1
|
Stewart NJ, Higano NS, Wucherpfennig L, Triphan SMF, Simmons A, Smith LJ, Wielpütz MO, Woods JC, Wild JM. Pulmonary MRI in Newborns and Children. J Magn Reson Imaging 2024. [PMID: 39639777 DOI: 10.1002/jmri.29669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 12/07/2024] Open
Abstract
Lung MRI is an important tool in the assessment and monitoring of pediatric and neonatal lung disorders. MRI can provide both similar and complementary image contrast to computed tomography for imaging the lung macrostructure, and beyond this, a number of techniques have been developed for imaging the key functions of the lungs, namely ventilation, perfusion, and gas exchange, through the use of free-breathing proton and hyperpolarized gas MRI. Here, we review the state-of-the-art in MRI methods that have found utility in pediatric and neonatal lung imaging, the structural and physiological information that can be gleaned from such images, and strategies that have been developed to deal with respiratory (and cardiac) motion, and other technological challenges. The application of lung MRI in neonatal and pediatric lung conditions, in particular bronchopulmonary dysplasia, cystic fibrosis, and asthma, is reviewed, highlighting our collective experiences in the clinical translation of these methods and technology, and the key current and future potential avenues for clinical utility of this methodology. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Neil J Stewart
- POLARIS, Division of Clinical Medicine, School of Medicine & Population Health, Faculty of Health, The University of Sheffield, Sheffield, UK
- Insigneo Institute of In Silico Medicine, The University of Sheffield, Sheffield, UK
| | - Nara S Higano
- Center for Pulmonary Imaging Research, Pulmonary Medicine and Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Lena Wucherpfennig
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University Hospital Heidelberg, Heidelberg, Germany
| | - Simon M F Triphan
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University Hospital Heidelberg, Heidelberg, Germany
| | - Amy Simmons
- POLARIS, Division of Clinical Medicine, School of Medicine & Population Health, Faculty of Health, The University of Sheffield, Sheffield, UK
| | - Laurie J Smith
- POLARIS, Division of Clinical Medicine, School of Medicine & Population Health, Faculty of Health, The University of Sheffield, Sheffield, UK
| | - Mark O Wielpütz
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University Hospital Heidelberg, Heidelberg, Germany
| | - Jason C Woods
- Center for Pulmonary Imaging Research, Pulmonary Medicine and Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Jim M Wild
- POLARIS, Division of Clinical Medicine, School of Medicine & Population Health, Faculty of Health, The University of Sheffield, Sheffield, UK
- Insigneo Institute of In Silico Medicine, The University of Sheffield, Sheffield, UK
| |
Collapse
|
2
|
Ringwald FG, Wucherpfennig L, Hagen N, Mücke J, Kaletta S, Eichinger M, Stahl M, Triphan SMF, Leutz-Schmidt P, Gestewitz S, Graeber SY, Kauczor HU, Alrajab A, Schenk JP, Sommerburg O, Mall MA, Knaup P, Wielpütz MO, Eisenmann U. Automated lung segmentation on chest MRI in children with cystic fibrosis. Front Med (Lausanne) 2024; 11:1401473. [PMID: 39606627 PMCID: PMC11600534 DOI: 10.3389/fmed.2024.1401473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024] Open
Abstract
Introduction Segmentation of lung structures in medical imaging is crucial for the application of automated post-processing steps on lung diseases like cystic fibrosis (CF). Recently, machine learning methods, particularly neural networks, have demonstrated remarkable improvements, often outperforming conventional segmentation methods. Nonetheless, challenges still remain when attempting to segment various imaging modalities and diseases, especially when the visual characteristics of pathologic findings significantly deviate from healthy tissue. Methods Our study focuses on imaging of pediatric CF patients [mean age, standard deviation (7.50 ± 4.6)], utilizing deep learning-based methods for automated lung segmentation from chest magnetic resonance imaging (MRI). A total of 165 standardized annual surveillance MRI scans from 84 patients with CF were segmented using the nnU-Net framework. Patient cases represented a range of disease severities and ages. The nnU-Net was trained and evaluated on three MRI sequences (BLADE, VIBE, and HASTE), which are highly relevant for the evaluation of CF induced lung changes. We utilized 40 cases for training per sequence, and tested with 15 cases per sequence, using the Sørensen-Dice-Score, Pearson's correlation coefficient (r), a segmentation questionnaire, and slice-based analysis. Results The results demonstrated a high level of segmentation performance across all sequences, with only minor differences observed in the mean Dice coefficient: BLADE (0.96 ± 0.05), VIBE (0.96 ± 0.04), and HASTE (0.95 ± 0.05). Additionally, the segmentation quality was consistent across different disease severities, patient ages, and sizes. Manual evaluation identified specific challenges, such as incomplete segmentations near the diaphragm and dorsal regions. Validation on a separate, external dataset of nine toddlers (2-24 months) demonstrated generalizability of the trained model achieving a Dice coefficient of 0.85 ± 0.03. Discussion and conclusion Overall, our study demonstrates the feasibility and effectiveness of using nnU-Net for automated segmentation of lung halves in pediatric CF patients, showing promising directions for advanced image analysis techniques to assist in clinical decision-making and monitoring of CF lung disease progression. Despite these achievements, further improvements are needed to address specific segmentation challenges and enhance generalizability.
