1
|
Sun W, Zhang GW, Huang JJ, Tao C, Seo MB, Tao HW, Zhang LI. Reviving-like prosocial behavior in response to unconscious or dead conspecifics in rodents. Science 2025; 387:eadq2677. [PMID: 39977514 DOI: 10.1126/science.adq2677] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 12/07/2024] [Indexed: 02/22/2025]
Abstract
Whereas humans exhibit emergency responses to assist unconscious individuals, how nonhuman animals react to unresponsive conspecifics is less well understood. We report that mice exhibit stereotypic behaviors toward unconscious or dead social partners, which escalate from sniffing and grooming to more forceful actions such as mouth or tongue biting and tongue pulling. The latter intense actions, more prominent in familiar pairs, begin after prolonged immobility and unresponsiveness and cease when the partner regains activity. Their consequences, including improved airway opening and clearance and accelerated recovery from unconsciousness, suggest rescue-like efforts. Oxytocin neurons in the hypothalamic paraventricular nucleus respond differentially to the presence of unconscious versus active partners, and their activation, along with oxytocin signaling, is required for the reviving-like actions. This tendency to assist unresponsive members may enhance group cohesion and survival of social species.
Collapse
Affiliation(s)
- Wenjian Sun
- Center for Neural Circuits and Sensory Processing Disorders, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Guang-Wei Zhang
- Center for Neural Circuits and Sensory Processing Disorders, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Junxiang J Huang
- Center for Neural Circuits and Sensory Processing Disorders, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Graduate Program in Biomedical and Biological Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Can Tao
- Center for Neural Circuits and Sensory Processing Disorders, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Michelle B Seo
- Center for Neural Circuits and Sensory Processing Disorders, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Graduate Program in Neuroscience, University of Southern California, Los Angeles, CA, USA
| | - Huizhong Whit Tao
- Center for Neural Circuits and Sensory Processing Disorders, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Li I Zhang
- Center for Neural Circuits and Sensory Processing Disorders, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
2
|
Mikulovic S, Lenschow C. Neural control of sex differences in affiliative and prosocial behaviors. Neurosci Biobehav Rev 2025; 171:106039. [PMID: 39914700 DOI: 10.1016/j.neubiorev.2025.106039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 01/28/2025] [Accepted: 01/31/2025] [Indexed: 03/01/2025]
Abstract
Social interactions are vital for various taxa and species. Prosocial and affiliative dynamics within a group and between individuals are not only pleasurable and rewarding, but also appear to actively contribute to well-being, cognitive performance, and disease prevention. Moreover, disturbances in acting or being prosocial can represent a major burden for an individual and their affective partners. These disruptions are evident across a spectrum of neuropsychiatric conditions, including depression and autism spectrum disorders. Importantly, interactive patterns of prosocial and affiliative behavior can vary with sex. The fact that genders are differentially affected by neuropsychiatric disorders associated with social impairment underscores the high importance of this research in uncovering the underlying neural correlates and mechanisms. This review focuses on elucidating sex-related differences in prosocial and affiliative behaviors and their potential association with sexually different neural correlates. Specifically, we aim to shed light on the complex interplay between sex, behavior, and neurobiology in affiliative and prosocial interaction patterns.
Collapse
Affiliation(s)
- Sanja Mikulovic
- Leibniz Institute for Neurobiology, Brennecke Straße, Magdeburg, Germany.
| | - Constanze Lenschow
- Otto-von-Guericke University Magdeburg, Institute of Biology (House 91), Leipziger Straße 44, Magdeburg 39120, Germany.
| |
Collapse
|
3
|
Zhang MM, Chen T. Empathic pain: Underlying neural mechanism. Neuroscientist 2024:10738584241283435. [PMID: 39365808 DOI: 10.1177/10738584241283435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
Abstract
Empathy is usually regarded as the ability to perceive the emotional state of others, which is an altruistic motivation to promote prosocial behavior and thus plays a key role in human life and social development. Empathic pain-the capacity to feel and understand the pain of others-constitutes a significant aspect in the study of empathy behaviors. For an extended duration, investigations into empathic pain have predominantly centered on human neuroimaging studies. Fortunately, recent advancements have witnessed the utilization of animal models in the exploration of the fundamental neural underpinnings of empathic pain. There is substantial evidence implicating multiple brain regions and neural networks in the generation and maintenance of empathic pain. Nevertheless, further elucidation of the neural mechanisms underlying empathic pain is warranted. This review provides a concise overview of prior studies on the neural mechanisms of empathic pain, outlining the pertinent brain regions, neural pathways, synaptic mechanisms, and associated molecules while also delving into future prospects.
Collapse
Affiliation(s)
- Ming-Ming Zhang
- Department of Anatomy and K. K. Leung Brain Research Centre, Fourth Military Medical University, Xi'an, China
| | - Tao Chen
- Department of Anatomy and K. K. Leung Brain Research Centre, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
4
|
Fang S, Luo Z, Wei Z, Qin Y, Zheng J, Zhang H, Jin J, Li J, Miao C, Yang S, Li Y, Liang Z, Yu XD, Zhang XM, Xiong W, Zhu H, Gan WB, Huang L, Li B. Sexually dimorphic control of affective state processing and empathic behaviors. Neuron 2024; 112:1498-1517.e8. [PMID: 38430912 DOI: 10.1016/j.neuron.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/08/2023] [Accepted: 02/01/2024] [Indexed: 03/05/2024]
Abstract
Recognizing the affective states of social counterparts and responding appropriately fosters successful social interactions. However, little is known about how the affective states are expressed and perceived and how they influence social decisions. Here, we show that male and female mice emit distinct olfactory cues after experiencing distress. These cues activate distinct neural circuits in the piriform cortex (PiC) and evoke sexually dimorphic empathic behaviors in observers. Specifically, the PiC → PrL pathway is activated in female observers, inducing a social preference for the distressed counterpart. Conversely, the PiC → MeA pathway is activated in male observers, evoking excessive self-grooming behaviors. These pathways originate from non-overlapping PiC neuron populations with distinct gene expression signatures regulated by transcription factors and sex hormones. Our study unveils how internal states of social counterparts are processed through sexually dimorphic mechanisms at the molecular, cellular, and circuit levels and offers insights into the neural mechanisms underpinning sex differences in higher brain functions.
Collapse
Affiliation(s)
- Shunchang Fang
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Zhengyi Luo
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Zicheng Wei
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Yuxin Qin
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Jieyan Zheng
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Hongyang Zhang
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Jianhua Jin
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Jiali Li
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Chenjian Miao
- Institute on Aging, Hefei, China and Brain Disorders, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Shana Yang
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Yonglin Li
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Zirui Liang
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Xiao-Dan Yu
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Xiao Min Zhang
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Wei Xiong
- Institute on Aging, Hefei, China and Brain Disorders, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Hongying Zhu
- Institute on Aging, Hefei, China and Brain Disorders, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | | | - Lianyan Huang
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-Sen University), Ministry of Education, Guangzhou 510655, China.
| | - Boxing Li
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China; Advanced Medical Technology Center, the First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-Sen University), Ministry of Education, Guangzhou 510655, China.
| |
Collapse
|
5
|
de C Williams AC. Pain: Behavioural expression and response in an evolutionary framework. Evol Med Public Health 2023; 11:429-437. [PMID: 38022798 PMCID: PMC10656790 DOI: 10.1093/emph/eoad038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 09/25/2023] [Indexed: 12/01/2023] Open
Abstract
An evolutionary perspective offers insights into the major public health problem of chronic (persistent) pain; behaviours associated with it perpetuate both pain and disability. Pain is motivating, and pain-related behaviours promote recovery by immediate active or passive defence; subsequent protection of wounds; suppression of competing responses; energy conservation; vigilance to threat; and learned avoidance of associated cues. When these persist beyond healing, as in chronic pain, they are disabling. In mammals, facial and bodily expression of pain is visible and identifiable by others, while social context, including conspecifics' responses, modulate pain. Studies of responses to pain emphasize onlooker empathy, but people with chronic pain report feeling disbelieved and stigmatized. Observers frequently discount others' pain, best understood in terms of cheater detection-alertness to free riders that underpins the capacity for prosocial behaviours. These dynamics occur both in everyday life and in clinical encounters, providing an account of the adaptiveness of pain-related behaviours.
Collapse
Affiliation(s)
- Amanda C de C Williams
- Research Department of Clinical, Educational & Health Psychology, University College London, Gower St, London WC1E 6BT, UK
| |
Collapse
|
6
|
Misiołek K, Klimczak M, Chrószcz M, Szumiec Ł, Bryksa A, Przyborowicz K, Rodriguez Parkitna J, Harda Z. Prosocial behavior, social reward and affective state discrimination in adult male and female mice. Sci Rep 2023; 13:5583. [PMID: 37019941 PMCID: PMC10076499 DOI: 10.1038/s41598-023-32682-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
Prosocial behavior, defined as voluntary behavior intended to benefit another, has long been regarded as a primarily human characteristic. In recent years, it was reported that laboratory animals also favor prosocial choices in various experimental paradigms, thus demonstrating that prosocial behaviors are evolutionarily conserved. Here, we investigated prosocial choices in adult male and female C57BL/6 laboratory mice in a task where a subject mouse was equally rewarded for entering any of the two compartments of the experimental cage, but only entering of the compartment designated as "prosocial" rewarded an interaction partner. In parallel we have also assessed two traits that are regarded as closely related to prosociality: sensitivity to social reward and the ability to recognize the affective state of another individual. We found that female, but not male, mice increased frequency of prosocial choices from pretest to test. However, both sexes showed similar rewarding effects of social contact in the conditioned place preference test, and similarly, there was no effect of sex on affective state discrimination measured as the preference for interaction with a hungry or relieved mouse over a neutral animal. These observations bring interesting parallels to differences between sexes observed in humans, and are in line with reported higher propensity for prosocial behavior in human females, but differ with regard to sensitivity to social stimuli in males.
