conditions, and induced greater discomfort (MD = 2.50 ± 0.36, 95% CI (1.63-3.37), p < 0.001, η2 = 0.28) than no-BFR. Conclusion: Biceps curl exercise to volitional failure appears to induce negligible arterial stiffness or blood pressure changes regardless of the application of autoregulation, yet autoregulation appears to enhance the perceptual response to BFR exercise compared to NAR-BFR without impacting exercise performance.
Collapse
Affiliation(s)
- Nicholas Rolnick
- Department of Exercise Science and Recreation, CUNY Lehman College, New York, NY, USA
- The Human Performance Mechanic, New York, NY, USA
| | - Victor S De Queiros
- Graduate Program in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal-RN, Brazil
| | - Masoud Moghaddam
- Department of Physical Therapy, University of Eastern Shore, Princess Anne, USA
| | - Lisa Marquette
- Department of Exercise Science, Salisbury University, Salisbury, USA
| | - Susannah Taylor
- Department of Exercise Science, Salisbury University, Salisbury, USA
| | - Jessica Walters
- Department of Exercise Science, Salisbury University, Salisbury, USA
| | - Brent Fedorko
- Department of Exercise Science, Salisbury University, Salisbury, USA
| | - Timothy Werner
- Department of Exercise Science, Salisbury University, Salisbury, USA
| |
Collapse
|
3
|
Olmos AA, Montgomery TR, Sears KN, Roth BL, Richardson LD, Dinyer-McNeely TK, Hammer SM, Bergstrom HC, Hill EC, Succi PJ, Lubiak S, Trevino MA. Blood flow restriction increases motor unit firing rates and input excitation of the biceps brachii during a moderate-load muscle action. J Sports Sci 2024; 42:1891-1903. [PMID: 39475195 DOI: 10.1080/02640414.2024.2413721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 09/30/2024] [Indexed: 11/14/2024]
Abstract
This study examined the effects of blood flow restriction (BFR) on motor unit (MU) behaviour of the biceps brachii (BB) during a single non-exhausting submaximal muscle action. Twenty adults performed maximal voluntary contractions (MVCs) of the elbow flexors, followed by an isometric trapezoidal muscle action at 40% MVC during BFR and control (CON) visits. Surface electromyographic signals recorded from the BB during the 40% MVCs were decomposed. Recruitment thresholds (RTs), MU action potential amplitudes (MUAPAMPS), initial firing rates (IFRs), mean firing rates (MFRs) at steady force, and normalized EMG amplitude (N-EMGRMS) were analysed. Y-intercepts and slopes were calculated for the MUAPAMP, IFR, and MFR vs. RT relationships. Y-intercepts for the IFR and MFR vs. RT relationships and N-EMGRMS increased during BFR (p < 0.05) collapsed across sex. The slopes for the IFR and MFR vs. RT relationships decreased during BFR (p < 0.05) collapsed across sex. The y-intercepts and slopes for the MUAPAMP vs. RT relationships were not different (p > 0.05) between treatments or sex. BFR during the 40% MVC increased IFRs, MFRs, and N-EMGRMS. However, the similar MUAPAMPS observed between treatments may suggest that a greater load is necessary to recruit additional MUs when performing a single submaximal short-duration muscle action with BFR.