Collapse
Affiliation(s)
- Friedemann G. Ringwald
- Institute of Medical Informatics, Heidelberg University, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Lena Wucherpfennig
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University Hospital Heidelberg, Heidelberg, Germany
| | - Niclas Hagen
- Institute of Medical Informatics, Heidelberg University, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Jonas Mücke
- Institute of Medical Informatics, Heidelberg University, Heidelberg, Germany
| | - Sebastian Kaletta
- Institute of Medical Informatics, Heidelberg University, Heidelberg, Germany
| | - Monika Eichinger
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University Hospital Heidelberg, Heidelberg, Germany
| | - Mirjam Stahl
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Simon M. F. Triphan
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University Hospital Heidelberg, Heidelberg, Germany
| | - Patricia Leutz-Schmidt
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University Hospital Heidelberg, Heidelberg, Germany
| | - Sonja Gestewitz
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University Hospital Heidelberg, Heidelberg, Germany
| | - Simon Y. Graeber
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Hans-Ulrich Kauczor
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University Hospital Heidelberg, Heidelberg, Germany
| | - Abdulsattar Alrajab
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Jens-Peter Schenk
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Olaf Sommerburg
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Division of Pediatric Pulmonology & Allergy and Cystic Fibrosis Center, Department of Pediatrics, University Hospital Heidelberg, Heidelberg, Germany
- Department of Translational Pulmonology, University Hospital Heidelberg, Heidelberg, Germany
| | - Marcus A. Mall
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Petra Knaup
- Institute of Medical Informatics, Heidelberg University, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Mark O. Wielpütz
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University Hospital Heidelberg, Heidelberg, Germany
| | - Urs Eisenmann
- Institute of Medical Informatics, Heidelberg University, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| |
Collapse
|
3
|
Lv Q, Gallardo-Estrella L, Andrinopoulou ER, Chen Y, Charbonnier JP, Sandvik RM, Caudri D, Nielsen KG, de Bruijne M, Ciet P, Tiddens H. Automatic analysis of bronchus-artery dimensions to diagnose and monitor airways disease in cystic fibrosis. Thorax 2023; 79:13-22. [PMID: 37734952 PMCID: PMC10803964 DOI: 10.1136/thorax-2023-220021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 08/11/2023] [Indexed: 09/23/2023]
Abstract
BACKGROUND Cystic fibrosis (CF) lung disease is characterised by progressive airway wall thickening and widening. We aimed to validate an artificial intelligence-based algorithm to assess dimensions of all visible bronchus-artery (BA) pairs on chest CT scans from patients with CF. METHODS The algorithm fully automatically segments the bronchial tree; identifies bronchial generations; matches bronchi with the adjacent arteries; measures for each BA-pair bronchial outer diameter (Bout), bronchial lumen diameter (Bin), bronchial wall thickness (Bwt) and adjacent artery diameter (A); and computes Bout/A, Bin/A and Bwt/A for each BA pair from the segmental bronchi to the last visible generation. Three datasets were used to validate the automatic BA analysis. First BA analysis was executed on 23 manually annotated CT scans (11 CF, 12 control subjects) to compare automatic with manual BA-analysis outcomes. Furthermore, the BA analysis was executed on two longitudinal datasets (Copenhagen 111 CTs, ataluren 347 CTs) to assess longitudinal BA changes and compare them with manual scoring results. RESULTS The automatic and manual BA analysis showed no significant differences in quantifying bronchi. For the longitudinal datasets the automatic BA analysis detected 247 and 347 BA pairs/CT in the Copenhagen and ataluren dataset, respectively. A significant increase of 0.02 of Bout/A and Bin/A was detected for Copenhagen dataset over an interval of 2 years, and 0.03 of Bout/A and 0.02 of Bin/A for ataluren dataset over an interval of 48 weeks (all p<0.001). The progression of 0.01 of Bwt/A was detected only in the ataluren dataset (p<0.001). BA-analysis outcomes showed weak to strong correlations (correlation coefficient from 0.29 to 0.84) with manual scoring results for airway disease. CONCLUSION The BA analysis can fully automatically analyse a large number of BA pairs on chest CTs to detect and monitor progression of bronchial wall thickening and bronchial widening in patients with CF.
