1
|
Hao Z, Han B, Zhou X, Jian H, He X, Lu L, Zhang M, Pan H, Yi H, Tang S. Association of DNA methylation, polymorphism and mRNA level of ALAS1 with antituberculosis drug-induced liver injury. Pharmacogenomics 2024; 25:451-460. [PMID: 39263813 PMCID: PMC11492648 DOI: 10.1080/14622416.2024.2392480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/12/2024] [Indexed: 09/13/2024] Open
Abstract
Aim: To investigate the association of DNA methylation, genetic polymorphisms and mRNA level of aminolevulinate synthase 1 (ALAS1) with antituberculosis drug-induced liver injury (AT-DILI) risk.Methods: Based on a 1:1 matched case-control study with 182 cases and 182 controls, one CpG island and three single nucleotide polymorphisms (SNPs) were detected. ALAS1 mRNA level was detected in 34 samples.Results: Patients with methylation status were at high risk of AT-DILI (odds ratio: 1.567, 95% CI: 1.015-2.421, p = 0.043) and SNP rs352169 was associated with AT-DILI risk (GA vs. GG, odds ratio: 1.770, 95% CI: 1.101-2.847, p = 0.019). ALAS1 mRNA level in the cases was significantly lower than that in the controls (0.75 ± 0.34 vs. 1.00 ± 0.42, p = 0.021).Conclusion: The methylation status and SNP rs352169 of ALAS1 were associated with AT-DILI risk.
Collapse
Affiliation(s)
- Zhuolu Hao
- Department of Epidemiology & Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Bing Han
- Department of Epidemiology & Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Xinyue Zhou
- Department of Epidemiology & Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Hongkai Jian
- Department of Internal Medicine, The First Clinical Medical College, Nanjing Medical University, Nanjing, 211166, China
| | - Xiaomin He
- Department of Infectious Disease, The People's Hospital of Taixing, Taixing, 225400, China
| | - Lihuan Lu
- Department of Tuberculosis, The Second People's Hospital of Changshu, Changshu, 215500, China
| | - Meiling Zhang
- Department of Infectious Disease, The Jurong Hospital Affiliated to Jiangsu University, Jurong, 212400, China
| | - Hongqiu Pan
- Department of Tuberculosis, The Third People's Hospital of Zhenjiang Affiliated to Jiangsu University, Zhenjiang, 212021, China
| | - Honggang Yi
- Department of Epidemiology & Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Shaowen Tang
- Department of Epidemiology & Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| |
Collapse
|
2
|
Chen F, Xing Y, Chen Z, Chen X, Li J, Gong S, Luo F, Cai Q. Competitive adsorption of microRNA-532-3p by circular RNA SOD2 activates Thioredoxin Interacting Protein/NLR family pyrin domain containing 3 pathway and promotes pyroptosis of non-alcoholic fatty hepatocytes. Eur J Med Res 2024; 29:250. [PMID: 38659023 PMCID: PMC11044449 DOI: 10.1186/s40001-024-01817-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/28/2024] [Indexed: 04/26/2024] Open
Abstract
OBJECTIVE There is a growing body of evidence indicating that pyroptosis, a programmed cell death mechanism, plays a crucial role in the exacerbation of inflammation and fibrosis in the pathogenesis of non-alcoholic fatty liver disease (NAFLD). Circular RNAs (circRNAs), functioning as vital regulators within NAFLD, have been shown to mediate the process of cell pyroptosis. This study aims to elucidate the roles and mechanisms of circRNAs in NAFLD. METHODS Utilizing a high-fat diet (HFD)-induced rat model for in vivo experimentation and hepatocytes treated with palmitic acid (PA) for in vitro models, we identified circular RNA SOD2 (circSOD2) as our circRNA of interest through analysis with the circMine database. The expression levels of associated genes and pyroptosis-related proteins were determined using quantitative real-time polymerase chain reaction and Western blotting, alongside immunohistochemistry. Serum liver function markers, cellular inflammatory cytokines, malondialdehyde, lactate dehydrogenase levels, and mitochondrial membrane potential, were assessed using enzyme-linked immunosorbent assay, standard assay kits, or JC-1 staining. Flow cytometry was employed to detect pyroptotic cells, and lipid deposition in liver tissues was observed via Oil Red O staining. The interactions between miR-532-3p/circSOD2 and miR-532-3p/Thioredoxin Interacting Protein (TXNIP) were validated through dual-luciferase reporter assays and RNA immunoprecipitation experiments. RESULTS Our findings demonstrate that, in both in vivo and in vitro NAFLD models, there was an upregulation of circSOD2 and TXNIP, alongside a downregulation of miR-532-3p. Mechanistically, miR-532-3p directly bound to the 3'-UTR of TXNIP, thereby mediating inflammation and cell pyroptosis through targeting the TXNIP/NLR family pyrin domain containing 3 (NLRP3) inflammasome signaling pathway. circSOD2 directly interacted with miR-532-3p, relieving the suppression on the TXNIP/NLRP3 signaling pathway. Functionally, the knockdown of circSOD2 or TXNIP improved hepatocyte pyroptosis; the deletion of miR-532-3p reversed the effects of circSOD2 knockdown, and the deletion of TXNIP reversed the effects of circSOD2 overexpression. Furthermore, the knockdown of circSOD2 significantly mitigated the progression of NAFLD in vivo. CONCLUSION circSOD2 competitively sponges miR-532-3p to activate the TXNIP/NLRP3 inflammasome signaling pathway, promoting pyroptosis in NAFLD.