Collapse
Affiliation(s)
- Klaudia Misiołek
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology of the Polish Academy of Sciences, Smętna 12, 31-343, Krakow, Poland
| | - Marta Klimczak
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology of the Polish Academy of Sciences, Smętna 12, 31-343, Krakow, Poland
| | - Magdalena Chrószcz
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology of the Polish Academy of Sciences, Smętna 12, 31-343, Krakow, Poland
| | - Łukasz Szumiec
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology of the Polish Academy of Sciences, Smętna 12, 31-343, Krakow, Poland
| | - Anna Bryksa
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology of the Polish Academy of Sciences, Smętna 12, 31-343, Krakow, Poland
- Laboratory of Emotions Neurobiology, Nencki Institute of Experimental Biology, 3 Pasteur Street, 02-093, Warszawa, Poland
| | - Karolina Przyborowicz
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology of the Polish Academy of Sciences, Smętna 12, 31-343, Krakow, Poland
| | - Jan Rodriguez Parkitna
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology of the Polish Academy of Sciences, Smętna 12, 31-343, Krakow, Poland.
| | - Zofia Harda
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology of the Polish Academy of Sciences, Smętna 12, 31-343, Krakow, Poland.
| |
Collapse
|
7
|
Ivan S, Daniela O, Jaroslava BD. Sex differences matter: Males and females are equal but not the same. Physiol Behav 2023; 259:114038. [PMID: 36423797 DOI: 10.1016/j.physbeh.2022.114038] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022]
Abstract
Sex differences between males and females can be detected early in life. They are present also later even to a much greater extent affecting our life in adulthood and a wide spectrum of physical, psychological, cognitive, and behavioral characteristics. Moreover, sex differences matter also in individual's health and disease. In this article, we reviewed at first the sex differences in brain organization and function with respect to the underlying biological mechanisms. Since the individual functional differences in the brain, in turn, shape the behavior, sex-specific psychological/behavioral differences that can be observed in infants but also adults are consequently addressed. Finally, we briefly mention sex-dependent variations in susceptibility to selected disorders as well as their pathophysiology, diagnosis, and response to therapy. The understanding of biologically determined variability between males and females can have important implications, especially in gender-specific health care. We have the impression that it is very important to emphasize that sex matters. Males and females are differently programmed by nature, and it must be respected. Even though we as males and females are not the same, we would like to emphasize that we are still equal and together form a worthy colorful continuum.
Collapse
Affiliation(s)
- Szadvári Ivan
- Institute of Physiology, Medical School, Comenius University, Bratislava, Slovakia
| | - Ostatníková Daniela
- Institute of Physiology, Medical School, Comenius University, Bratislava, Slovakia
| | | |
Collapse
|
8
|
Watanabe S. Infrared thermography for non-invasive measurement of social inequality aversion in rodents and potential usefulness for future animal-friendly studies. Front Behav Neurosci 2023; 17:1131427. [PMID: 36950066 PMCID: PMC10025391 DOI: 10.3389/fnbeh.2023.1131427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 02/10/2023] [Indexed: 03/08/2023] Open
Abstract
Infrared thermography is a method that detects thermal radiation energy and can measure the body surface temperature of animals from a distance. While rectal temperature has traditionally been used to measure animals' core temperature, thermal imaging can avoid the stress and potential rise of body temperature deriving from handling of the animals. Additionally, being non-invasive and contactless, thermal imaging allows free movement of the animals. The validity of this technique as a psychophysiological method has been proven in a series of stress-induced hyperthermia (SIH) studies of mice under social inequality conditions. Restraint in a holder elicits SIH in mice. A restrained mouse surrounded by freely moving cage mates displays increased SIH suggesting that social inequality enhances the stress. Social inequality can be examined also in unrestrained mice, in particular through unequal distribution of food. In this protocol, a food-deprived mouse is given a small piece of cheese, while its cage mate is given a large piece of cheese. This inequity causes SIH, suggesting social inequality aversion in mice. Thus, social inequality in different situations similarly increased SIH. Importantly, in future studies infrared thermography could also be used to evaluate emotional arousal states different from stress (for example to assess reactivity to rewards or in social and sexual preference tests). Moreover, the technique could be used to investigate also cognitive arousal induced by novelty. Indeed, infrared thermography could be a particularly useful tool for animal-friendly studies of cognition and emotion in rodents.
Collapse
|
9
|
van Zeeland Y, Schoemaker N. Pain Recognition in Ferrets. Vet Clin North Am Exot Anim Pract 2023; 26:229-243. [PMID: 36402483 DOI: 10.1016/j.cvex.2022.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Recognition and accurate assessment of the severity of pain can be challenging in ferrets as they are unable to verbally communicate, and often hide their pain. Pain assessment relies on the assessment of behavioral, physiologic, and other clinical parameters that serve as indirect indicators of pain. Assessment of physiologic and clinical parameters requires handling, which results in changes in these parameters. Behavioral parameters can be assessed less invasively by observing the patient. Due to their nonspecificity, correct interpretation may be challenging. Just as in other species, a grimace scale seems to be the most helpful tool in recognizing pain in ferrets.
Collapse
Affiliation(s)
- Yvonne van Zeeland
- Division of Zoological Medicine, Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 108, Utrecht 3584 CM, the Netherlands
| | - Nico Schoemaker
- Division of Zoological Medicine, Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 108, Utrecht 3584 CM, the Netherlands.
| |
Collapse
|
10
|
Harda Z, Misiołek K, Klimczak M, Chrószcz M, Rodriguez Parkitna J. C57BL/6N mice show a sub-strain specific resistance to the psychotomimetic effects of ketamine. Front Behav Neurosci 2022; 16:1057319. [PMID: 36505728 PMCID: PMC9731130 DOI: 10.3389/fnbeh.2022.1057319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/07/2022] [Indexed: 11/25/2022] Open
Abstract
Repeated administration of subanesthetic doses of ketamine is a model of psychosis-like state in rodents. In mice, this treatment produces a range of behavioral deficits, including impairment in social interactions and locomotion. To date, these phenotypes were described primarily in the Swiss and C3H/HeHsd mouse strains. A few studies investigated ketamine-induced behaviors in the C57BL/6J strain, but to our knowledge the C57BL/6N strain was not investigated thus far. This is surprising, as both C57BL/6 sub-strains are widely used in behavioral and neuropsychopharmacological research, and are de facto standards for characterization of drug effects. The goal of this study was to determine if C57BL/6N mice are vulnerable to develop social deficits after 5 days withdrawal from sub-chronic ketamine treatment (5 days, 30 mg/kg, i.p.), an experimental schedule shown before to cause deficits in social interactions in C57BL/6J mice. Our results show that sub-chronic administration of ketamine that was reported to cause psychotic-like behavior in C57BL/6J mice does not induce appreciable behavioral alterations in C57BL/6N mice. Thus, we show that the effects of sub-chronic ketamine treatment in mice are sub-strain specific.
Collapse
|
11
|
Paterson EA, Turner PV. Challenges with Assessing and Treating Pain in Research Primates: A Focused Survey and Literature Review. Animals (Basel) 2022; 12:2304. [PMID: 36078024 PMCID: PMC9455027 DOI: 10.3390/ani12172304] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022] Open
Abstract
Research primates may undergo surgical procedures making effective pain management essential to ensure good animal welfare and unbiased scientific data. Adequate pain mitigation is dependent on whether veterinarians, technicians, researchers, and caregivers can recognize and assess pain, as well as the availability of efficacious therapeutics. A survey was conducted to evaluate primate veterinary approaches to pain assessment and alleviation, as well as expressed challenges for adequately managing primate pain. The survey (n = 93 respondents) collected information regarding institutional policies and procedures for pain recognition, methods used for pain relief, and perceived levels of confidence in primate pain assessment. Results indicated that 71% (n = 60) of respondents worked at institutions that were without formal experimental pain assessment policies. Pain assessment methods were consistent across respondents with the majority evaluating pain based on changes in general activity levels (100%, n = 86) and food consumption (97%, n = 84). Self-reported confidence in recognizing and managing pain ranged from slightly confident to highly confident, and there was a commonly expressed concern about the lack of objective pain assessment tools and science-based evidence regarding therapeutic recommendations of analgesics for research primates. These opinions correspond with significant gaps in the primate pain management literature, including limited specific pharmacokinetic data and efficacy testing for commonly used analgesics in research primate species as well as limited research on objective and specific measures of pain in research primates. These results demonstrate that there are inconsistencies in institutional policies and procedures surrounding pain management in research primates and a lack of objective pain assessment methods. Demonstrating the gaps and challenges in primate pain management can inform guideline development and suggest areas for future research.