Collapse
Affiliation(s)
- Qianting Lv
- Department of Paediatric Pulmonology and Allergology, Erasmus MC Sophia Children's Hospital, Rotterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | | | | | - Yuxin Chen
- Department of Paediatric Pulmonology and Allergology, Erasmus MC Sophia Children's Hospital, Rotterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | | | - Rikke Mulvad Sandvik
- CF Center Copenhagen, Paediatric Pulmonary Service, Department of Paediatric and Adolescent Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- University of Copenhagen, Graduate School of Health and Medical Sciences, Copenhagen, Denmark
| | - Daan Caudri
- Department of Paediatric Pulmonology and Allergology, Erasmus MC Sophia Children's Hospital, Rotterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Kim Gjerum Nielsen
- CF Center Copenhagen, Paediatric Pulmonary Service, Department of Paediatric and Adolescent Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Kobenhavn, Denmark
| | - Marleen de Bruijne
- Biomedical Imaging Group Rotterdam, Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Computer Science, University of Copenhagen, Copenhagen, Denmark
| | - Pierluigi Ciet
- Department of Paediatric Pulmonology and Allergology, Erasmus MC Sophia Children's Hospital, Rotterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
- Pediatric Pulmonology, Erasmus Medical Center- Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Harm Tiddens
- Department of Paediatric Pulmonology and Allergology, Erasmus MC Sophia Children's Hospital, Rotterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
- Thirona, Nijmegen, The Netherlands
| |
Collapse
|
4
|
Weinheimer O, Konietzke P, Wagner WL, Weber D, Newman B, Galbán CJ, Kauczor HU, Mall MA, Robinson TE, Wielpütz MO. MDCT-based longitudinal automated airway and air trapping analysis in school-age children with mild cystic fibrosis lung disease. Front Pediatr 2023; 11:1068103. [PMID: 36816383 PMCID: PMC9932328 DOI: 10.3389/fped.2023.1068103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/03/2023] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES Quantitative computed tomography (QCT) offers some promising markers to quantify cystic fibrosis (CF)-lung disease. Air trapping may precede irreversible bronchiectasis; therefore, the temporal interdependencies of functional and structural lung disease need to be further investigated. We aim to quantify airway dimensions and air trapping on chest CT of school-age children with mild CF-lung disease over two years. METHODS Fully-automatic software analyzed 144 serial spirometer-controlled chest CT scans of 36 children (median 12.1 (10.2-13.8) years) with mild CF-lung disease (median ppFEV1 98.5 (90.8-103.3) %) at baseline, 3, 12 and 24 months. The airway wall percentage (WP5-10), bronchiectasis index (BEI), as well as severe air trapping (A3) were calculated for the total lung and separately for all lobes. Mixed linear models were calculated, considering the lobar distribution of WP5-10, BEI and A3 cross-sectionally and longitudinally. RESULTS WP5-10 remained stable (P = 0.248), and BEI changed from 0.41 (0.28-0.7) to 0.54 (0.36-0.88) (P = 0.156) and A3 from 2.26% to 4.35% (P = 0.086) showing variability over two years. ppFEV1 was also stable (P = 0.276). A robust mixed linear model showed a cross-sectional, regional association between WP5-10 and A3 at each timepoint (P < 0.001). Further, BEI showed no cross-sectional, but another mixed model showed short-term longitudinal interdependencies with air trapping (P = 0.003). CONCLUSIONS Robust linear/beta mixed models can still reveal interdependencies in medical data with high variability that remain hidden with simpler statistical methods. We could demonstrate cross-sectional, regional interdependencies between wall thickening and air trapping. Further, we show short-term regional interdependencies between air trapping and an increase in bronchiectasis. The data indicate that regional air trapping may precede the development of bronchiectasis. Quantitative CT may capture subtle disease progression and identify regional and temporal interdependencies of distinct manifestations of CF-lung disease.
Collapse
Affiliation(s)
- Oliver Weinheimer
- Department of Diagnostic and Interventional Radiology, University of Heidelberg, Heidelberg, Germany.,Translational Lung Research Center (TLRC), German Lung Research Center (DZL), University of Heidelberg, Heidelberg, Germany.,Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| | - Philip Konietzke
- Department of Diagnostic and Interventional Radiology, University of Heidelberg, Heidelberg, Germany.,Translational Lung Research Center (TLRC), German Lung Research Center (DZL), University of Heidelberg, Heidelberg, Germany.,Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| | - Willi L Wagner
- Department of Diagnostic and Interventional Radiology, University of Heidelberg, Heidelberg, Germany.,Translational Lung Research Center (TLRC), German Lung Research Center (DZL), University of Heidelberg, Heidelberg, Germany.,Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| | - Dorothea Weber
- Translational Lung Research Center (TLRC), German Lung Research Center (DZL), University of Heidelberg, Heidelberg, Germany.,Institute of Medical Biometry and Informatics (IMBI), University of Heidelberg, Heidelberg, Germany
| | - Beverly Newman
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, United States
| | - Craig J Galbán
- Department of Radiology, University of Michigan, Ann Arbor, United States
| | - Hans-Ulrich Kauczor
- Department of Diagnostic and Interventional Radiology, University of Heidelberg, Heidelberg, Germany.,Translational Lung Research Center (TLRC), German Lung Research Center (DZL), University of Heidelberg, Heidelberg, Germany.,Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| | - Marcus A Mall
- Department of Pediatric Pulmonology, Immunology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health @ Charité-Universitätsmedizin Berlin, Berlin, Germany.,German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany
| | - Terry E Robinson
- Department of Pediatrics, Center of Excellence in Pulmonary Biology, Stanford University School of Medicine, Stanford, CA, United States
| | - Mark O Wielpütz
- Department of Diagnostic and Interventional Radiology, University of Heidelberg, Heidelberg, Germany.,Translational Lung Research Center (TLRC), German Lung Research Center (DZL), University of Heidelberg, Heidelberg, Germany.,Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
5
|
Wagner C, Balázs A, Schatterny J, Zhou-Suckow Z, Duerr J, Schultz C, Mall MA. Genetic Deletion of Mmp9 Does Not Reduce Airway Inflammation and Structural Lung Damage in Mice with Cystic Fibrosis-like Lung Disease. Int J Mol Sci 2022; 23:13405. [PMID: 36362203 PMCID: PMC9657231 DOI: 10.3390/ijms232113405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 09/10/2023] Open
Abstract
Elevated levels of matrix metalloprotease 9 (MMP-9) and neutrophil elastase (NE) are associated with bronchiectasis and lung function decline in patients with cystic fibrosis (CF). MMP-9 is a potent extracellular matrix-degrading enzyme which is activated by NE and has been implicated in structural lung damage in CF. However, the role of MMP-9 in the in vivo pathogenesis of CF lung disease is not well understood. Therefore, we used β-epithelial Na+ channel-overexpressing transgenic (βENaC-Tg) mice as a model of CF-like lung disease and determined the effect of genetic deletion of Mmp9 (Mmp9-/-) on key aspects of the pulmonary phenotype. We found that MMP-9 levels were elevated in the lungs of βENaC-Tg mice compared with wild-type littermates. Deletion of Mmp9 had no effect on spontaneous mortality, inflammatory markers in bronchoalveolar lavage, goblet cell metaplasia, mucus hypersecretion and emphysema-like structural lung damage, while it partially reduced mucus obstruction in βENaC-Tg mice. Further, lack of Mmp9 had no effect on increased inspiratory capacity and increased lung compliance in βENaC-Tg mice, whereas both lung function parameters were improved with genetic deletion of NE. We conclude that MMP-9 does not play a major role in the in vivo pathogenesis of CF-like lung disease in mice.