Collapse
Affiliation(s)
- Alex A Olmos
- Applied Neuromuscular Physiology Lab, Department of Kinesiology, Applied Health, and Recreation, Oklahoma State University, Stillwater, OK, USA
- Department of Molecular Biology & Chemistry, Christopher Newport University, Newport News, VA, USA
| | - Tony R Montgomery
- Applied Neuromuscular Physiology Lab, Department of Kinesiology, Applied Health, and Recreation, Oklahoma State University, Stillwater, OK, USA
| | - Kylie N Sears
- Applied Neuromuscular Physiology Lab, Department of Kinesiology, Applied Health, and Recreation, Oklahoma State University, Stillwater, OK, USA
| | - Brenden L Roth
- Applied Neuromuscular Physiology Lab, Department of Kinesiology, Applied Health, and Recreation, Oklahoma State University, Stillwater, OK, USA
| | - Lyric D Richardson
- Applied Neuromuscular Physiology Lab, Department of Kinesiology, Applied Health, and Recreation, Oklahoma State University, Stillwater, OK, USA
| | - Taylor K Dinyer-McNeely
- Applied Neuromuscular Physiology Lab, Department of Kinesiology, Applied Health, and Recreation, Oklahoma State University, Stillwater, OK, USA
| | - Shane M Hammer
- Applied Neuromuscular Physiology Lab, Department of Kinesiology, Applied Health, and Recreation, Oklahoma State University, Stillwater, OK, USA
| | - Haley C Bergstrom
- Department of Kinesiology and Health Promotion, University of Kentucky, Lexington, KY, USA
| | - Ethan C Hill
- School of Kinesiology and Physical Therapy, University of Central Florida, Orlando, FL, USA
| | - Pasquale J Succi
- Department of Kinesiology and Health Promotion, University of Kentucky, Lexington, KY, USA
| | - Sean Lubiak
- School of Kinesiology and Physical Therapy, University of Central Florida, Orlando, FL, USA
| | - Michael A Trevino
- Applied Neuromuscular Physiology Lab, Department of Kinesiology, Applied Health, and Recreation, Oklahoma State University, Stillwater, OK, USA
| |
Collapse
|
4
|
Bielitzki R, Behrens M, Behrendt T, Franz A, Centner C, Hughes L, Patterson SD, Owens J, Behringer M, Schega L. The Discrepancy Between External and Internal Load/Intensity during Blood Flow Restriction Exercise: Understanding Blood Flow Restriction Pressure as Modulating Factor. SPORTS MEDICINE - OPEN 2024; 10:95. [PMID: 39227485 PMCID: PMC11371992 DOI: 10.1186/s40798-024-00759-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/29/2024] [Indexed: 09/05/2024]
Abstract
Physical exercise induces acute psychophysiological responses leading to chronic adaptations when the exercise stimulus is applied repeatedly, at sufficient time periods, and with appropriate magnitude. To maximize long-term training adaptations, it is crucial to control and manipulate the external load and the resulting psychophysiological strain. Therefore, scientists have developed a theoretical framework that distinguishes between the physical work performed during exercise (i.e., external load/intensity) and indicators of the body's psychophysiological response (i.e., internal load/intensity). However, the application of blood flow restriction (BFR) during exercise with low external loads/intensities (e.g., ≤ 30% of the one-repetition-maximum, ≤ 50% of maximum oxygen uptake) can induce physiological and perceptual responses, which are commonly associated with high external loads/intensities. This current opinion aimed to emphasize the mismatch between external and internal load/intensity when BFR is applied during exercise. In this regard, there is evidence that BFR can be used to manipulate both external load/intensity (by reducing total work when exercise is performed to exhaustion) and internal load/intensity (by leading to higher physiological and perceptual responses compared to exercise performed with the same external load/intensity without BFR). Furthermore, it is proposed to consider BFR as an additional exercise determinant, given that the amount of BFR pressure can determine not only the internal but also external load/intensity. Finally, terminological recommendations for the use of the proposed terms in the scientific context and for practitioners are given, which should be considered when designing, reporting, discussing, and presenting BFR studies, exercise, and/or training programs.