Collapse
Affiliation(s)
- Emilie A. Paterson
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 0C4, Canada
| | - Patricia V. Turner
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 0C4, Canada
- Global Animal Welfare and Training, Charles River, Wilmington, MA 01887, USA
| |
Collapse
|
12
|
Kitano K, Yamagishi A, Horie K, Nishimori K, Sato N. Helping behavior in prairie voles: A model of empathy and the importance of oxytocin. iScience 2022; 25:103991. [PMID: 35310938 PMCID: PMC8931361 DOI: 10.1016/j.isci.2022.103991] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/15/2022] [Accepted: 02/23/2022] [Indexed: 11/29/2022] Open
Abstract
Several studies suggest that rodents show empathic responses and helping behavior toward others. We examined whether prairie voles would help conspecifics who were soaked in water by opening a door to a safe area. Door-opening latency decreased as task sessions progressed. Female and male voles stayed close to the soaked voles' side at equal rates and opened the door with similar latencies. When the conspecific was not soaked in water, the door-opening latency did not decrease. This suggests that the distress of the conspecific is necessary for learning to open the door and that the door-opening performed by prairie voles corresponds to helping behavior. Additionally, we examined the helping behavior in prairie voles in which oxytocin receptors were genetically knocked out. Oxytocin receptor knockout voles demonstrated less learning of the door-opening behavior and less interest in soaked conspecifics. This suggests that oxytocin is important for the emergence of helping behavior. Prairie voles demonstrated helping behavior toward a cagemate in distress There was no difference in helping behavior depending on the helper’s sex Learning of the helping behavior was prevented when cagemates were not in distress Oxytocin receptor knockout prairie voles demonstrated less helping behavior
Collapse
Affiliation(s)
- Kota Kitano
- Department of Psychological Sciences, Kwansei Gakuin University, 1-1-155, Uegahara, Nishinomiya, Hyogo 662-8501, Japan
| | - Atsuhito Yamagishi
- Department of Psychological Sciences, Kwansei Gakuin University, 1-1-155, Uegahara, Nishinomiya, Hyogo 662-8501, Japan
| | - Kengo Horie
- Silvio O. Conte Center for Oxytocin and Social Cognition, Center for Translational Social Neuroscience, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA 30329, USA
| | - Katsuhiko Nishimori
- Department of Obesity and Inflammation Research, Fukushima Medical University, Fukushima, Fukushima 960-1295, Japan
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University, Fukushima, Fukushima 960-1295, Japan
| | - Nobuya Sato
- Department of Psychological Sciences, Kwansei Gakuin University, 1-1-155, Uegahara, Nishinomiya, Hyogo 662-8501, Japan
- Corresponding author
| |
Collapse
|
13
|
Chun EK, Donovan M, Liu Y, Wang Z. Behavioral, neurochemical, and neuroimmune changes associated with social buffering and stress contagion. Neurobiol Stress 2022; 16:100427. [PMID: 35036478 PMCID: PMC8749234 DOI: 10.1016/j.ynstr.2022.100427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/21/2021] [Accepted: 01/02/2022] [Indexed: 02/02/2023] Open
Abstract
Social buffering can provide protective effects on stress responses and their subsequent negative health outcomes. Although social buffering is beneficial for the recipient, it can also have anxiogenic effects on the provider of the social buffering - a phenomena referred to as stress contagion. Social buffering and stress contagion usually occur together, but they have traditionally been studied independently, thus limiting our understanding of this dyadic social interaction. In the present study, we examined the effects of preventative social buffering and stress contagion in socially monogamous prairie voles (Microtus ochrogaster). We tested the hypothesis that this dynamic social interaction is associated with coordinated alterations in behaviors, neurochemical activation, and neuroimmune responses. To do so, adult male prairie voles were stressed via an acute immobilization restraint tube (IMO) either alone (Alone) or with their previously pair-bonded female partner (Partner) in the cage for 1 h. In contrast, females were placed in a cage containing either an empty IMO tube (Empty) or one that contained their pair-bonded male (Partner). Anxiety-like behavior was tested on the elevated plus maze (EPM) following the 60-mins test and brain sections were processed for neurochemical/neuroimmune marker labeling for all subjects. Our data indicate that females in the Partner group were in contact with and sniffed the IMO tube more, showed fewer anxiety-like behaviors, and had a higher level of oxytocin expression in the paraventricular nucleus of the hypothalamus (PVN) compared to the Empty group females. Males in the Partner group had lower levels of anxiety-like behavior during the EPM test, greater activation of corticotropin-releasing hormone expressing neurons in the PVN, lower activation of serotonin neurons in the dorsal raphe, and lower levels of microgliosis in the nucleus accumbens. Taken together, these data suggest brain region- and neurochemical-specific alterations as well as neuroinflammatory changes that may be involved in the regulation of social buffering and stress contagion behaviors.
Collapse
Affiliation(s)
- Eileen K. Chun
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, 32306, USA
| | - Meghan Donovan
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, 32306, USA
- Rocky Mountain Mental Illness Research Education and Clinical Center, Rocky Mountain Regional VA Medical Center, 1700 N Wheeling St, Aurora, CO, 80045, USA
- Department of Physical Medicine and Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Yan Liu
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, 32306, USA
| | - Zuoxin Wang
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, 32306, USA
| |
Collapse
|
14
|
Puścian A, Bryksa A, Kondrakiewicz L, Kostecki M, Winiarski M, Knapska E. Ability to share emotions of others as a foundation of social learning. Neurosci Biobehav Rev 2021; 132:23-36. [PMID: 34838526 DOI: 10.1016/j.neubiorev.2021.11.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 01/25/2023]
Abstract
The natural habitats of most species are far from static, forcing animals to adapt to continuously changing conditions. Perhaps the most efficient strategy addressing this challenge consists of obtaining and acting upon pertinent information from others through social learning. We discuss how animals transfer information via social channels and what are the benefits of such exchanges, playing out on different levels, from theperception of socially delivered information to emotional sharing, manifesting themselves across different taxa of increasing biological complexity. We also discuss how social learning is influenced by different factors including pertinence of information for survival, the complexity of the environment, sex, genetic relatedness, and most notably, the relationship between interacting partners. The results appear to form a consistent picture once we shift our focus from emotional contagion as a prerequisite for empathy onto the role of shared emotions in providing vital information about the environment. From this point of view, we can propose approaches that are the most promising for further investigation of complex social phenomena, including learning from others.
Collapse
Affiliation(s)
- A Puścian
- Nencki-EMBL Partnership for Neural Plasticity and Brain Disorders - BRAINCITY, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - A Bryksa
- Nencki-EMBL Partnership for Neural Plasticity and Brain Disorders - BRAINCITY, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - L Kondrakiewicz
- Nencki-EMBL Partnership for Neural Plasticity and Brain Disorders - BRAINCITY, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - M Kostecki
- Nencki-EMBL Partnership for Neural Plasticity and Brain Disorders - BRAINCITY, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - M Winiarski
- Nencki-EMBL Partnership for Neural Plasticity and Brain Disorders - BRAINCITY, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - E Knapska
- Nencki-EMBL Partnership for Neural Plasticity and Brain Disorders - BRAINCITY, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
15
|
Sen A, Kara AY, Koyu A, Simsek F, Kizildag S, Uysal N. The effects of chronic restraint stress on empathy-like behaviour in rats. Neurosci Lett 2021; 765:136255. [PMID: 34537317 DOI: 10.1016/j.neulet.2021.136255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/28/2021] [Accepted: 09/14/2021] [Indexed: 11/20/2022]
Abstract
It is clearly known that psychological stress is an important threat to health in today's modern societies. Recent studies have shown that acute stress causes an increase in positive social behaviours such as prosocial behaviour and devotion which are components of empathic behaviour. Neuropsychiatric manifestations such as anxiety and depression may affect empathic behaviour. The aim of this study was to investigate the effects of chronic restraint stress on empathy-like behaviour and the histopathological changes in the amygdala, prefrontal cortex in the adrenal glands and thymus, as well as the neurochemical pathways associated with empathy, oxytocin and vasopressin. The chronic stress group was subjected to restraint stress daily for 14 days after all subjects were trained to rescue its stressed cagemate using empathy test equipment for 12 days. It was observed that chronic restraint stress had no effect on empathy-like behaviour in rats. Vasopressin levels in amygdala was increased in chronic stress group compared to control group. Anxiety and depression indicators did not change in both groups. In the open field test, control group spent more time in thigmo zone compared to chronic stress group. Adrenal glands relative weights and apoptotic cell ratios were significantly higher in the chronic stress group compared to the control group (expectedly). Although there was no significant difference in behavioral tests, histopathological changes were detected. In subsequent studies, it is appropriate to examine the effects of different types of stress applications, gender-related changes, and other neurochemical pathways associated with stress and empathy.
Collapse
Affiliation(s)
- Aysu Sen
- Department of Physiology, Necmettin Erbakan University, Faculty of Medicine, Konya, Turkey.
| | - Ali Yucel Kara
- Department of Physiology, İzmir Katip Celebi University, Faculty of Medicine, Izmir, Turkey
| | - Ahmet Koyu
- Department of Physiology, İzmir Katip Celebi University, Faculty of Medicine, Izmir, Turkey
| | - Fatma Simsek
- Department of Histology and Embryology, İzmir Katip Celebi University, Faculty of Medicine, Izmir, Turkey
| | - Servet Kizildag
- College of Vocational School of Health Services, Dokuz Eylul University, Faculty of Medicine, Izmir, Turkey
| | - Nazan Uysal
- Department of Physiology, Dokuz Eylul University, Faculty of Medicine, Izmir, Turkey
| |
Collapse
|
16
|
Kalamari A, Kentrop J, Hinna Danesi C, Graat EAM, van IJzendoorn MH, Bakermans-Kranenburg MJ, Joëls M, van der Veen R. Complex Housing, but Not Maternal Deprivation Affects Motivation to Liberate a Trapped Cage-Mate in an Operant Rat Task. Front Behav Neurosci 2021; 15:698501. [PMID: 34512284 PMCID: PMC8427758 DOI: 10.3389/fnbeh.2021.698501] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/30/2021] [Indexed: 11/13/2022] Open
Abstract
Early life environment influences the development of various aspects of social behavior, particularly during sensitive developmental periods. We studied how challenges in the early postnatal period or (early) adolescence affect pro-social behavior. To this end, we designed a lever-operated liberation task, to be able to measure motivation to liberate a trapped conspecific (by progressively increasing required lever pressing for door-opening). Liberation of the trapped rat resulted either in social contact or in liberation into a separate compartment. Additionally, a condition was tested in which both rats could freely move in two separate compartments and lever pressing resulted in social contact. When partners were not trapped, rats were more motivated to press the lever for opening the door than in either of the trapped configurations. Contrary to our expectations, the trapped configuration resulted in a reduced motivation to act. Early postnatal stress (24 h maternal deprivation on postnatal day 3) did not affect behavior in the liberation task. However, rearing rats from early adolescence onwards in complex housing conditions (Marlau cages) reduced the motivation to door opening, both in the trapped and freely moving conditions, while the motivation for a sucrose reward was not affected.
Collapse
Affiliation(s)
- Aikaterini Kalamari
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Jiska Kentrop
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Chiara Hinna Danesi
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Evelien A M Graat
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Marinus H van IJzendoorn
- Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, Rotterdam, Netherlands.,Primary Care Unit, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | | | - Marian Joëls
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,University Medical Center Groningen, Groningen University, Groningen, Netherlands
| | - Rixt van der Veen
- Brain Plasticity group, SILS Center for Neuroscience, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
17
|
Abstract
Pain is an immense clinical and societal challenge, and the key to understanding and treating it is variability. Robust interindividual differences are consistently observed in pain sensitivity, susceptibility to developing painful disorders, and response to analgesic manipulations. This review examines the causes of this variability, including both organismic and environmental sources. Chronic pain development is a textbook example of a gene-environment interaction, requiring both chance initiating events (e.g., trauma, infection) and more immutable risk factors. The focus is on genetic factors, since twin studies have determined that a plurality of the variance likely derives from inherited genetic variants, but sex, age, ethnicity, personality variables, and environmental factors are also considered.