Collapse
Affiliation(s)
- Claudius Wagner
- Department of Translational Pulmonology, University of Heidelberg, 69117 Heidelberg, Germany
- Translational Lung Research Center (TLRC), Member of the German Center for Lung Research (DZL), Im Neuenheimer Feld 156, 69120 Heidelberg, Germany
| | - Anita Balázs
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité—Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- Berlin Institute of Health, Charité—Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Jolanthe Schatterny
- Department of Translational Pulmonology, University of Heidelberg, 69117 Heidelberg, Germany
- Translational Lung Research Center (TLRC), Member of the German Center for Lung Research (DZL), Im Neuenheimer Feld 156, 69120 Heidelberg, Germany
| | - Zhe Zhou-Suckow
- Department of Translational Pulmonology, University of Heidelberg, 69117 Heidelberg, Germany
- Translational Lung Research Center (TLRC), Member of the German Center for Lung Research (DZL), Im Neuenheimer Feld 156, 69120 Heidelberg, Germany
| | - Julia Duerr
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité—Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- Berlin Institute of Health, Charité—Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Carsten Schultz
- Translational Lung Research Center (TLRC), Member of the German Center for Lung Research (DZL), Im Neuenheimer Feld 156, 69120 Heidelberg, Germany
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Marcus A. Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité—Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- Berlin Institute of Health, Charité—Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
- German Center for Lung Research (DZL), Associated Partner Site, Augustenburger Platz 1, 13353 Berlin, Germany
| |
Collapse
|
6
|
Meoli A, Eickmeier O, Pisi G, Fainardi V, Zielen S, Esposito S. Impact of CFTR Modulators on the Impaired Function of Phagocytes in Cystic Fibrosis Lung Disease. Int J Mol Sci 2022; 23:12421. [PMID: 36293274 PMCID: PMC9604330 DOI: 10.3390/ijms232012421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/17/2022] Open
Abstract
Cystic fibrosis (CF), the most common genetically inherited disease in Caucasian populations, is a multi-systemic life-threatening autosomal recessive disorder caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. In 2012, the arrival of CFTR modulators (potentiators, correctors, amplifiers, stabilizers, and read-through agents) revolutionized the therapeutic approach to CF. In this review, we examined the physiopathological mechanism of chronic dysregulated innate immune response in the lungs of CF patients with pulmonary involvement with particular reference to phagocytes, critically analyzing the role of CFTR modulators in influencing and eventually restoring their function. Our literature review highlighted that the role of CFTR in the lungs is crucial not only for the epithelial function but also for host defense, with particular reference to phagocytes. In macrophages and neutrophils, the CFTR dysfunction compromises both the intricate process of phagocytosis and the mechanisms of initiation and control of inflammation which then reverberates on the epithelial environment already burdened by the chronic colonization of pathogens leading to irreversible tissue damage. In this context, investigating the impact of CFTR modulators on phagocytic functions is therefore crucial not only for explaining the underlying mechanisms of pleiotropic effects of these molecules but also to better understand the physiopathological basis of this disease, still partly unexplored, and to develop new complementary or alternative therapeutic approaches.