Collapse
Affiliation(s)
- Robert Bielitzki
- Department of Sport Science, Institute III, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.
| | - Martin Behrens
- University of Applied Sciences for Sport and Management Potsdam, Potsdam, Germany
| | - Tom Behrendt
- Department of Sport Science, Institute III, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Alexander Franz
- Department of Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Christoph Centner
- Department of Sport and Science, University of Freiburg, Freiburg, Germany
| | - Luke Hughes
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle, UK
| | - Stephen D Patterson
- Faculty of Sport, Technology and Health Science, St Mary's University, Twickenham, London, UK
| | - Johnny Owens
- Clinical Education Owens Recovery Science, San Antonio, TX, USA
| | - Michael Behringer
- Department of Sports Sciences, Goethe University Frankfurt, Frankfurt a. M., Germany
| | - Lutz Schega
- Department of Sport Science, Institute III, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
5
|
Lavigne C, Mons V, Grange M, Blain GM. Acute neuromuscular, cardiovascular, and muscle oxygenation responses to low-intensity aerobic interval exercises with blood flow restriction. Exp Physiol 2024; 109:1353-1369. [PMID: 38875101 PMCID: PMC11291873 DOI: 10.1113/ep091742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 05/21/2024] [Indexed: 06/16/2024]
Abstract
We investigated the influence of short- and long-interval cycling exercise with blood flow restriction (BFR) on neuromuscular fatigue, shear stress and muscle oxygenation, potent stimuli to BFR-training adaptations. During separate sessions, eight individuals performed short- (24 × 60 s/30 s; SI) or long-interval (12 × 120 s/60 s; LI) trials on a cycle ergometer, matched for total work. One leg exercised with (BFR-leg) and the other without (CTRL-leg) BFR. Quadriceps fatigue was quantified using pre- to post-interval changes in maximal voluntary contraction (MVC), potentiated twitch force (QT) and voluntary activation (VA). Shear rate was measured by Doppler ultrasound at cuff release post-intervals. Vastus lateralis tissue oxygenation was measured by near-infrared spectroscopy during exercise. Following the initial interval, significant (P < 0.05) declines in MVC and QT were found in both SI and LI, which were more pronounced in the BFR-leg, and accounted for approximately two-thirds of the total reduction at exercise termination. In the BFR-leg, reductions in MVC (-28 ± 15%), QT (-42 ± 17%), and VA (-15 ± 17%) were maximal at exercise termination and persisted up to 8 min post-exercise. Exercise-induced muscle deoxygenation was greater (P < 0.001) in the BFR-leg than CTRL-leg and perceived pain was more in LI than SI (P < 0.014). Cuff release triggered a significant (P < 0.001) shear rate increase which was consistent across trials. Exercise-induced neuromuscular fatigue in the BFR-leg exceeded that in the CTRL-leg and was predominantly of peripheral origin. BFR also resulted in diminished muscle oxygenation and elevated shear stress. Finally, short-interval trials resulted in comparable neuromuscular and haemodynamic responses with reduced perceived pain compared to long-intervals.
Collapse
|
6
|
Carter DM, Chatlaong MA, Miller WM, Benton JB, Jessee MB. Comparing the acute responses between a manual and automated blood flow restriction system. Front Physiol 2024; 15:1409702. [PMID: 38948082 PMCID: PMC11211589 DOI: 10.3389/fphys.2024.1409702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/13/2024] [Indexed: 07/02/2024] Open
Abstract
The purpose of this study was to compare acute responses between manual and automated blood flow restriction (BFR) systems. Methods A total of 33 individuals completed this study. On visit 1, arterial occlusion pressure (AOP, mm Hg), cardiovascular responses, and discomfort (RPE-D) were measured with each BFR system at rest. On visit 2, unilateral bicep curls were completed [30% one-repetition maximum; 50% AOP] with one system per arm. Muscle thickness (MT, cm) and maximal force (N) were assessed before (pre), immediately (post-0), 5 min (post-5), and 10 min (post-10) post-exercise. Ratings of perceived exertion (RPE-E) and ratings of perceived discomfort (RPE-D) were assessed throughout the exercise. AOP and repetitions were compared with Bayesian paired