Collapse
Affiliation(s)
- Jeffrey S Mogil
- Departments of Psychology and Anesthesia, Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec H3A 1B1, Canada;
| |
Collapse
|
18
|
Matsumoto M, Yoshida M, Jayathilake BW, Inutsuka A, Nishimori K, Takayanagi Y, Onaka T. Indispensable role of the oxytocin receptor for allogrooming toward socially distressed cage mates in female mice. J Neuroendocrinol 2021; 33:e12980. [PMID: 34057769 PMCID: PMC8243938 DOI: 10.1111/jne.12980] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/12/2021] [Accepted: 04/16/2021] [Indexed: 12/15/2022]
Abstract
Social contact reduces stress responses in social animals. Mice have been shown to show allogrooming behaviour toward distressed conspecifics. However, the precise neuronal mechanisms underlying allogrooming behaviour remain unclear. In the present study, we examined whether mice show allogrooming behaviour towards distressed conspecifics in a social defeat model and we also determined whether oxytocin receptor-expressing neurons were activated during allogrooming by examining the expression of c-Fos protein, a marker of neurone activation. Mice showed allogrooming behaviour toward socially defeated conspecifics. After allogrooming behaviour, the percentages of oxytocin receptor-expressing neurones expressing c-Fos protein were significantly increased in the anterior olfactory nucleus, cingulate cortex, insular cortex, lateral septum and medial amygdala of female mice, suggesting that oxytocin receptor-expressing neurones in these areas were activated during allogrooming behaviour toward distressed conspecifics. The duration of allogrooming was correlated with the percentages of oxytocin receptor-expressing neurones expressing c-Fos protein in the anterior olfactory nucleus, insular cortex, lateral septum and medial amygdala. In oxytocin receptor-deficient mice, allogrooming behaviour toward socially defeated cage mates was markedly reduced in female mice but not in male mice, indicating the importance of the oxytocin receptor for allogrooming behaviour in female mice toward distressed conspecifics. The results suggest that the oxytocin receptor, possibly in the anterior olfactory nucleus, insular cortex, lateral septum and/or medial amygdala, facilitates allogrooming behaviour toward socially distressed familiar conspecifics in female mice.
Collapse
Affiliation(s)
- Makiya Matsumoto
- Division of Brain and NeurophysiologyDepartment of PhysiologyJichi Medical UniversityShimotsuke‐shiTochigi‐kenJapan
| | - Masahide Yoshida
- Division of Brain and NeurophysiologyDepartment of PhysiologyJichi Medical UniversityShimotsuke‐shiTochigi‐kenJapan
| | | | - Ayumu Inutsuka
- Division of Brain and NeurophysiologyDepartment of PhysiologyJichi Medical UniversityShimotsuke‐shiTochigi‐kenJapan
| | - Katsuhiko Nishimori
- Department of Obesity and Inflammation ResearchFukushima Medical UniversityFukushima‐shiFukushima‐kenJapan
| | - Yuki Takayanagi
- Division of Brain and NeurophysiologyDepartment of PhysiologyJichi Medical UniversityShimotsuke‐shiTochigi‐kenJapan
| | - Tatsushi Onaka
- Division of Brain and NeurophysiologyDepartment of PhysiologyJichi Medical UniversityShimotsuke‐shiTochigi‐kenJapan
| |
Collapse
|
19
|
Lidhar NK, Darvish-Ghane S, Sivaselvachandran S, Khan S, Wasif F, Turner H, Sivaselvachandran M, Fournier NM, Martin LJ. Prelimbic cortex glucocorticoid receptors regulate the stress-mediated inhibition of pain contagion in male mice. Neuropsychopharmacology 2021; 46:1183-1193. [PMID: 33223518 PMCID: PMC8115346 DOI: 10.1038/s41386-020-00912-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 10/27/2020] [Accepted: 10/30/2020] [Indexed: 12/29/2022]
Abstract
Experiencing pain with a familiar individual can enhance one's own pain sensitivity, a process known as pain contagion. When experiencing pain with an unfamiliar individual, pain contagion is suppressed in males by activating the endocrine stress response. Here, we coupled a histological investigation with pharmacological and behavioral experiments to identify enhanced glucocorticoid receptor activity in the prelimbic subdivision of the medial prefrontal cortex as a candidate mechanism for suppressing pain contagion in stranger mice. Acute inhibition of glucocorticoid receptors in the prelimbic cortex was sufficient to elicit pain contagion in strangers, while their activation prevented pain contagion in cagemate dyads. Slice physiology recordings revealed enhanced excitatory transmission in stranger mice, an effect that was reversed by pre-treating mice with the corticosterone synthesis inhibitor metyrapone. Following removal from dyadic testing, stranger mice displayed enhanced affective-motivational pain behaviors when placed on an inescapable thermal stimulus, which were reversed by metyrapone. Together, our data suggest that the prelimbic cortex may play an integral role in modulating pain behavior within a social context and provide novel evidence towards the neural mechanism underlying the prevention of pain contagion.
Collapse
Affiliation(s)
- Navdeep K. Lidhar
- grid.17063.330000 0001 2157 2938Department of Psychology, University of Toronto Mississauga, Mississauga, ON L5L 1C6 Canada
| | - Soroush Darvish-Ghane
- grid.17063.330000 0001 2157 2938Department of Cell and Systems Biology, University of Toronto Mississauga, Mississauga, ON L5L1C6 Canada
| | - Sivaani Sivaselvachandran
- grid.17063.330000 0001 2157 2938Department of Psychology, University of Toronto Mississauga, Mississauga, ON L5L 1C6 Canada
| | - Sana Khan
- grid.17063.330000 0001 2157 2938Department of Psychology, University of Toronto Mississauga, Mississauga, ON L5L 1C6 Canada
| | - Fatima Wasif
- grid.17063.330000 0001 2157 2938Department of Psychology, University of Toronto Mississauga, Mississauga, ON L5L 1C6 Canada
| | - Holly Turner
- grid.52539.380000 0001 1090 2022Department of Psychology, Trent University, Peterborough, ON K9J 7B8 Canada
| | - Meruba Sivaselvachandran
- grid.17063.330000 0001 2157 2938Department of Psychology, University of Toronto Mississauga, Mississauga, ON L5L 1C6 Canada
| | - Neil M. Fournier
- grid.52539.380000 0001 1090 2022Department of Psychology, Trent University, Peterborough, ON K9J 7B8 Canada
| | - Loren J. Martin
- grid.17063.330000 0001 2157 2938Department of Psychology, University of Toronto Mississauga, Mississauga, ON L5L 1C6 Canada ,grid.17063.330000 0001 2157 2938Department of Cell and Systems Biology, University of Toronto Mississauga, Mississauga, ON L5L1C6 Canada
| |
Collapse
|
20
|
Mouraux A, Bannister K, Becker S, Finn DP, Pickering G, Pogatzki-Zahn E, Graven-Nielsen T. Challenges and opportunities in translational pain research - An opinion paper of the working group on translational pain research of the European pain federation (EFIC). Eur J Pain 2021; 25:731-756. [PMID: 33625769 PMCID: PMC9290702 DOI: 10.1002/ejp.1730] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
For decades, basic research on the underlying mechanisms of nociception has held promise to translate into efficacious treatments for patients with pain. Despite great improvement in the understanding of pain physiology and pathophysiology, translation to novel, effective treatments for acute and chronic pain has however been limited, and they remain an unmet medical need. In this opinion paper bringing together pain researchers from very different disciplines, the opportunities and challenges of translational pain research are discussed. The many factors that may prevent the successful translation of bench observations into useful and effective clinical applications are reviewed, including interspecies differences, limited validity of currently available preclinical disease models of pain, and limitations of currently used methods to assess nociception and pain in non-human and human models of pain. Many paths are explored to address these issues, including the backward translation of observations made in patients and human volunteers into new disease models that are more clinically relevant, improved generalization by taking into account age and sex differences, and the integration of psychobiology into translational pain research. Finally, it is argued that preclinical and clinical stages of developing new treatments for pain can be improved by better preclinical models of pathological pain conditions alongside revised methods to assess treatment-induced effects on nociception in human and non-human animals. Significance: For decades, basic research of the underlying mechanisms of nociception has held promise to translate into efficacious treatments for patients with pain. Despite great improvement in the understanding of pain physiology and pathophysiology, translation to novel, effective treatments for acute and chronic pain has however been limited, and they remain an unmet medical need.
Collapse
Affiliation(s)
- André Mouraux
- Institute of Neuroscience (IONS), UCLouvain, Brussels, Belgium
| | - Kirsty Bannister
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Susanne Becker
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Integrative Spinal Research, Department of Chiropractic Medicine, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - David P Finn
- Pharmacology and Therapeutics, Centre for Pain Research, School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Gisèle Pickering
- Department of Clinical Pharmacology, Inserm CIC 1405, University Hospital, CHU Clermont-Ferrand, France.,Fundamental and Clinical Pharmacology of Pain, University Clermont Auvergne, Clermont-Ferrand, France
| | - Esther Pogatzki-Zahn
- Department of Anesthesiology, Critical Care Medicine and Pain Therapy, University Hospital Muenster, Muenster, Germany
| | - Thomas Graven-Nielsen
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
21
|
Towards a unified theory of emotional contagion in rodents—A meta-analysis. Neurosci Biobehav Rev 2020; 132:1229-1248. [DOI: 10.1016/j.neubiorev.2020.09.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/30/2020] [Accepted: 09/06/2020] [Indexed: 12/13/2022]
|
22
|
Kentrop J, Kalamari A, Danesi CH, Kentrop JJ, van IJzendoorn MH, Bakermans-Kranenburg MJ, Joëls M, van der Veen R. Pro-social preference in an automated operant two-choice reward task under different housing conditions: Exploratory studies on pro-social decision making. Dev Cogn Neurosci 2020; 45:100827. [PMID: 32739841 PMCID: PMC7393525 DOI: 10.1016/j.dcn.2020.100827] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 07/10/2020] [Accepted: 07/16/2020] [Indexed: 12/13/2022] Open
Abstract
In this study, we aimed to develop a behavioral task that measures pro-social decision making in rats. A fully automated, operant pro-social two-choice task is introduced that quantifies pro-social preferences for a mutual food reward in a set-up with tightly controlled task contingencies. Pairs of same-sex adult Wistar rats were placed in an operant chamber divided into two compartments (one rat per compartment), separated by a transparent barrier with holes that allowed the rats to see, hear, smell, but not touch each other. Test rats could earn a sucrose pellet either for themselves (own reward) or for themselves and the partner (both reward) by means of lever pressing. On average, male rats showed a 60 % preference for the lever that yielded a food reward for both themselves and their partner. In contrast, females did not show lever preference, regardless of the estrous cycle phase. Next, the impact of juvenile environmental factors on male rat social decision making was studied. Males were group-housed from postnatal day 26 onwards in complex housing Marlau™ cages that provided social and physical enrichment and stimulation in the form of novelty. Complex housed males did not show a preference for the pro-social lever.