Collapse
Affiliation(s)
- Aniello Meoli
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Division of Allergy, Pulmonology and Cystic Fibrosis, Department for Children and Adolescents, University Hospital, 60431 Frankfurt, Germany
| | - Olaf Eickmeier
- Division of Allergy, Pulmonology and Cystic Fibrosis, Department for Children and Adolescents, University Hospital, 60431 Frankfurt, Germany
| | - Giovanna Pisi
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Valentina Fainardi
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Stefan Zielen
- Division of Allergy, Pulmonology and Cystic Fibrosis, Department for Children and Adolescents, University Hospital, 60431 Frankfurt, Germany
| | - Susanna Esposito
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| |
Collapse
|
7
|
Begum N, Byrnes CA, Cheney J, Cooper PJ, Fantino E, Gailer N, Grimwood K, GutierrezCardenas D, Massie J, Robertson CF, Sly PD, Tiddens HA, Wainwright CE, Ware RS. Factors in childhood associated with lung function decline to adolescence in cystic fibrosis. J Cyst Fibros 2022; 21:977-983. [PMID: 35341694 DOI: 10.1016/j.jcf.2022.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/07/2022] [Accepted: 03/20/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Despite improvements in general health and life expectancy in people with cystic fibrosis (CF), lung function decline continues unabated during adolescence and early adult life. METHODS We examined factors present at age 5-years that predicted lung function decline from childhood to adolescence in a longitudinal study of Australasian children with CF followed from 1999 to 2017. RESULTS Lung function trajectories were calculated for 119 children with CF from childhood (median 5.0 [25%-75%=5.0-5.1]) years) to early adolescence (median 12.5 [25%-75%=11.4-13.8] years). Lung function fell progressively, with mean (standard deviation) annual change -0.105 (0.049) for forced vital capacity (FVC) Z-score (p<0.001), -0.135 (0.048) for forced expiratory volume in 1-second (FEV1) Z-score (p<0.001), -1.277 (0.221) for FEV1/FVC% (p<0.001), and -0.136 (0.052) for forced expiratory flow between 25% and 75% of FVC Z-score (p<0.001). Factors present in childhood predicting lung function decline to adolescence, in multivariable analyses, were hospitalisation for respiratory exacerbations in the first 5-years of life (FEV1/FVC p = 0.001, FEF25-75p = 0.01) and bronchoalveolar lavage neutrophil elastase activity (FEV1/FVC% p = 0.001, FEV1p = 0.05, FEF25-75p = 0.02). No examined factor predicted a decline in the FVC Z-score. CONCLUSIONS Action in the first 5-years of life to prevent and/or treat respiratory exacerbations and counteract neutrophilic inflammation in the lower airways may reduce lung function decline in children with CF, and these should be targets of future research.
Collapse
Affiliation(s)
- Nelufa Begum
- Children's Health and Environment Program, Child Health Research Centre, The University of Queensland, 62 Graham St, South Brisbane, QLD 4101, Australia
| | - Catherine A Byrnes
- Starship Children's Hospital and The University of Auckland, Auckland, New Zealand
| | - Joyce Cheney
- Children's Health Queensland Hospital and Health Service, Brisbane, QLD, Australia
| | - Peter J Cooper
- The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - Emmanuelle Fantino
- Children's Health and Environment Program, Child Health Research Centre, The University of Queensland, 62 Graham St, South Brisbane, QLD 4101, Australia
| | - Nicholas Gailer
- Children's Health Queensland Hospital and Health Service, Brisbane, QLD, Australia
| | - Keith Grimwood
- Griffith University and Gold Coast Health, Southport, QLD, Australia
| | - Diana GutierrezCardenas
- Children's Health and Environment Program, Child Health Research Centre, The University of Queensland, 62 Graham St, South Brisbane, QLD 4101, Australia
| | - John Massie
- Royal Children's Hospital, Melbourne, VIC, Australia
| | | | - Peter D Sly
- Children's Health and Environment Program, Child Health Research Centre, The University of Queensland, 62 Graham St, South Brisbane, QLD 4101, Australia.
| | | | - Claire E Wainwright
- Children's Health Queensland Hospital and Health Service, Brisbane, QLD, Australia; Child Health Research Centre, The University of Queensland, South Brisbane, QLD, Australia
| | | |
Collapse
|
8
|
Stahl M, Steinke E, Graeber SY, Joachim C, Seitz C, Kauczor HU, Eichinger M, Hämmerling S, Sommerburg O, Wielpütz MO, Mall MA. Magnetic Resonance Imaging Detects Progression of Lung Disease and Impact of Newborn Screening in Preschool Children with Cystic Fibrosis. Am J Respir Crit Care Med 2021; 204:943-953. [PMID: 34283704 DOI: 10.1164/rccm.202102-0278oc] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Previous cross-sectional studies demonstrated that chest magnetic resonance imaging (MRI) is sensitive to detect early lung disease in infants and preschool children with cystic fibrosis (CF) without radiation exposure. However, the ability of MRI to detect progression of lung disease and the impact of early diagnosis in preschool children with CF remains unknown. OBJECTIVES To investigate the potential of MRI to detect progression of early lung disease and impact of early diagnosis by CF newborn screening (NBS) in preschool children with CF. METHODS Annual MRI was performed from diagnosis over four years in a cohort of 96 preschool children with CF (age 0-4 yr) that were concurrently diagnosed based on NBS (n=28) or clinical symptoms (n=68). MRI scans were evaluated using a dedicated morphofunctional score and the relationship between longitudinal MRI scores and respiratory symptoms, pulmonary exacerbations, upper airway microbiology and mode of diagnosis were determined. MEASUREMENTS AND MAIN RESULTS The MRI global score increased in the total cohort of children with CF during preschool years (P<0.001) which was associated with cough, pulmonary exacerbations (P<0.0001), and detection of Staphylococcus aureus and Haemophilus influenzae (P<0.05). MRI-defined abnormalities in lung morphology, especially airway wall thickening/bronchiectasis, were lower in NBS compared to clinically diagnosed children with CF throughout the observation period (P<0.01). CONCLUSIONS MRI detected progression of early lung disease and benefits of early diagnosis by NBS in preschool children with CF. These findings support MRI as sensitive outcome measure for diagnostic monitoring and early intervention trials in preschool children with CF.