Collapse
Affiliation(s)
- FengJuan Chen
- Department of Hepatopathy, The Third People's Hospital of Shenzhen, The Second Affiliated Hospital of Southern University of Science and Technology, No. 29, Bulan Road, Longgang District, Shenzhen City, 518112, Guangdong Province, China
| | - YuFeng Xing
- Department of Hepatopathy, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen City, 518033, Guangdong Province, China
| | - ZhiJie Chen
- Department of Hepatopathy, The Third People's Hospital of Shenzhen, The Second Affiliated Hospital of Southern University of Science and Technology, No. 29, Bulan Road, Longgang District, Shenzhen City, 518112, Guangdong Province, China
| | - XiaoMan Chen
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou City, 510630, Guangdong Province, China
| | - Jie Li
- Department of Hepatopathy, The Third People's Hospital of Shenzhen, The Second Affiliated Hospital of Southern University of Science and Technology, No. 29, Bulan Road, Longgang District, Shenzhen City, 518112, Guangdong Province, China
| | - Si Gong
- Department of Hepatopathy, The Third People's Hospital of Shenzhen, The Second Affiliated Hospital of Southern University of Science and Technology, No. 29, Bulan Road, Longgang District, Shenzhen City, 518112, Guangdong Province, China
| | - Fang Luo
- Department of Hepatopathy, The Third People's Hospital of Shenzhen, The Second Affiliated Hospital of Southern University of Science and Technology, No. 29, Bulan Road, Longgang District, Shenzhen City, 518112, Guangdong Province, China
| | - QingXian Cai
- Department of Hepatopathy, The Third People's Hospital of Shenzhen, The Second Affiliated Hospital of Southern University of Science and Technology, No. 29, Bulan Road, Longgang District, Shenzhen City, 518112, Guangdong Province, China.
| |
Collapse
|
3
|
Vidal-Cevallos P, Sorroza-Martínez AP, Chávez-Tapia NC, Uribe M, Montalvo-Javé EE, Nuño-Lámbarri N. The Relationship between Pathogenesis and Possible Treatments for the MASLD-Cirrhosis Spectrum. Int J Mol Sci 2024; 25:4397. [PMID: 38673981 PMCID: PMC11050641 DOI: 10.3390/ijms25084397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/04/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a term that entails a broad spectrum of conditions that vary in severity. Its development is influenced by multiple factors such as environment, microbiome, comorbidities, and genetic factors. MASLD is closely related to metabolic syndrome as it is caused by an alteration in the metabolism of fatty acids due to the accumulation of lipids because of an imbalance between its absorption and elimination in the liver. Its progression to fibrosis is due to a constant flow of fatty acids through the mitochondria and the inability of the liver to slow down this metabolic load, which generates oxidative stress and lipid peroxidation, triggering cell death. The development and progression of MASLD are closely related to unhealthy lifestyle habits, and nutritional epigenetic and genetic mechanisms have also been implicated. Currently, lifestyle modification is the first-line treatment for MASLD and nonalcoholic steatohepatitis; weight loss of ≥10% produces resolution of steatohepatitis and fibrosis regression. In many patients, body weight reduction cannot be achieved; therefore, pharmacological treatment should be offered in particular populations.