Collapse
Affiliation(s)
- Jiska Kentrop
- Dept. Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Aikaterini Kalamari
- Dept. Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Chiara Hinna Danesi
- Dept. Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - John J Kentrop
- Dept. Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Marinus H van IJzendoorn
- Dept. Psychology, Education and Child Studies, Erasmus University Rotterdam, the Netherlands; Primary Care Unit, School of Clinical Medicine, University of Cambridge, United Kingdom
| | | | - Marian Joëls
- Dept. Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Rixt van der Veen
- Dept. Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Faculty of Social and Behavioural Sciences, Leiden University, Leiden, the Netherlands.
| |
Collapse
|
23
|
Mogil JS, Pang DSJ, Silva Dutra GG, Chambers CT. The development and use of facial grimace scales for pain measurement in animals. Neurosci Biobehav Rev 2020; 116:480-493. [PMID: 32682741 DOI: 10.1016/j.neubiorev.2020.07.013] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/25/2020] [Accepted: 07/14/2020] [Indexed: 12/20/2022]
Abstract
The measurement of pain in animals is surprisingly complex, and remains a critical issue in veterinary care and biomedical research. Based on the known utility of pain measurement via facial expression in verbal and especially non-verbal human populations, "grimace scales" were first developed a decade ago for use in rodents and now exist for 10 different mammalian species. This review details the background context, historical development, features (including duration), psychometric properties, modulatory factors, and impact of animal grimace scales for pain.
Collapse
Affiliation(s)
- Jeffrey S Mogil
- Depts. of Psychology and Anesthesia, Alan Edwards Centre for Research on Pain McGill University, Montreal, QC, Canada.
| | - Daniel S J Pang
- Veterinary Clinical and Diagnostic Services, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Gabrielle Guanaes Silva Dutra
- Depts. of Psychology and Anesthesia, Alan Edwards Centre for Research on Pain McGill University, Montreal, QC, Canada
| | | |
Collapse
|
24
|
Qualitative sex differences in pain processing: emerging evidence of a biased literature. Nat Rev Neurosci 2020; 21:353-365. [PMID: 32440016 DOI: 10.1038/s41583-020-0310-6] [Citation(s) in RCA: 365] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2020] [Indexed: 02/07/2023]
Abstract
Although most patients with chronic pain are women, the preclinical literature regarding pain processing and the pathophysiology of chronic pain has historically been derived overwhelmingly from the study of male rodents. This Review describes how the recent adoption by a number of funding agencies of policies mandating the incorporation of sex as a biological variable into preclinical research has correlated with an increase in the number of studies investigating sex differences in pain and analgesia. Trends in the field are analysed, with a focus on newly published findings of qualitative sex differences: that is, those findings that are suggestive of differential processing mechanisms in each sex. It is becoming increasingly clear that robust differences exist in the genetic, molecular, cellular and systems-level mechanisms of acute and chronic pain processing in male and female rodents and humans.
Collapse
|
25
|
Ede T, von Keyserlingk MAG, Weary DM. Social approach and place aversion in relation to conspecific pain in dairy calves. PLoS One 2020; 15:e0232897. [PMID: 32407340 PMCID: PMC7224486 DOI: 10.1371/journal.pone.0232897] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/23/2020] [Indexed: 12/31/2022] Open
Abstract
Despite scientific interest in animal empathy, and growing public concern for farm animal welfare, the empathic abilities of farm animals remain under researched. In this study, we investigated empathic responses of young Holstein dairy calves to conspecifics recovering from hot-iron disbudding, a painful procedure common on dairy farms. A combination of social approach and place conditioning was used. First, 'observer' calves witnessed two 'demonstrator' calves recover from either a painful procedure (hot-iron disbudding and sedation) or a sham procedure (sedation alone) in distinct pens. Observer calves spent more time in proximity and paid more attention to calves recovering from the painful procedure compared to sham calves (proximity: 59.6 ± 4.3%; attention: 54.3 ± 1.5%). Observers were then tested for conditioned place aversion (in the absence of demonstrators) at 48h, 72h and 96h after the second demonstration; observers tended to avoid the pen associated with conspecific pain during the second of the three tests, spending 34.8 ± 9.6% of their time in this pen. No strong evidence of pain empathy was found, but our tentative results encourage further research on empathy in animals.
Collapse
Affiliation(s)
- Thomas Ede
- Animal Welfare Program, Faculty of Land and Food Systems, University of British Columbia, Vancouver, B.C., Canada
| | - Marina A. G. von Keyserlingk
- Animal Welfare Program, Faculty of Land and Food Systems, University of British Columbia, Vancouver, B.C., Canada
| | - Daniel M. Weary
- Animal Welfare Program, Faculty of Land and Food Systems, University of British Columbia, Vancouver, B.C., Canada
- * E-mail:
| |
Collapse
|
26
|
Shomer NH, Allen-Worthington KH, Hickman DL, Jonnalagadda M, Newsome JT, Slate AR, Valentine H, Williams AM, Wilkinson M. Review of Rodent Euthanasia Methods. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE 2020; 59:242-253. [PMID: 32138808 DOI: 10.30802/aalas-jaalas-19-000084] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The optimal choice of euthanasia method for laboratory rodents depends on a number of factors, including the scientific goals of the study, the need to minimize animal pain and/or distress, applicable guidelines and laws, the training and proficiency of personnel, and the safety and emotional needs of the personnel performing the euthanasia. This manuscript aims to provide guidance to researchers so they may select the method of euthanasia that results in minimal experimental confounds, such as the creation of artifact and alteration of tissues and analytes. Specific situations addressed include euthanasia of large numbers of rodents and euthanasia of neonates. Recent literature supports the notion of significant strain-dependent differences in response to euthanasia methods such as CO₂ inhalation. To assist researchers in selecting a strain-appropriate method of euthanasia, the authors present a summary of methodologies for assessing the effectiveness of euthanasia techniques, including elements and parameters for a scoring rubric to assess them.
Collapse
Affiliation(s)
- Nirah H Shomer
- Division of Comparative Medicine, Washington University in St Louis, St Louis, Missouri;,
| | | | - Debra L Hickman
- Laboratory Animal Resource Center, Indiana University School of Medicine, Indianapolis, Indiana
| | - Mahesh Jonnalagadda
- Laboratory Animal Medical Services, University of Cincinnati, Cincinnati Ohio
| | - Joseph T Newsome
- Division of Laboratory Animal Resources and Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Andrea R Slate
- Center for Comparative Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Helen Valentine
- Division of Animal Resources, University of Illinois, Urbana-Champaign, Urbana, Illinois
| | | | | |
Collapse
|
27
|
Uysal N, Çamsari UM, ATEş M, Kandİş S, Karakiliç A, Çamsari GB. Empathy as a Concept from Bench to Bedside: A Translational Challenge. Noro Psikiyatr Ars 2020; 57:71-77. [PMID: 32110155 PMCID: PMC7024828 DOI: 10.29399/npa.23457] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 08/25/2019] [Indexed: 01/10/2023] Open
Abstract
Empathy is a multidimensional paradigm, and there currently is a lack of scientific consensus in its definition. In this paper, we review the possibility of compromising data during behavioral neuroscience experiments, including but not limited to those who study empathy. The experimental protocols can affect, and be affected by, empathy and related processes at multiple levels. We discuss several points to help researchers develop a successful translational pathway for behavioral research on empathy. Despite varying in their focus with no widely accepted model, current rodent models on empathy have provided sound translational explanations for many neuropsychiatric proof-of-concepts to date. Research has shown that empathy can be influenced by many parameters, some of which are to be reviewed in this paper. We emphasize the future importance of consistency in modeling proof of concept; efforts to create a multidisciplinary group which would include both bench scientists and clinicians with expertise in neuropsychiatry, and the consideration of empathy as an independent variable in animal behavioral experimental designs which is not the mainstream practice at present.