t-tests. Other outcomes were compared with Bayesian RMANOVAs. BF10 represents the likelihood of the best model vs. the null. The results are presented as mean ± SD. Results Supine cardiovascular responses and RPE-D were similar for manual and automated (all BF10 ≤ 0.2). Supine AOP for manual (157 ± 20) was higher than that of automated (142 ± 17; BF10 = 44496.0), but similar while standing (manual: 141 ± 17; automated: 141 ± 22; BF10 = 0.2). MT (time, BF10 = 6.047e + 40) increased from Pre (3.9 ± 0.7) to Post-0 (4.4 ± 0.8; BF10 = 2.969e + 28), with Post-0 higher than Post-5 (4.3 ± 0.8) and Post-10 (4.3 ± 0.8; both BF10 ≥ 275.2). Force (time, BF10 = 1.246e + 29) decreased from Pre (234.5 ± 79.2) to Post-0 (149.8 ± 52.3; BF10 = 2.720e + 22) and increased from Post-0 to Post-5 (193.3 ± 72.7; BF10 = 1.744e + 13), with Post-5 to Post-10 (194.0 ± 70.6; BF10 = 0.2) being similar. RPE-E increased over sets. RPE-D was lower for manual than automated. Repetitions per set were higher for manual (Set 1: 37 ± 18; Set 4: 9 ± 5) than automated (Set 1: 30 ± 7; Set 4: 7 ± 3; all BF10 ≥ 9.7). Conclusion Under the same relative pressure, responses are mostly similar between BFR systems, although a manual system led to lower exercise discomfort and more repetitions.
Collapse
Affiliation(s)
- Daphney M. Carter
- Wellstar College of Health and Human Services, Department of Exercise Science and Sport Management, Kennesaw State University, Kennesaw, GA, United States
| | - Matthew A. Chatlaong
- Applied Human Health and Physical Function Laboratory, School of Applied Science, Department of Health, Exercise Science, and Recreation Management, The University of Mississippi, University, MS, United States
| | - William M. Miller
- College of Education and Health Sciences, School of Health Sciences, University of Evansville, Evansville, IN, United States
| | - J. Barnes Benton
- School of Medicine, University of Mississippi Medical Center, Jackson, MS, United States
| | - Matthew B. Jessee
- Applied Human Health and Physical Function Laboratory, School of Applied Science, Department of Health, Exercise Science, and Recreation Management, The University of Mississippi, University, MS, United States
| |
Collapse
|
7
|
Olmos AA, Montgomery TR, Sears KN, Dinyer TK, Hammer SM, Bergstrom HC, Hill EC, Succi PJ, Lawson J, Trevino MA. Blood flow restriction increases necessary muscle excitation of the elbow flexors during a single high-load contraction. Eur J Appl Physiol 2024; 124:1807-1820. [PMID: 38236301 DOI: 10.1007/s00421-023-05405-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 12/09/2023] [Indexed: 01/19/2024]
Abstract
PURPOSE To investigate the effects of blood flow restriction (BFR) on electromyographic amplitude (EMGRMS)-force relationships of the biceps brachii (BB) during a single high-load muscle action. METHODS Twelve recreationally active males and eleven recreationally active females performed maximal voluntary contractions (MVCs), followed by an isometric trapezoidal muscle action of the elbow flexors at 70% MVC. Surface EMG was recorded from the BB during BFR and control (CON) visits. For BFR, cuff pressure was 60% of the pressure required to completely occlude blood at rest. Individual b (slope) and a terms (gain) were calculated from the log-transformed EMGRMS-force relationships during the linearly increasing and decreasing segments of the trapezoid. EMGRMS during the steady force segment was normalized to MVC EMGRMS. RESULTS For BFR, the b terms were greater during the linearly increasing segment than the linearly decreasing segment (p < 0.001), and compared to the linearly increasing segment for CON (p < 0.001). The a terms for BFR were greater during the linearly decreasing than linearly increasing segment (p = 0.028). Steady force N-EMGRMS was greater for BFR than CON collapsed across sex (p = 0.041). CONCLUSION BFR likely elicited additional recruitment of higher threshold motor units during the linearly increasing- and steady force-segment. The differences between activation and deactivation strategies were only observed with BFR, such as the b terms decreased and the a terms increased for the linearly decreasing segment in comparison to the increasing segment. However, EMGRMS-force relationships during the linearly increasing- and decreasing-segments were not different between sexes during BFR and CON.