Collapse
Affiliation(s)
- Mirjam Stahl
- Charité Universitätsmedizin Berlin, 14903, Department of Pediatric Pulmonology, Immunology and Critical Care Medicine, Berlin, Germany.,German Center for Lung Research (DZL), associated partner site, Berlin, Germany.,University of Heidelberg, Department of Translational Pulmonology, Heidelberg, Germany.,German Center for Lung Research (DZL), Translational Lung Research Center Heidelberg (TLRC), Heidelberg, Germany
| | - Eva Steinke
- Charité Universitätsmedizin Berlin, 14903, Department of Pediatric Pulmonology, Immunology and Critical Care Medicine, Berlin, Germany.,University of Heidelberg, Department of Translational Pulmonology, Heidelberg, Germany.,University of Heidelberg, Department of Pediatrics, Division of Pediatric Pulmonology and Allergy and Cystic Fibrosis Center, Heidelberg, Germany.,German Center for Lung Research (DZL), Translational Lung Research Center Heidelberg (TLRC), Heidelberg, Germany
| | - Simon Y Graeber
- Charite Universitatsmedizin Berlin, 14903, Department of Pediatric Pulmonology, Immunology and Critical Care Medicine, Berlin, Germany.,German Center for Lung Research (DZL), associated partner site, Berlin, Germany.,University of Heidelberg, Department of Translational Pulmonology, Heidelberg, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Cornelia Joachim
- University of Heidelberg, Department of Pediatrics, Division of Pediatric Pulmonology and Allergy and Cystic Fibrosis Center, Heidelberg, Germany.,German Center for Lung Research (DZL), Translational Lung Research Center Heidelberg (TLRC), Heidelberg, Germany
| | - Christoph Seitz
- University of Heidelberg, 9144, Department of Pediatrics, Division of Neonatology, Heidelberg, Germany.,Pediatric Practice , Medical Biometrics Advisor, Bad Saulgau, Germany
| | - Hans-Ulrich Kauczor
- University of Heidelberg, 9144, Department of Translational Pulmonology, Heidelberg, Germany.,German Center for Lung Research (DZL), Translational Lung Research Center Heidelberg (TLRC), Heidelberg, Germany.,University of Heidelberg, 9144, Department of Diagnostic and Interventional Radiology, Heidelberg, Germany
| | - Monika Eichinger
- German Center for Lung Research (DZL), Translational Lung Research Center Heidelberg (TLRC), Heidelberg, Germany.,University of Heidelberg, Department of Diagnostic and Interventional Radiology, Heidelberg, Germany.,Thoraxklinik at University Hospital Heidelberg, Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Heidelberg, Germany
| | - Susanne Hämmerling
- University of Heidelberg, 9144, Department of Pediatrics, Division of Pediatric Pulmonology and Allergy and Cystic Fibrosis Center, Heidelberg, Germany
| | - Olaf Sommerburg
- University of Heidelberg, 9144, Department of Translational Pulmonology, Heidelberg, Germany.,University of Heidelberg, 9144, Department of Pediatrics, Division of Pediatric Pulmonology and Allergy and Cystic Fibrosis Center, Heidelberg, Germany.,German Center for Lung Research (DZL), Translational Lung Research Center Heidelberg (TLRC), Heidelberg, Germany
| | - Mark O Wielpütz
- German Center for Lung Research (DZL), Translational Lung Research Center Heidelberg (TLRC), Heidelberg, Germany.,University of Heidelberg, 9144, Department of Diagnostic and Interventional Radiology, Heidelberg, Germany.,German Cancer Research Center (DKFZ), Department of Radiology, Heidelberg, Germany
| | - Marcus A Mall
- Charité Universitätsmedizin Berlin, 14903, Department of Pediatric Pulmonology, Immunology and Critical Care Medicine, Berlin, Germany.,German Center for Lung Research (DZL), associated partner site, Berlin, Germany.,University of Heidelberg, Department of Translational Pulmonology, Heidelberg, Germany.,Berlin Institute of Health (BIH), Berlin, Germany;
| |
Collapse
|
9
|
Schulz-Kuhnt A, Greif V, Hildner K, Knipfer L, Döbrönti M, Zirlik S, Fuchs F, Atreya R, Zundler S, López-Posadas R, Neufert C, Ramming A, Kiefer A, Grüneboom A, Strasser E, Wirtz S, Neurath MF, Atreya I. ILC2 Lung-Homing in Cystic Fibrosis Patients: Functional Involvement of CCR6 and Impact on Respiratory Failure. Front Immunol 2020; 11:691. [PMID: 32457736 PMCID: PMC7221160 DOI: 10.3389/fimmu.2020.00691] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/26/2020] [Indexed: 01/10/2023] Open
Abstract
Cystic fibrosis patients suffer from a progressive, often fatal lung disease, which is based on a complex interplay between chronic infections, locally accumulating immune cells and pulmonary tissue remodeling. Although group-2 innate lymphoid cells (ILC2s) act as crucial initiators of lung inflammation, our understanding of their involvement in the pathogenesis of cystic fibrosis remains incomplete. Here we report a marked decrease of circulating CCR6+ ILC2s in the blood of cystic fibrosis patients, which significantly correlated with high disease severity and advanced pulmonary failure, strongly implicating increased ILC2 homing from the peripheral blood to the chronically inflamed lung tissue in cystic fibrosis patients. On a functional level, the CCR6 ligand CCL20 was identified as potent promoter of lung-directed ILC2 migration upon inflammatory conditions in vitro and in vivo using a new humanized mouse model with light-sheet fluorescence microscopic visualization of lung-accumulated human ILC2s. In the lung, blood-derived human ILC2s were able to augment local eosinophil and neutrophil accumulation and induced a marked upregulation of pulmonary type-VI collagen expression. Studies in primary human lung fibroblasts additionally revealed ILC2-derived IL-4 and IL-13 as important mediators of this type-VI collagen-inducing effect. Taken together, the here acquired results suggest that pathologically increased CCL20 levels in cystic fibrosis airways induce CCR6-mediated lung homing of circulating human ILC2s. Subsequent ILC2 activation then triggers local production of type-VI collagen and might thereby drive extracellular matrix remodeling potentially influencing pulmonary tissue destruction in cystic fibrosis patients. Thus, modulating the lung homing capacity of circulating ILC2s and their local effector functions opens new therapeutic avenues for cystic fibrosis treatment.