Collapse
Affiliation(s)
- Nazan Uysal
- Department of Physiology, Dokuz Eylül University, İzmir, Turkey
| | - Ulaş M. Çamsari
- Department of Psychiatry, Mayo Clinic, Rochester, Minnesota, USA
| | - Mehmet ATEş
- Department of Pharmacology, Dokuz Eylül University, İzmir, Turkey
| | - Sevim Kandİş
- Department of Physiology, Dokuz Eylül University, İzmir, Turkey
| | - Aslı Karakiliç
- Department of Physiology, Dokuz Eylül University, İzmir, Turkey
| | - Gamze B. Çamsari
- Department of Psychiatry, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
28
|
Hernandez-Lallement J, Attah AT, Soyman E, Pinhal CM, Gazzola V, Keysers C. Harm to Others Acts as a Negative Reinforcer in Rats. Curr Biol 2020; 30:949-961.e7. [DOI: 10.1016/j.cub.2020.01.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/11/2019] [Accepted: 01/07/2020] [Indexed: 12/21/2022]
|
29
|
Han Y, Sichterman B, Carrillo M, Gazzola V, Keysers C. Similar levels of emotional contagion in male and female rats. Sci Rep 2020; 10:2763. [PMID: 32066797 PMCID: PMC7026170 DOI: 10.1038/s41598-020-59680-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 01/31/2020] [Indexed: 12/21/2022] Open
Abstract
Emotional contagion, the ability to feel what other individuals feel without necessarily understanding the feeling or knowing its source, is thought to be an important element of social life. In humans, emotional contagion has been shown to be stronger in women than men. Emotional contagion has been shown to exist also in rodents, and a growing number of studies explore the neural basis of emotional contagion in male rats and mice. Here we explore whether there are sex differences in emotional contagion in rats. We use an established paradigm in which a demonstrator rat receives footshocks while freezing is measured in both the demonstrator and an observer rat. The two rats can hear, smell and see each other. By comparing pairs of male rats with pairs of female rats, we found (i) that female demonstrators froze less when submitted to footshocks, but that (ii) the emotional contagion response, i.e. the degree of influence across the rats, did not depend on the sex of the rats. This was true whether emotional contagion was quantified based on the slope of a regression linking demonstrator and observer average freezing, or on Granger causality estimates of moment-to-moment freezing. The lack of sex differences in emotional contagion is compatible with an interpretation of emotional contagion as serving selfish danger detection.
Collapse
Affiliation(s)
- Yingying Han
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - Bo Sichterman
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - Maria Carrillo
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - Valeria Gazzola
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands.,Department of Psychology, Faculty of Social and Behavioural Sciences, University of Amsterdam (UvA), Amsterdam, The Netherlands
| | - Christian Keysers
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands. .,Department of Psychology, Faculty of Social and Behavioural Sciences, University of Amsterdam (UvA), Amsterdam, The Netherlands.
| |
Collapse
|
30
|
Neilands P, Claessens S, Ren I, Hassall R, Bastos APM, Taylor AH. Contagious yawning is not a signal of empathy: no evidence of familiarity, gender or prosociality biases in dogs. Proc Biol Sci 2020; 287:20192236. [PMID: 32075525 PMCID: PMC7031662 DOI: 10.1098/rspb.2019.2236] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/21/2020] [Indexed: 12/30/2022] Open
Abstract
Contagious yawning has been suggested to be a potential signal of empathy in non-human animals. However, few studies have been able to robustly test this claim. Here, we ran a Bayesian multilevel reanalysis of six studies of contagious yawning in dogs. This provided robust support for claims that contagious yawning is present in dogs, but found no evidence that dogs display either a familiarity or gender bias in contagious yawning, two predictions made by the contagious yawning-empathy hypothesis. Furthermore, in an experiment testing the prosociality bias, a novel prediction of the contagious yawning-empathy hypothesis, dogs did not yawn more in response to a prosocial demonstrator than to an antisocial demonstrator. As such, these strands of evidence suggest that contagious yawning, although present in dogs, is not mediated by empathetic mechanisms. This calls into question claims that contagious yawning is a signal of empathy in mammals.
Collapse
Affiliation(s)
- Patrick Neilands
- School of Psychology, University of Auckland, Auckland, 1010, New Zealand
| | | | | | | | | | | |
Collapse
|
31
|
Williams ACDC. Persistence of pain in humans and other mammals. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190276. [PMID: 31544608 PMCID: PMC6790389 DOI: 10.1098/rstb.2019.0276] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2019] [Indexed: 12/23/2022] Open
Abstract
Evolutionary models of chronic pain are relatively undeveloped, but mainly concern dysregulation of an efficient acute defence, or false alarm. Here, a third possibility, mismatch with the modern environment, is examined. In ancestral human and free-living animal environments, survival needs urge a return to activity during recovery, despite pain, but modern environments allow humans and domesticated animals prolonged inactivity after injury. This review uses the research literature to compare humans and other mammals, who share pain neurophysiology, on risk factors for pain persistence, behaviours associated with pain, and responses of conspecifics to behaviours. The mammal populations studied are mainly laboratory rodents in pain research, and farm and companion animals in veterinary research, with observations of captive and free-living primates. Beyond farm animals and rodent models, there is virtually no evidence of chronic pain in other mammals. Since evidence is sparse, it is hard to conclude that it does not occur, but its apparent absence is compatible with the mismatch hypothesis. This article is part of the Theo Murphy meeting issue 'Evolution of mechanisms and behaviour important for pain'.
Collapse
Affiliation(s)
- Amanda C. de C. Williams
- Research Department of Clinical, Educational and Health Psychology, University College London, London, UK
| |
Collapse
|
32
|
Moffitt AD, Brignolo LL, Ardeshir A, Creamer-Hente MA. The Role of Emotional Contagion in the Distress Exhibited by Grouped Mice Exposed to CO₂. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE 2019; 58:430-437. [PMID: 31266585 DOI: 10.30802/aalas-jaalas-18-000098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The 2013 AVMA Guidelines for the Euthanasia of Animals recommends a chamber volume displacement rate of 10% to 30% per minute (v/min) when euthanizing small laboratory rodents with CO₂. Group euthanasia of mice is a common practice, and grouping strangers is often avoided to minimize distress; however, emotional contagion, which occurs between familiar animals but not strangers, has not been studied in the context of group CO₂ euthanasia. This study examined cagemate- and stranger-grouped mice exposed to 10%, 30%, or 50% v/min CO₂ to determine whether emotional contagion plays a role in this context and whether that role is influenced by CO₂ flow rate. Videos of adult male C57BL/6J mice exposed to different CO₂ flow rates were scored for durations of dyspnea, ataxia, and consciousness as well as the numbers of face pawing and jump behaviors. Blood was collected at time of unconsciousness and assayed for ACTH. Cagemates experienced significantly longer durations of conscious dyspnea and ataxia with 10% v/min CO₂ compared with 30% and 50% v/min. Similarly, strangers experienced significantly longer duration of conscious dyspnea with 10% v/min CO₂ compared with 30% and 50% v/min and significantly longer duration of ataxia with 10% compared with 50% v/min. Cagemates showed significantly more jumps with 10% v/min CO₂ compared with 30% and 50% v/min, whereas jumping was unaffected by CO₂ flow rate in strangers. We conclude that more potential for distress exists when cagemate and stranger mice are exposed to a 10% v/min CO₂ flow rate and that emotional contagion may contribute to distress in cagemates at this flow rate. Therefore, we propose that 30% v/min CO₂ should be used for euthanasia of mice, and that 50% v/min should also be considered humane.
Collapse
Affiliation(s)
- Andrea D Moffitt
- Campus Veterinary Services, University of California, Davis, California;,
| | - Laurie L Brignolo
- Campus Veterinary Services, University of California, Davis, California
| | - Amir Ardeshir
- California National Primate Research Center, University of California, Davis, California
| | | |
Collapse
|
33
|
Schanz L, Krueger K, Hintze S. Sex and Age Don't Matter, but Breed Type Does-Factors Influencing Eye Wrinkle Expression in Horses. Front Vet Sci 2019; 6:154. [PMID: 31192235 PMCID: PMC6549476 DOI: 10.3389/fvets.2019.00154] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 05/02/2019] [Indexed: 11/13/2022] Open
Abstract
Identifying valid indicators to assess animals' emotional states is a critical objective of animal welfare science. In horses, eye wrinkles above the eyeball have been shown to be affected by pain and other emotional states. From other species we know that individual characteristics, e.g., age in humans, affect facial wrinkles, but it has not yet been investigated whether eye wrinkle expression in horses is systematically affected by such characteristics. Therefore, the aim of this study was to assess how age, sex, breed type, body condition, and coat colour affect the expression and/or the assessment of eye wrinkles in horses. To this end, we adapted the eye wrinkle assessment scale from Hintze et al. (1) and assessed eye wrinkle expression in pictures taken from the left and the right eye of 181 horses in a presumably neutral situation, using five outcome measures: a qualitative first impression reflecting how worried the horse is perceived by humans, the extent to which the brow is raised, the number of wrinkles, their markedness and the angle between a line through both corners of the eye and the topmost wrinkle. All measures could be assessed highly reliable with respect to intra- and inter-observer agreement. Breed type affected the width of the angle [F (2,114) = 8.20, p < 0.001], with thoroughbreds having the narrowest angle (M = 23.80, SD = 1.60), followed by warmbloods (M = 28.00, SD = 0.60), and coldbloods (M = 31.00, SD = 0.90). None of the other characteristics affected any of the outcome measures, and eye wrinkle expression did not differ between the left and the right eye area (all p-values > 0.05). In conclusion, horses' eye wrinkle expression and its assessment in neutral situations was not systematically affected by the investigated characteristics, except for "breed type", which accounted for some variation in "angle"; how much eye wrinkle expression is affected by emotion or perhaps mood needs further investigation and validation.
Collapse
Affiliation(s)
- Lisa Schanz
- Division of Livestock Sciences, Department of Sustainable Agricultural Systems, University of Natural Resources and Life Sciences, Vienna, Austria
- Department of Equine Economics, Nuertingen-Geislingen University of Applied Sciences, Nürtingen, Germany
| | - Konstanze Krueger
- Department of Equine Economics, Nuertingen-Geislingen University of Applied Sciences, Nürtingen, Germany
- Biology I, University of Regensburg, Regensburg, Germany
| | - Sara Hintze
- Division of Livestock Sciences, Department of Sustainable Agricultural Systems, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
34
|
Abstract
Pain is a universal, multidimensional experience with sensory, emotional, cognitive, and social components, which is fundamental to our environmental learning when functioning typically. Understanding pain processing in psychiatric conditions could provide unique insight into the underlying pathophysiology or psychiatric disease, especially given the psychobiological overlap with pain processing pathways. Studying pain in psychiatric conditions is likely to provide important insights, yet, there is a limited understanding beyond the work in depression and anxiety. This is a missed opportunity to describe psychiatric conditions in terms of neurobiological alterations. To examine the research into the pain experiences of these groups and the extent to which a-typicality is present, a systematic review was conducted. An electronic search strategy was developed and conducted in several databases. The current systematic review included 46 studies covering five Diagnostic and Statistical Manual of Mental Disorders (5th ed.; DSM-5) disorders: autism, attention-deficit hyperactivity disorder (ADHD), schizophrenia, personality disorder, and eating disorders, confirming tentative evidence of altered pain and touch processing. Specifically, hyposensitivity is reported in schizophrenia, personality disorder and eating disorder, hypersensitivity in ADHD, and mixed results for autism. Review of the research highlights a degree of methodological inconsistency in the utilization of comprehensive protocols, the lack of which fails to allow us to understand whether a-typicality is systemic or modality specific.