Collapse
Affiliation(s)
- Alex A Olmos
- Applied Neuromuscular Physiology Laboratory, Department of Health and Human Performance, Oklahoma State University, 191 CRC, Stillwater, OK, 74074, USA
| | - Tony R Montgomery
- Applied Neuromuscular Physiology Laboratory, Department of Health and Human Performance, Oklahoma State University, 191 CRC, Stillwater, OK, 74074, USA
| | - Kylie N Sears
- Applied Neuromuscular Physiology Laboratory, Department of Health and Human Performance, Oklahoma State University, 191 CRC, Stillwater, OK, 74074, USA
| | - Taylor K Dinyer
- Applied Neuromuscular Physiology Laboratory, Department of Health and Human Performance, Oklahoma State University, 191 CRC, Stillwater, OK, 74074, USA
| | - Shane M Hammer
- Applied Neuromuscular Physiology Laboratory, Department of Health and Human Performance, Oklahoma State University, 191 CRC, Stillwater, OK, 74074, USA
| | - Haley C Bergstrom
- Department of Kinesiology and Health Promotion, University of Kentucky, Lexington, KY, 40506, USA
| | - Ethan C Hill
- School of Kinesiology and Physical Therapy, University of Central Florida, Orlando, FL, 32816, USA
| | - Pasquale J Succi
- Department of Kinesiology and Health Promotion, University of Kentucky, Lexington, KY, 40506, USA
| | - John Lawson
- School of Kinesiology and Physical Therapy, University of Central Florida, Orlando, FL, 32816, USA
| | - Michael A Trevino
- Applied Neuromuscular Physiology Laboratory, Department of Health and Human Performance, Oklahoma State University, 191 CRC, Stillwater, OK, 74074, USA.
| |
Collapse
|
8
|
Ida A, Sasaki K. Distinct adaptations of muscle endurance but not strength or hypertrophy to low-load resistance training with and without blood flow restriction. Exp Physiol 2024; 109:926-938. [PMID: 38502540 PMCID: PMC11140179 DOI: 10.1113/ep091310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 03/01/2024] [Indexed: 03/21/2024]
Abstract
Low-load resistance training promotes muscle strength and hypertrophic adaptations when combined with blood flow restriction (BFR). However, the effect of BFR on muscle endurance remains unclear. The aim of this study was to clarify the effects of BFR on muscle performance and adaptation, with special reference to local muscle endurance. In experiment 1, eight healthy men performed unilateral elbow flexion exercise to failure at 30% of one-repetition maximum with BFR (at 40% of estimated arterial occlusion pressure) and free blood flow (FBF). During the exercise, muscle activity and tissue oxygenation were measured from the biceps brachii. In experiment 2, another eight healthy men completed 6 weeks of elbow flexion training with BFR and FBF. The number of repetitions to failure at submaximal load (Rmax), the estimated time for peak torque output to decay by 50% during repetitive maximum voluntary contractions (half-time), one-repetition maximum, isometric strength and muscle thickness of elbow flexors were measured pre- and post-training. Blood flow restriction resulted in fewer repetitions and lower muscle tissue oxygenation at the end of exercise than FBF, while the muscle activity increased similarly to repetition failure. Blood flow restriction also resulted in a smaller post-training Rmax, which was strongly correlated with the total exercise volume over the 6 week period. Despite the smaller exercise volume, BFR resulted in similar improvements in half-time, muscle strength and thickness compared with FBF. These results suggest that the application of BFR can attenuate muscle endurance adaptations to low-load resistance training by decreasing the number of repetitions during exercise, both acutely and chronically.