Collapse
Affiliation(s)
- Anja Schulz-Kuhnt
- Department of Medicine 1, University Hospital of Erlangen, Erlangen, Germany
| | - Vicky Greif
- Department of Medicine 1, University Hospital of Erlangen, Erlangen, Germany
| | - Kai Hildner
- Department of Medicine 1, University Hospital of Erlangen, Erlangen, Germany
| | - Lisa Knipfer
- Department of Medicine 1, University Hospital of Erlangen, Erlangen, Germany
| | - Michael Döbrönti
- Department of Medicine 1, University Hospital of Erlangen, Erlangen, Germany
| | - Sabine Zirlik
- Department of Medicine 1, University Hospital of Erlangen, Erlangen, Germany
| | - Florian Fuchs
- Department of Medicine 1, University Hospital of Erlangen, Erlangen, Germany
| | - Raja Atreya
- Department of Medicine 1, University Hospital of Erlangen, Erlangen, Germany
| | - Sebastian Zundler
- Department of Medicine 1, University Hospital of Erlangen, Erlangen, Germany
| | - Rocío López-Posadas
- Department of Medicine 1, University Hospital of Erlangen, Erlangen, Germany
| | - Clemens Neufert
- Department of Medicine 1, University Hospital of Erlangen, Erlangen, Germany
| | - Andreas Ramming
- Department of Medicine 3, University Hospital of Erlangen, Erlangen, Germany
| | - Alexander Kiefer
- Department of Pediatrics and Adolescent Medicine, University Hospital of Erlangen, Erlangen, Germany
| | - Anika Grüneboom
- Department of Medicine 3, University Hospital of Erlangen, Erlangen, Germany
| | - Erwin Strasser
- Department of Transfusion Medicine and Haemostaseology, University Hospital of Erlangen, Erlangen, Germany
| | - Stefan Wirtz
- Department of Medicine 1, University Hospital of Erlangen, Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine 1, University Hospital of Erlangen, Erlangen, Germany
| | - Imke Atreya
- Department of Medicine 1, University Hospital of Erlangen, Erlangen, Germany
| |
Collapse
|
10
|
Bouma NR, Janssens HM, Andrinopoulou E, Tiddens HAWM. Airway disease on chest computed tomography of preschool children with cystic fibrosis is associated with school-age bronchiectasis. Pediatr Pulmonol 2020; 55:141-148. [PMID: 31496137 PMCID: PMC6972540 DOI: 10.1002/ppul.24498] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 08/07/2019] [Indexed: 12/17/2022]
Abstract
Airway wall thickening and mucus plugging are important characteristics of cystic fibrosis (CF) lung disease in the first 5 years of life.The aim of this study is to investigate the association of lung disease in preschool children (age, 2-6) with bronchiectasis and other clinical outcome measures in the school age (age >7). Deidentified computed tomography-scans were annotated using Perth-Rotterdam annotated grid morphometric analysis for CF. Preschool %disease (a composite score of %airway wall thickening, %mucus plugging, and %bronchiectasis) and %MUPAT (a composite score of %airway wall thickening and %mucus plugging) were used as predictors for %bronchiectasis and several other school-age clinical outcomes. For statistical analysis, we used regression analysis, linear mixed-effects models and two-way mixed models. Sixty-one patients were included. %Disease increased significantly with age (P < .01). Preschool %disease and %MUPAT were significantly associated with school-age %bronchiectasis (P < .01 and P < .01, respectively). No significant association was found between preschool %disease and %MUPAT and school-age forced expiratory volume 1 (FEV1%) predicted and quality of life (P > .05). Cross-sectional, %disease in school-age was associated with a low FEV1% predicted and low quality of life (P = .01 and P = .007, respectively). %Disease can be considered an early marker of diffuse airways disease and is a risk factor for school-age bronchiectasis.
Collapse
Affiliation(s)
- Nynke R. Bouma
- Pediatric Pulmonology and AllergologySophia Children's HospitalRotterdamThe Netherlands
| | - Hettie M. Janssens
- Pediatric Pulmonology and AllergologySophia Children's HospitalRotterdamThe Netherlands
| | | | - Harm A. W. M. Tiddens
- Pediatric Pulmonology and AllergologySophia Children's HospitalRotterdamThe Netherlands
- Radiology and Nuclear MedicineErasmus Medical CenterRotterdamThe Netherlands
| |
Collapse
|
11
|
Cross talk between neutrophils and the microbiota. Blood 2019; 133:2168-2177. [PMID: 30898860 DOI: 10.1182/blood-2018-11-844555] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 12/24/2018] [Indexed: 12/18/2022] Open
Abstract
The microbiota has emerged as an important regulator of the host immunity by the induction, functional modulation, or suppression of local and systemic immune responses. In return, the host immune system restricts translocation and fine tunes the composition and distribution of the microbiota to maintain a beneficial symbiosis. This paradigm applies to neutrophils, a critical component of the innate immunity, allowing their production and function to be influenced by microbial components and metabolites derived from the microbiota, and engaging them in the process of microbiota containment and regulation. The cross talk between neutrophils and the microbiota adjusts the magnitude of neutrophil-mediated inflammation on challenge while preventing neutrophil responses against commensals under steady state. Here, we review the major molecular and cellular mediators of the interactions between neutrophils and the microbiota and discuss their interplay and contribution in chronic inflammatory diseases and cancer.