Collapse
|
35
|
Wang C, Zhang T, Shan Z, Liu J, Yuan D, Li X. Dynamic interpersonal neural synchronization underlying pain-induced cooperation in females. Hum Brain Mapp 2019; 40:3222-3232. [PMID: 30950151 DOI: 10.1002/hbm.24592] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/18/2019] [Accepted: 03/25/2019] [Indexed: 01/13/2023] Open
Abstract
Individuals in pain are motivated to be cooperative in social interaction. Yet, there has been little research on how pain dynamically affects cooperation at a neural level. The present study investigated the cooperative behavior under acute physical pain by asking dyads to complete three blocks of button-press cooperative task, while neural activities were recorded simultaneously on each subject by the fNIRS-based hyperscanning. Results showed that individuals in pain improved their cooperation rate across task blocks. Accordingly, increased interpersonal neural synchronization (INS) was found at the left prefrontal cortex in second block, whereas increased INS was found at the right prefrontal cortex and the right parietal cortex in third block compared to the first block. Moreover, the change of INS in right parietal cortex was positively correlated with subjective pain rating in the pain treatment group. In addition, dynamic interpersonal neural networks were identified in painful condition with increasing frontoparietal networks across time. By uncovering dissociative neural processes involved in how pain affects cooperation in social interaction, the present work provides the first interbrain evidence to highlight the sociality of pain on social interaction in perspective of motivational aspect of pain.
Collapse
Affiliation(s)
- Chenbo Wang
- Laboratory of Brain Functional Genomics (MOE&STCSM), Shanghai Changning-ECNU Mental Health Center, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Tingyu Zhang
- School of Psychology and Cognitive Science, Shanghai Changning-ECNU Mental Health Center, East China Normal University, Shanghai, China
| | - Zhoukuidong Shan
- Laboratory of Brain Functional Genomics (MOE&STCSM), Shanghai Changning-ECNU Mental Health Center, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Jieqiong Liu
- School of Psychology and Cognitive Science, Shanghai Changning-ECNU Mental Health Center, East China Normal University, Shanghai, China
| | - Di Yuan
- School of Psychology and Cognitive Science, Shanghai Changning-ECNU Mental Health Center, East China Normal University, Shanghai, China
| | - Xianchun Li
- Laboratory of Brain Functional Genomics (MOE&STCSM), Shanghai Changning-ECNU Mental Health Center, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| |
Collapse
|
36
|
Genetic factors associated with empathy in humans and mice. Neuropharmacology 2019; 159:107514. [PMID: 30716414 DOI: 10.1016/j.neuropharm.2019.01.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 01/24/2019] [Accepted: 01/25/2019] [Indexed: 01/10/2023]
Abstract
The neurocognitive ability to recognize and share the mental states of others is crucial for our emotional experience and social interaction. Extensive human studies have informed our understanding of the psychobehavioral and neurochemical bases of empathy. Recent evidence shows that simple forms of empathy are conserved from rodents to humans, and rodent models have become particularly useful for understanding the neurobiological correlates of empathy. In this review, we first summarize aspects of empathy at the behavioral and neural circuit levels, and describe recent developments in rodent model behavioral paradigms. We then highlight different neurobiological pathways involved in empathic abilities, with special emphasis on genetic polymorphisms associated with individual differences in empathy. By directly assessing various neurochemical correlates at molecular and neural circuit levels using relevant animal models, we conclude with the suggestion that rodent research can significantly advance our understanding of the neural basis of empathy. This article is part of the Special Issue entitled 'The neuropharmacology of social behavior: from bench to bedside'.
Collapse
|
37
|
|
38
|
Monsó S, Benz-Schwarzburg J, Bremhorst A. Animal Morality: What It Means and Why It Matters. THE JOURNAL OF ETHICS 2018; 22:283-310. [PMID: 30930677 PMCID: PMC6404642 DOI: 10.1007/s10892-018-9275-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 09/24/2018] [Indexed: 05/04/2023]
Abstract
It has been argued that some animals are moral subjects, that is, beings who are capable of behaving on the basis of moral motivations (Rowlands 2011, 2012, 2017). In this paper, we do not challenge this claim. Instead, we presuppose its plausibility in order to explore what ethical consequences follow from it. Using the capabilities approach (Nussbaum 2004, 2007), we argue that beings who are moral subjects are entitled to enjoy positive opportunities for the flourishing of their moral capabilities, and that the thwarting of these capabilities entails a harm that cannot be fully explained in terms of hedonistic welfare. We explore the implications of this idea for the assessment of current practices involving animals.
Collapse
Affiliation(s)
- Susana Monsó
- Messerli Research Institute, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - Judith Benz-Schwarzburg
- Messerli Research Institute, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - Annika Bremhorst
- Division of Animal Welfare, VPHI, University of Bern, 3012 Bern, Switzerland
- Animal Behaviour, Cognition and Welfare Research Group, School of Life Sciences, University of Lincoln, Lincoln, LN6 7TS UK
| |
Collapse
|
39
|
Tansley SN, Tuttle AH, Wu N, Tohyama S, Dossett K, Gerstein L, Ham B, Austin JS, Sotocinal SG, Mogil JS. Modulation of social behavior and dominance status by chronic pain in mice. GENES BRAIN AND BEHAVIOR 2018; 18:e12514. [DOI: 10.1111/gbb.12514] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/31/2018] [Accepted: 08/15/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Shannon N. Tansley
- Department of Psychology and Alan Edwards Centre for Research on Pain; McGill University; Montreal QC Canada
| | - Alexander H. Tuttle
- Department of Psychology and Alan Edwards Centre for Research on Pain; McGill University; Montreal QC Canada
| | - Neil Wu
- Department of Psychology and Alan Edwards Centre for Research on Pain; McGill University; Montreal QC Canada
| | - Sarasa Tohyama
- Department of Psychology and Alan Edwards Centre for Research on Pain; McGill University; Montreal QC Canada
| | - Kimberly Dossett
- Department of Psychology and Alan Edwards Centre for Research on Pain; McGill University; Montreal QC Canada
| | - Lindsay Gerstein
- Department of Psychology and Alan Edwards Centre for Research on Pain; McGill University; Montreal QC Canada
| | - Boram Ham
- Department of Psychology and Alan Edwards Centre for Research on Pain; McGill University; Montreal QC Canada
| | - Jean-Sebastien Austin
- Department of Psychology and Alan Edwards Centre for Research on Pain; McGill University; Montreal QC Canada
| | - Susana G. Sotocinal
- Department of Psychology and Alan Edwards Centre for Research on Pain; McGill University; Montreal QC Canada
| | - Jeffrey S. Mogil
- Department of Psychology and Alan Edwards Centre for Research on Pain; McGill University; Montreal QC Canada
| |
Collapse
|
40
|
Insular cortex mediates approach and avoidance responses to social affective stimuli. Nat Neurosci 2018; 21:404-414. [PMID: 29379116 PMCID: PMC6051351 DOI: 10.1038/s41593-018-0071-y] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 11/30/2017] [Indexed: 11/08/2022]
Abstract
Social animals detect the affective states of conspecifics and utilize this information to orchestrate social interactions. In a social affective preference text in which experimental adult male rats could interact with either naive or stressed conspecifics, the experimental rats either approached or avoided the stressed conspecific, depending upon the age of the conspecific. Specifically, experimental rats approached stressed juveniles but avoided stressed adults. Inhibition of insular cortex, which is implicated in social cognition, and blockade of insular oxytocin receptors disrupted the social affective behaviors. Oxytocin application increased intrinsic excitability and synaptic efficacy in acute insular cortex slices, and insular oxytocin administration recapitulated the behaviors observed toward stressed conspecifics. Network analysis of c-Fos immunoreactivity in 29 regions identified functional connectivity between insular cortex, prefrontal cortex, amygdala and the social decision-making network. These results implicate insular cortex as a key component in the circuit underlying age-dependent social responses to stressed conspecifics.
Collapse
|
41
|
Sheahan TD, Siuda ER, Bruchas MR, Shepherd AJ, Mohapatra DP, Gereau RW, Golden JP. Inflammation and nerve injury minimally affect mouse voluntary behaviors proposed as indicators of pain. NEUROBIOLOGY OF PAIN 2017; 2:1-12. [PMID: 29075674 PMCID: PMC5653321 DOI: 10.1016/j.ynpai.2017.09.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Inflammation suppressed wheel running and locomotion, and impaired gait in mice. Nerve injury gave rise to gait deficits that are likely motor-, not pain-related. Changes in wheel running or gait were unrelated to the degree of hypersensitivity. Neither inflammation nor nerve injury altered social interactions or anxiety-like behavior.
It has been suggested that the lack of rodent behavioral assays that represent the complexities of human pain contributes to the poor translational record of basic pain research findings. Clinically, chronic pain interferes with patient mobility and physical/social activities, and increases anxiety symptoms, in turn negatively impacting quality of life. To determine whether these behaviors are similarly influenced by putative pain manipulations in rodents, we systematically evaluated wheel running, locomotion, gait, social interaction, and anxiety-like behavior in models of inflammation and nerve injury in adult C57BL6/J male mice. We demonstrate that inflammation and nerve injury differentially affect voluntary behaviors while mice are hypersensitive to mechanical stimuli. Bilateral Complete Freund’s Adjuvant (CFA)-induced inflammation transiently suppressed wheel running and locomotion and also induced gait deficits. In contrast, spared nerve injury (SNI) altered gait and impaired gross motor coordination. SNI-induced gait changes were not reversed by the analgesic PD123319, an angiotensin II type 2 receptor antagonist, and are therefore likely to be motor-related rather than pain-related. Neither CFA nor SNI significantly altered social interaction or elicited general anxiety-like behavior. Our findings suggest that in contrast to humans, mobility and physical/social activities are minimally altered, if at all, in mice following inflammation or nerve injury.