Collapse
Affiliation(s)
- Paulina Vidal-Cevallos
- Obesity and Digestive Diseases Unit, Medica Sur Clinic & Foundation, Mexico City 14050, Mexico; (P.V.-C.); (N.C.C.-T.); (M.U.); (E.E.M.-J.)
| | | | - Norberto C. Chávez-Tapia
- Obesity and Digestive Diseases Unit, Medica Sur Clinic & Foundation, Mexico City 14050, Mexico; (P.V.-C.); (N.C.C.-T.); (M.U.); (E.E.M.-J.)
- Translational Research Unit, Medica Sur Clinic & Foundation, Mexico City 14050, Mexico;
| | - Misael Uribe
- Obesity and Digestive Diseases Unit, Medica Sur Clinic & Foundation, Mexico City 14050, Mexico; (P.V.-C.); (N.C.C.-T.); (M.U.); (E.E.M.-J.)
| | - Eduardo E. Montalvo-Javé
- Obesity and Digestive Diseases Unit, Medica Sur Clinic & Foundation, Mexico City 14050, Mexico; (P.V.-C.); (N.C.C.-T.); (M.U.); (E.E.M.-J.)
- Department of Surgery, Faculty of Medicine, Universidad Nacional Autónoma de Mexico, Mexico City 04360, Mexico
- Hepatopancreatobiliary Clinic, Department of Surgery, Hospital General de Mexico “Dr. Eduardo Liceaga”, Mexico City 06720, Mexico
| | - Natalia Nuño-Lámbarri
- Translational Research Unit, Medica Sur Clinic & Foundation, Mexico City 14050, Mexico;
- Department of Surgery, Faculty of Medicine, Universidad Nacional Autónoma de Mexico, Mexico City 04360, Mexico
| |
Collapse
|
4
|
Tang H, Lv F, Zhang P, Liu J, Mao J. The impact of obstructive sleep apnea on nonalcoholic fatty liver disease. Front Endocrinol (Lausanne) 2023; 14:1254459. [PMID: 37850091 PMCID: PMC10577417 DOI: 10.3389/fendo.2023.1254459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/15/2023] [Indexed: 10/19/2023] Open
Abstract
Obstructive sleep apnea (OSA) is characterized by episodic sleep state-dependent collapse of the upper airway, with consequent hypoxia, hypercapnia, and arousal from sleep. OSA contributes to multisystem damage; in severe cases, sudden cardiac death might occur. In addition to causing respiratory, cardiovascular and endocrine metabolic diseases, OSA is also closely associated with nonalcoholic fatty liver disease (NAFLD). As the prevalence of OSA and NAFLD increases rapidly, they significantly exert adverse effects on the health of human beings. The authors retrieved relevant documents on OSA and NAFLD from PubMed and Medline. This narrative review elaborates on the current knowledge of OSA and NAFLD, demonstrates the impact of OSA on NAFLD, and clarifies the underlying mechanisms of OSA in the progression of NAFLD. Although there is a lack of sufficient high-quality clinical studies to prove the causal or concomitant relationship between OSA and NAFLD, existing evidence has confirmed the effect of OSA on NAFLD. Elucidating the underlying mechanisms through which OSA impacts NAFLD would hold considerable importance in terms of both prevention and the identification of potential therapeutic targets for NAFLD.
Collapse
Affiliation(s)
- Haiying Tang
- Department of Respiratory and Critical Disease, Respiratory Sleep Disorder Center, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Furong Lv
- Department of Gastroenterology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Peng Zhang
- Department of Medical Information Engineering, Zhongshan College of Dalian Medical University, Dalian, Liaoning, China
| | - Jia Liu
- Department of Respiratory and Critical Disease, Respiratory Sleep Disorder Center, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Jingwei Mao
- Department of Gastroenterology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
5
|
Fouda S, Jeeyavudeen MS, Pappachan JM, Jayanthi V. Pathobiology of Metabolic-Associated Fatty Liver Disease. Endocrinol Metab Clin North Am 2023. [PMID: 37495333 DOI: 10.1016/j.ecl.2023.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Metabolic-associated fatty liver disease (MAFLD), formerly known as nonalcoholic fatty liver disease, is highly associated with the metabolic syndrome. Given its high heterogeneity in patients along with unpredictable clinical outcomes, MAFLD is difficult to diagnose and manage. MAFLD is associated with obesity, diabetes, metabolic derangements, lipid disorders, cardiovascular disorders, sleep apnea, sarcopenia, gut dysbiosis, and sex hormone-related disorders. Identification of risk factors is imperative in understanding disease heterogeneity and clinical presentation to reliably diagnose and manage patients. The complexity of MAFLD pathobiology is discussed in this review in relation to its association with common metabolic and nonmetabolic disorders.