Collapse
Affiliation(s)
- Akito Ida
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazushige Sasaki
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
9
|
Lim J, Lu L, Goonewardena K, Liu JZ, Tan Y. Assessment of Self-report, Palpation, and Surface Electromyography Dataset During Isometric Muscle Contraction. Sci Data 2024; 11:208. [PMID: 38360835 PMCID: PMC10869346 DOI: 10.1038/s41597-024-03030-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 01/31/2024] [Indexed: 02/17/2024] Open
Abstract
Measuring muscle fatigue involves assessing various components within the motor system. While subjective and sensor-based measures have been proposed, a comprehensive comparison of these assessment measures is currently lacking. This study aims to bridge this gap by utilizing three commonly used measures: participant self-reported perceived muscle fatigue scores, a sports physiotherapist's manual palpation-based muscle tightness scores, and surface electromyography sensors. Compensatory muscle fatigue occurs when one muscle group becomes fatigued, leading to the involvement and subsequent fatigue of other muscles as they compensate for the workload. The evaluation of compensatory muscle fatigue focuses on nine different upper body muscles selected by the sports physiotherapist. With a cohort of 30 male subjects, this study provides a valuable dataset for researchers and healthcare practitioners in sports science, rehabilitation, and human performance. It enables the exploration and comparison of diverse methods for evaluating different muscles in isometric contraction.
Collapse
Affiliation(s)
- Jihoon Lim
- Department of Mechanical Engineering, The University of Melbourne, Parkville, 3010, Australia
| | - Lei Lu
- Department of Engineering Science, University of Oxford, Oxford, OX1 2JD, UK
- Department of Population Health Sciences, King's College London, London, UK
| | | | - Jefferson Zhe Liu
- Department of Mechanical Engineering, The University of Melbourne, Parkville, 3010, Australia
| | - Ying Tan
- Department of Mechanical Engineering, The University of Melbourne, Parkville, 3010, Australia.
| |
Collapse
|
10
|
Nuzzo JL, Pinto MD, Nosaka K, Steele J. Maximal Number of Repetitions at Percentages of the One Repetition Maximum: A Meta-Regression and Moderator Analysis of Sex, Age, Training Status, and Exercise. Sports Med 2024; 54:303-321. [PMID: 37792272 PMCID: PMC10933212 DOI: 10.1007/s40279-023-01937-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2023] [Indexed: 10/05/2023]
Abstract
The maximal number of repetitions that can be completed at various percentages of the one repetition maximum (1RM) [REPS ~ %1RM relationship] is foundational knowledge in resistance exercise programming. The current REPS ~ %1RM relationship is based on few studies and has not incorporated uncertainty into estimations or accounted for between-individuals variation. Therefore, we conducted a meta-regression to estimate the mean and between-individuals standard deviation of the number of repetitions that can be completed at various percentages of 1RM. We also explored if the REPS ~ %1RM relationship is moderated by sex, age, training status, and/or exercise. A total of 952 repetitions-to-failure tests, completed by 7289 individuals in 452 groups from 269 studies, were identified. Study groups were predominantly male (66%), healthy (97%), < 59 years of age (92%), and resistance trained (60%). The bench press (42%) and leg press (14%) were the most commonly studied exercises. The REPS ~ %1RM relationship for mean repetitions and standard deviation of repetitions were best described using natural cubic splines and a linear model, respectively, with mean and standard deviation for repetitions decreasing with increasing %1RM. More repetitions were evident in the leg press than bench press across the loading spectrum, thus separate REPS ~ %1RM tables were developed for these two exercises. Analysis of moderators suggested little influences of sex, age, or training status on the REPS ~ %1RM relationship, thus the general main model REPS ~ %1RM table can be applied to all individuals and to all exercises other than the bench press and leg press. More data are needed to develop REPS ~ %1RM tables for other exercises.