Collapse
Affiliation(s)
- Tayler D Sheahan
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, United States of America.,Washington University Program in Neuroscience, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Edward R Siuda
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, United States of America.,Washington University Program in Neuroscience, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Michael R Bruchas
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Andrew J Shepherd
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Durga P Mohapatra
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Robert W Gereau
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Judith P Golden
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
42
|
Watanabe S. Social inequality aversion in mice: Analysis with stress-induced hyperthermia and behavioral preference. LEARNING AND MOTIVATION 2017. [DOI: 10.1016/j.lmot.2017.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
43
|
Laboratory environmental factors and pain behavior: the relevance of unknown unknowns to reproducibility and translation. Lab Anim (NY) 2017; 46:136-141. [PMID: 28328894 DOI: 10.1038/laban.1223] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 11/15/2016] [Indexed: 12/14/2022]
Abstract
The poor record of basic-to-clinical translation in recent decades has led to speculation that preclinical research is "irreproducible", and this irreproducibility in turn has largely been attributed to deficiencies in reporting and statistical practices. There are, however, a number of other reasonable explanations of both poor translation and difficulties in one laboratory replicating the results of another. This article examines these explanations as they pertain to preclinical pain research. I submit that many instances of apparent irreproducibility are actually attributable to interactions between the phenomena and interventions under study and "latent" environmental factors affecting the rodent subjects. These environmental variables-often causing stress, and related to both animal husbandry and the specific testing context-differ greatly between labs, and continue to be identified, suggesting that our knowledge of their existence is far from complete. In pain research in particular, laboratory stressors can produce great variability of unpredictable direction, as stress is known to produce increases (stress-induced hyperalgesia) or decreases (stress-induced analgesia) in pain depending on its parameters. Much greater attention needs to be paid to the study of the laboratory environment if replication and translation are to be improved.
Collapse
|
44
|
|
45
|
Chen J. Empathy for Distress in Humans and Rodents. Neurosci Bull 2017; 34:216-236. [PMID: 28493169 DOI: 10.1007/s12264-017-0135-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 03/01/2017] [Indexed: 01/10/2023] Open
Abstract
Empathy is traditionally thought to be a unique ability of humans to feel, understand, and share the emotional state of others. However, the notion has been greatly challenged by the emerging discoveries of empathy for pain or distress in rodents. Because empathy is believed to be fundamental to the formation of prosocial, altruistic, and even moral behaviors in social animals and humans, studies associated with decoding the neural circuits and unraveling the underlying molecular and neural mechanisms of empathy for pain or distress in rodents would be very important and encouraging. In this review, the author set out to outline and update the concept of empathy from the evolutionary point of view, and introduce up-to-date advances in the study of empathy and its neural correlates in both humans and rodents. Finally, the author highlights the perspectives and challenges for the further use of rodent models in the study of empathy for pain or distress.
Collapse
Affiliation(s)
- Jun Chen
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China. .,Key Laboratory of Brain Stress and Behavior, PLA, Xi'an, 710038, China. .,Beijing Institute for Brain Disorders, Beijing, 100069, China.
| |
Collapse
|
46
|
Finlayson K, Lampe JF, Hintze S, Würbel H, Melotti L. Facial Indicators of Positive Emotions in Rats. PLoS One 2016; 11:e0166446. [PMID: 27902721 PMCID: PMC5130214 DOI: 10.1371/journal.pone.0166446] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 10/28/2016] [Indexed: 11/18/2022] Open
Abstract
Until recently, research in animal welfare science has mainly focused on negative experiences like pain and suffering, often neglecting the importance of assessing and promoting positive experiences. In rodents, specific facial expressions have been found to occur in situations thought to induce negatively valenced emotional states (e.g., pain, aggression and fear), but none have yet been identified for positive states. Thus, this study aimed to investigate if facial expressions indicative of positive emotional state are exhibited in rats. Adolescent male Lister Hooded rats (Rattus norvegicus, N = 15) were individually subjected to a Positive and a mildly aversive Contrast Treatment over two consecutive days in order to induce contrasting emotional states and to detect differences in facial expression. The Positive Treatment consisted of playful manual tickling administered by the experimenter, while the Contrast Treatment consisted of exposure to a novel test room with intermittent bursts of white noise. The number of positive ultrasonic vocalisations was greater in the Positive Treatment compared to the Contrast Treatment, indicating the experience of differentially valenced states in the two treatments. The main findings were that Ear Colour became significantly pinker and Ear Angle was wider (ears more relaxed) in the Positive Treatment compared to the Contrast Treatment. All other quantitative and qualitative measures of facial expression, which included Eyeball height to width Ratio, Eyebrow height to width Ratio, Eyebrow Angle, visibility of the Nictitating Membrane, and the established Rat Grimace Scale, did not show differences between treatments. This study contributes to the exploration of positive emotional states, and thus good welfare, in rats as it identified the first facial indicators of positive emotions following a positive heterospecific play treatment. Furthermore, it provides improvements to the photography technique and image analysis for the detection of fine differences in facial expression, and also adds to the refinement of the tickling procedure.
Collapse
Affiliation(s)
| | | | - Sara Hintze
- University of Bern, Division of Animal Welfare, Bern, Switzerland
| | - Hanno Würbel
- University of Bern, Division of Animal Welfare, Bern, Switzerland
| | - Luca Melotti
- University of Bern, Division of Animal Welfare, Bern, Switzerland
- * E-mail:
| |
Collapse
|
47
|
|
48
|
Decety J, Cowell JM. Friends or Foes: Is Empathy Necessary for Moral Behavior? PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2016; 9:525-37. [PMID: 25429304 DOI: 10.1177/1745691614545130] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In the past decade, a flurry of empirical and theoretical research on morality and empathy has taken place, and interest and usage in the media and the public arena have increased. At times, in both popular culture and academia, morality and empathy are used interchangeably, and quite often the latter is considered to play a foundational role for the former. In this article, we argue that although there is a relationship between morality and empathy, it is not as straightforward as apparent at first glance. Moreover, it is critical to distinguish among the different facets of empathy (emotional sharing, empathic concern, and perspective taking), as each uniquely influences moral cognition and predicts differential outcomes in moral behavior. Empirical evidence and theories from evolutionary biology as well as developmental, behavioral, and affective and social neuroscience are comprehensively integrated in support of this argument. The wealth of findings illustrates a complex and equivocal relationship between morality and empathy. The key to understanding such relations is to be more precise on the concepts being used and, perhaps, abandoning the muddy concept of empathy.
Collapse
Affiliation(s)
- Jean Decety
- Department of Psychology, The University of Chicago Department of Psychiatry and Behavioral Neuroscience, The University of Chicago Medicine
| | | |
Collapse
|
49
|
Panksepp JB, Lahvis GP. Differential influence of social versus isolate housing on vicarious fear learning in adolescent mice. Behav Neurosci 2016; 130:206-11. [PMID: 26881314 DOI: 10.1037/bne0000133] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Laboratory rodents can adopt the pain or fear of nearby conspecifics. This phenotype conceptually lies within the domain of empathy, a bio-psycho-social process through which individuals come to share each other's emotion. Using a model of cue-conditioned fear, we show here that the expression of vicarious fear varies with respect to whether mice are raised socially or in solitude during adolescence. The impact of the adolescent housing environment was selective: (a) vicarious fear was more influenced than directly acquired fear, (b) "long-term" (24-h postconditioning) vicarious fear memories were stronger than "short-term" (15-min postconditioning) memories in socially reared mice whereas the opposite was true for isolate mice, and (c) females were more fearful than males. Housing differences during adolescence did not alter the general mobility of mice or their vocal response to receiving the unconditioned stimulus. Previous work with this mouse model underscored a genetic influence on vicarious fear learning, and the present study complements these findings by elucidating an interaction between the adolescent social environment and vicarious experience. Collectively, these findings are relevant to developing models of empathy amenable to mechanistic exploitation in the laboratory. (PsycINFO Database Record
Collapse
Affiliation(s)
- Jules B Panksepp
- Department of Behavioral Neuroscience, Oregon Health and Science University
| | - Garet P Lahvis
- Department of Behavioral Neuroscience, Oregon Health and Science University
| |
Collapse
|
50
|
Decety J, Bartal IBA, Uzefovsky F, Knafo-Noam A. Empathy as a driver of prosocial behaviour: highly conserved neurobehavioural mechanisms across species. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150077. [PMID: 26644596 PMCID: PMC4685523 DOI: 10.1098/rstb.2015.0077] [Citation(s) in RCA: 321] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2015] [Indexed: 12/22/2022] Open
Abstract
Empathy reflects the natural ability to perceive and be sensitive to the emotional states of others, coupled with a motivation to care for their well-being. It has evolved in the context of parental care for offspring, as well as within kinship bonds, to help facilitate group living. In this paper, we integrate the perspectives of evolution, animal behaviour, developmental psychology, and social and clinical neuroscience to elucidate our understanding of the proximate mechanisms underlying empathy. We focus, in particular, on processing of signals of distress and need, and their relation to prosocial behaviour. The ability to empathize, both in animals and humans, mediates prosocial behaviour when sensitivity to others' distress is paired with a drive towards their welfare. Disruption or atypical development of the neural circuits that process distress cues and integrate them with decision value leads to callous disregard for others, as is the case in psychopathy. The realization that basic forms of empathy exist in non-human animals is crucial for gaining new insights into the underlying neurobiological and genetic mechanisms of empathy, enabling translation towards therapeutic and pharmacological interventions.
Collapse
Affiliation(s)
- Jean Decety
- The Child Neurosuite-Department of Psychology, University of Chicago, 5658 South University Avenue, Chicago, IL 60637, USA
| | - Inbal Ben-Ami Bartal
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
| | - Florina Uzefovsky
- Autism Research Centre, University of Cambridge, Cambridge CB2 8AH, UK
| | - Ariel Knafo-Noam
- Department of Psychology, Hebrew University of Jerusalem, Mount Scopus, Jerusalem 91905, Israel
| |
Collapse
|