Collapse
|
6
|
Dnmt1/Tet2-mediated changes in Cmip methylation regulate the development of nonalcoholic fatty liver disease by controlling the Gbp2-Pparγ-CD36 axis. Exp Mol Med 2023; 55:143-157. [PMID: 36609599 PMCID: PMC9898513 DOI: 10.1038/s12276-022-00919-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/17/2022] [Accepted: 11/13/2022] [Indexed: 01/07/2023] Open
Abstract
Dynamic alteration of DNA methylation leads to various human diseases, including nonalcoholic fatty liver disease (NAFLD). Although C-Maf-inducing protein (Cmip) has been reported to be associated with NAFLD, its exact underlying mechanism remains unclear. Here, we aimed to elucidate this mechanism in NAFLD in vitro and in vivo. We first identified alterations in the methylation status of the Cmip intron 1 region in mouse liver tissues with high-fat high-sucrose diet-induced NAFLD. Knockdown of DNA methyltransferase (Dnmt) 1 significantly increased Cmip expression. Chromatin immunoprecipitation assays of AML12 cells treated with oleic and palmitic acid (OPA) revealed that Dnmt1 was dissociated and that methylation of H3K27me3 was significantly decreased in the Cmip intron 1 region. Conversely, the knockdown of Tet methylcytosine dioxygenase 2 (Tet2) decreased Cmip expression. Following OPA treatment, the CCCTC-binding factor (Ctcf) was recruited, and H3K4me3 was significantly hypermethylated. Intravenous Cmip siRNA injection ameliorated NAFLD pathogenic features in ob/ob mice. Additionally, Pparγ and Cd36 expression levels were dramatically decreased in the livers of ob/ob mice administered siCmip, and RNA sequencing revealed that Gbp2 was involved. Gbp2 knockdown also induced a decrease in Pparγ and Cd36 expression, resulting in the abrogation of fatty acid uptake into cells. Our data demonstrate that Cmip and Gbp2 expression levels are enhanced in human liver tissues bearing NAFLD features. We also show that Dnmt1-Trt2/Ctcf-mediated reversible modulation of Cmip methylation regulates the Gbp2-Pparγ-Cd36 signaling pathway, indicating the potential of Cmip as a novel therapeutic target for NAFLD.
Collapse
|
7
|
Baldelli E, Lonardo A. Digging the metabolic roots of NASH up. LIFE METABOLISM 2022; 1:203-204. [DOI: 10.1093/lifemeta/loac036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Enrica Baldelli
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia , Modena , Italy
| | - Amedeo Lonardo
- Azienda Ospedaliero-Universitaria di Modena—Department of Internal Medicine—Ospedale Civile di Baggiovara , Modena , Italy
| |
Collapse
|
8
|
Gutiérrez-Cuevas J, Lucano-Landeros S, López-Cifuentes D, Santos A, Armendariz-Borunda J. Epidemiologic, Genetic, Pathogenic, Metabolic, Epigenetic Aspects Involved in NASH-HCC: Current Therapeutic Strategies. Cancers (Basel) 2022; 15:23. [PMID: 36612019 PMCID: PMC9818030 DOI: 10.3390/cancers15010023] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer and is the sixth most frequent cancer in the world, being the third cause of cancer-related deaths. Nonalcoholic steatohepatitis (NASH) is characterized by fatty infiltration, oxidative stress and necroinflammation of the liver, with or without fibrosis, which can progress to advanced liver fibrosis, cirrhosis and HCC. Obesity, metabolic syndrome, insulin resistance, and diabetes exacerbates the course of NASH, which elevate the risk of HCC. The growing prevalence of obesity are related with increasing incidence of NASH, which may play a growing role in HCC epidemiology worldwide. In addition, HCC initiation and progression is driven by reprogramming of metabolism, which indicates growing appreciation of metabolism in the pathogenesis of this disease. Although no specific preventive pharmacological treatments have recommended for NASH, dietary restriction and exercise are recommended. This review focuses on the molecular connections between HCC and NASH, including genetic and risk factors, highlighting the metabolic reprogramming and aberrant epigenetic alterations in the development of HCC in NASH. Current therapeutic aspects of NASH/HCC are also reviewed.