Collapse
Affiliation(s)
- James L Nuzzo
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia.
| | - Matheus D Pinto
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
| | - Kazunori Nosaka
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
| | - James Steele
- School of Sport, Health, and Social Sciences, Solent University, Southampton, UK
| |
Collapse
|
11
|
de Queiros VS, Rolnick N, dos Santos ÍK, de França IM, Lima RJ, Vieira JG, Aniceto RR, Neto GR, de Medeiros JA, Vianna JM, de Araújo Tinôco Cabral BG, Silva Dantas PM. Acute Effect of Resistance Training With Blood Flow Restriction on Perceptual Responses: A Systematic Review and Meta-Analysis. Sports Health 2023; 15:673-688. [PMID: 36415041 PMCID: PMC10467469 DOI: 10.1177/19417381221131533] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
CONTEXT Several studies have compared perceptual responses between resistance exercise with blood flow restriction and traditional resistance exercise (non-BFR). However, the results were contradictory. OBJECTIVES To analyze the effect of RE+BFR versus non-BFR resistance exercise [low-load resistance exercise (LL-RE) or high-load resistance exercise (HL-RE)] on perceptual responses. DATA SOURCES CINAHL, Cochrane Library, PubMed®, Scopus, SPORTDiscus, and Web of Science were searched through August 28, 2021, and again on August 25, 2022. STUDY SELECTION Studies comparing the effect of RE+BFR versus non-BFR resistance exercise on rate of perceived exertion (RPE) and muscle pain/discomfort were considered. Meta-analyses were conducted using the random effects model. STUDY DESIGN Systematic review and meta-analysis. LEVEL OF EVIDENCE Level 2. DATA EXTRACTION All data were reviewed and extracted independently by 2 reviewers. Disagreements were resolved by a third reviewer. RESULTS Thirty studies were included in this review. In a fixed repetition scheme, the RPE [standardized mean difference (SMD) = 1.04; P < 0.01] and discomfort (SMD = 1.10; P < 0.01) were higher in RE+BFR than in non-BFR LL-RE, but similar in sets to voluntary failure. There were no significant differences in RPE in the comparisons between RE+BFR and non-BFR HL-RE; after sensitivity analyses, it was found that the RPE was higher in non-BFR HL-RE in a fixed repetition scheme. In sets to voluntary failure, discomfort was higher in RE+BFR versus non-BFR HL-RE (SMD = 0.95; P < 0. 01); however, in a fixed scheme, the results were similar. CONCLUSION In sets to voluntary failure, RPE is similar between RE+BFR and non-BFR exercise. In fixed repetition schemes, RE+BFR seems to promote higher RPE than non-BFR LL-RE and less than HL-RE. In sets to failure, discomfort appears to be similar between LL-RE with and without BFR; however, RE+BFR appears to promote greater discomfort than HL-RE. In fixed repetition schemes, the discomfort appears to be no different between RE+BFR and HL-RE, but is lower in non-BFR LL-RE.