Collapse
|
12
|
Forrest OA, Chopyk DM, Gernez Y, Brown MR, Conrad CK, Moss RB, Tangpricha V, Peng L, Tirouvanziam R. Resistin is elevated in cystic fibrosis sputum and correlates negatively with lung function. J Cyst Fibros 2019; 18:64-70. [DOI: 10.1016/j.jcf.2018.05.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/30/2018] [Accepted: 05/31/2018] [Indexed: 01/04/2023]
|
13
|
Harun SN, Wainwright CE, Grimwood K, Hennig S. Aspergillus and progression of lung disease in children with cystic fibrosis. Thorax 2018; 74:125-131. [DOI: 10.1136/thoraxjnl-2018-211550] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 07/28/2018] [Accepted: 08/27/2018] [Indexed: 11/03/2022]
Abstract
BackgroundThe impact of Aspergillus on lung disease in young children with cystic fibrosis is uncertain.AimsTo determine if positive respiratory cultures of Aspergillus species are associated with: (1) increased structural lung injury at age 5 years; (2) accelerated lung function decline between ages 5 years and 14 years and (3) to identify explanatory variables.MethodsA cross-sectional analysis of association between Aspergillus positive bronchoalveolar lavage (BAL) cultures and chest high-resolution CT (HRCT) scan findings at age 5 years in subjects from the Australasian Cystic Fibrosis Bronchoalveolar Lavage (ACFBAL) study was performed. A non-linear mixed-effects disease progression model was developed using FEV1% predicted measurements at age 5 years from the ACFBAL study and at ages 6–14 years for these subjects from the Australian Cystic Fibrosis Data Registry.ResultsPositive Aspergillus BAL cultures at age 5 years were significantly associated with increased HRCT scores for air trapping (OR 5.53, 95% CI 2.35 to 10.82). However, positive Aspergillus cultures were not associated with either FEV1% predicted at age 5 years or FEV1% predicted by age following adjustment for body mass index z-score and hospitalisation secondary to pulmonary exacerbations. Lung function demonstrated a non-linear decline in this population.ConclusionIn children with cystic fibrosis, positive Aspergillus BAL cultures at age 5 years were associated contemporaneously with air trapping but not bronchiectasis. However, no association was observed between positive Aspergillus BAL cultures on FEV1% predicted at age 5 years or with lung function decline between ages 5 years and 14 years.
Collapse
|
14
|
Margaroli C, Tirouvanziam R. Neutrophil plasticity enables the development of pathological microenvironments: implications for cystic fibrosis airway disease. Mol Cell Pediatr 2016; 3:38. [PMID: 27868161 PMCID: PMC5136534 DOI: 10.1186/s40348-016-0066-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 11/04/2016] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION The pathological course of several chronic inflammatory diseases, including cystic fibrosis, chronic obstructive pulmonary disease, and rheumatoid arthritis, features an aberrant innate immune response dominated by neutrophils. In cystic fibrosis, neutrophil burden and activity of neutrophil elastase in the extracellular fluid have been identified as strong predictors of lung disease severity. REVIEW Although neutrophils are generally considered to be rigid, pre-programmed effector leukocytes, recent studies suggest extensive plasticity in how neutrophil functions unfold upon recruitment to peripheral tissues, and how they choose their ultimate fate. Indeed, upon migration to cystic fibrosis airways, neutrophils display dysregulated lifespan, metabolic activation, and altered effector and regulatory functions, consistent with profound adaptation and phenotypic reprogramming. Licensed by signals present in cystic fibrosis airway microenvironment to survive and develop these novel functions, neutrophils orchestrate, in partnership with the epithelium and with the resident microbiota, the evolution of a pathological microenvironment. This microenvironment is defined by altered proteolytic, redox, and metabolic balance and the presence of stable luminal structures in which neutrophils and microbes coexist. CONCLUSIONS The elucidation of molecular mechanisms driving neutrophil plasticity in vivo will open new treatment opportunities designed to modulate, rather than block, the crucial adaptive functions fulfilled by neutrophils. This review aims to outline emerging mechanisms of neutrophil plasticity and their participation in the building of pathological microenvironments in the context of cystic fibrosis and other diseases with similar features.
Collapse
Affiliation(s)
- Camilla Margaroli
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Center for CF and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
- Emory + Children's Center, 2015 Uppergate Dr NE, Rm 344, Atlanta, GA, 30322-1014, USA
| | - Rabindra Tirouvanziam
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Center for CF and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA.
- Emory + Children's Center, 2015 Uppergate Dr NE, Rm 344, Atlanta, GA, 30322-1014, USA.
| |
Collapse
|