Collapse
Affiliation(s)
- Jorge Gutiérrez-Cuevas
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, University of Guadalajara, CUCS, Guadalajara 44340, Jalisco, Mexico
| | - Silvia Lucano-Landeros
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, University of Guadalajara, CUCS, Guadalajara 44340, Jalisco, Mexico
| | - Daniel López-Cifuentes
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, University of Guadalajara, CUCS, Guadalajara 44340, Jalisco, Mexico
| | - Arturo Santos
- Tecnologico de Monterrey, EMCS, Campus Guadalajara, Zapopan 45201, Jalisco, Mexico
| | - Juan Armendariz-Borunda
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, University of Guadalajara, CUCS, Guadalajara 44340, Jalisco, Mexico
- Tecnologico de Monterrey, EMCS, Campus Guadalajara, Zapopan 45201, Jalisco, Mexico
| |
Collapse
|
9
|
Bale G, Mitnala S, Padaki NR, Sharma M, Kulkarni AV, Pawar SC, D NR, Vishnubhotla R. I148M variant of PNPLA3-gene is not associated with metabolic syndrome in patients with NAFLD in the Indian ethnicity. HUMAN GENE 2022; 33:201073. [DOI: 10.1016/j.humgen.2022.201073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
10
|
Advance of Serum Biomarkers and Combined Diagnostic Panels in Nonalcoholic Fatty Liver Disease. DISEASE MARKERS 2022; 2022:1254014. [PMID: 35811662 PMCID: PMC9259243 DOI: 10.1155/2022/1254014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) affects approximately 25-30% population worldwide, which progresses from simple steatosis to nonalcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and hepatocellular carcinoma, and has complications such as cardiovascular events. Liver biopsy is still the gold standard for the diagnosis of NAFLD, with some limitations, such as invasive, sampling deviation, and empirical judgment. Therefore, it is urgent to develop noninvasive diagnostic biomarkers. Currently, a large number of NAFLD-related serum biomarkers have been identified, including apoptosis, inflammation, fibrosis, adipokines, hepatokines, and omics biomarkers, which could effectively diagnose NASH and exclude patients with progressive fibrosis. We summarized serum biomarkers and combined diagnostic panels of NAFLD, to provide some guidance for the noninvasive diagnosis and further clinical studies.
Collapse
|
11
|
Wajsbrot NB, Leite NC, Salles GF, Villela-Nogueira CA. Non-alcoholic fatty liver disease and the impact of genetic, epigenetic and environmental factors in the offspring. World J Gastroenterol 2022; 28:2890-2899. [PMID: 35978876 PMCID: PMC9280730 DOI: 10.3748/wjg.v28.i25.2890] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/20/2022] [Accepted: 05/14/2022] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide and is strongly associated with metabolic deregulation. More recently, a significant impact of parental NAFLD in the offspring was demonstrated and has been widely discussed. However, pathogenetic pathways implicated in the inheritance by the offspring and relatives are still under debate. Probably, multiple mechanisms are involved as well as in NAFLD pathogenesis itself. Among the multifactorial involved mechanisms, genetic, epigenetic and environmental backgrounds are strongly related to NAFLD development in the offspring. Thus, based on recent evidence from the available literature concerning genetic, epigenetic and environmental disease modifiers, this review aimed to discuss the relationship between parental NAFLD and its impact on the offspring.
Collapse
Affiliation(s)
- Natalia Balassiano Wajsbrot
- Division of Hepatology, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro 20941-913, Brazil
| | - Nathalie Carvalho Leite
- Division of Hepatology, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro 20941-913, Brazil
| | - Gil F Salles
- Department of Internal Medicine, Medical School, Federal University of Rio de Janeiro, Rio de Janeiro 22750-240, Brazil
| | - Cristiane A Villela-Nogueira
- Department of Internal Medicine, Medical School, Federal University of Rio de Janeiro, Rio de Janeiro 22750-240, Brazil
| |
Collapse
|