Collapse
Affiliation(s)
- Victor Sabino de Queiros
- Graduate Program in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal-RN, Brazil
| | - Nicholas Rolnick
- The Human Performance Mechanic, CUNY Lehman College, Bronx, New York, USA
| | - Ísis Kelly dos Santos
- Graduate Program in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal-RN, Brazil; Graduate Program in Physical Education, State University of Rio Grande do Norte (UERN), Mossoró-RN, Brazil
| | - Ingrid Martins de França
- Graduate Program in Physiotherapy, Federal University of Rio Grande do Rio Grande Norte (UFRN), Natal-RN, Brazil
| | - Rony Jerônimo Lima
- Graduate Program in Physical Education, Federal University of Rio Grande do Norte (UFRN), Natal-RN, Brazil
| | - João Guilherme Vieira
- Graduate Program in Physical Education, Federal University of Juiz de Fora (UFJF), Juiz de Fora-MG, Brazil; Strength Training Research Laboratory, Federal University of Juiz de Fora (UFJF), Juiz de Fora-MG, Brazil
| | - Rodrigo Ramalho Aniceto
- Study and Research Group in Biomechanics and Psychophysiology of Exercise, Federal Institute of Education, Science and Technology of Rio Grande do Norte, Currais Novos-RN, Brazil
| | - Gabriel Rodrigues Neto
- Faculty Nova Esperança (FAMENE/FACENE), Coordination of Physical Education, Nursing and Medical Schools, João Pessoa, Brazil; Coordination of Physical Education, University Center for Higher Education and Development (CESED/UNIFACISA/FCM/ESAC), Campina Grande, Brazil
| | - Jason Azevedo de Medeiros
- Graduate Program in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal-RN, Brazil
| | - Jeferson Macedo Vianna
- Graduate Program in Physical Education, Federal University of Juiz de Fora (UFJF), Juiz de Fora-MG, Brazil; Strength Training Research Laboratory, Federal University of Juiz de Fora (UFJF), Juiz de Fora-MG, Brazil
| | - Breno Guilherme de Araújo Tinôco Cabral
- Graduate Program in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal-RN, Brazil; Graduate Program in Physical Education, Federal University of Rio Grande do Norte (UFRN), Natal-RN, Brazil)
| | - Paulo Moreira Silva Dantas
- Graduate Program in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal-RN, Brazil; Graduate Program in Physical Education, Federal University of Rio Grande do Norte (UFRN), Natal-RN, Brazil)
| |
Collapse
|
12
|
Chen YC, Lin YT, Hu CL, Hwang IS. Low-Level Laser Therapy Facilitates Postcontraction Recovery with Ischemic Preconditioning. Med Sci Sports Exerc 2023; 55:1326-1333. [PMID: 36878185 DOI: 10.1249/mss.0000000000003149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
PURPOSE Despite early development of muscle fatigue, ischemic preconditioning is gaining popularity for strength training combined with low-load resistance exercise. This study investigated the effect of low-level laser (LLL) on postcontraction recovery with ischemic preconditioning. METHODS Forty healthy adults (22.9 ± 3.5 yr) were allocated into sham (11 men, 9 women) and LLL (11 men, 9 women) groups. With ischemic preconditioning, they were trained with three bouts of intermittent wrist extension of 40% maximal voluntary contraction (MVC). During the recovery period, the LLL group received LLL (wavelength of 808 nm, 60 J) on the working muscle, whereas the sham group received no sham therapy. MVC, force fluctuations, and discharge variables of motor units (MU) for a trapezoidal contraction were compared between groups at baseline (T0), postcontraction (T1), and after-recovery (T2). RESULTS At T2, the LLL group exhibited a higher normalized MVC (T2/T0; 86.22% ± 12.59%) than that of the sham group (71.70% ± 13.56%; P = 0.001). The LLL group had smaller normalized force fluctuations (LLL, 94.76% ± 21.95%; sham, 121.37% ± 29.02%; P = 0.002) with greater normalized electromyography amplitude (LLL, 94.33% ± 14.69%; sham, 73.57% ± 14.94%; P < 0.001) during trapezoidal contraction. In the LLL group, the smaller force fluctuations were associated with lower coefficients of variation of interspike intervals of MUs (LLL, 0.202 ± 0.053; sham, 0.208 ± 0.048; P = 0.004) with higher recruitment thresholds (LLL, 11.61 ± 12.68 %MVC; sham, 10.27 ± 12.73 %MVC; P = 0.003). CONCLUSIONS LLL expedites postcontraction recovery with ischemic preconditioning, manifesting as superior force generation capacity and force precision control for activation of MU with a higher recruitment threshold and lower discharge variability.
Collapse
Affiliation(s)
| | - Yen-Ting Lin
- Department of Ball Sport, National Taiwan University of Sport, Taichung City, TAIWAN
| | - Chia-Ling Hu
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan City, TAIWAN
| | | |
Collapse
|