1
|
Abstract
The human brain possesses neural networks and mechanisms enabling the representation of numbers, basic arithmetic operations, and mathematical reasoning. Without the ability to represent numerical quantity and perform calculations, our scientifically and technically advanced culture would not exist. However, the origins of numerical abilities are grounded in an intuitive understanding of quantity deeply rooted in biology. Nevertheless, more advanced symbolic arithmetic skills require a cultural background with formal mathematical education. In the past two decades, cognitive neuroscience has seen significant progress in understanding the workings of the calculating brain through various methods and model systems. This review begins by exploring the mental and neuronal representations of nonsymbolic numerical quantity and then progresses to symbolic representations acquired in childhood. During arithmetic operations (addition, subtraction, multiplication, and division), these representations are processed and transformed according to arithmetic rules and principles, leveraging different mental strategies and types of arithmetic knowledge that can be dissociated in the brain. Although it was once believed that number processing and calculation originated from the language faculty, it is now evident that mathematical and linguistic abilities are primarily processed independently in the brain. Understanding how the healthy brain processes numerical information is crucial for gaining insights into debilitating numerical disorders, including acquired conditions like acalculia and learning-related calculation disorders such as developmental dyscalculia.
Collapse
Affiliation(s)
- Andreas Nieder
- Animal Physiology Unit, Institute of Neurobiology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
2
|
Desvaux T, Danna J, Velay JL, Frey A. From gifted to high potential and twice exceptional: A state-of-the-art meta-review. APPLIED NEUROPSYCHOLOGY. CHILD 2024; 13:165-179. [PMID: 37665678 DOI: 10.1080/21622965.2023.2252950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Despite the abundant literature on intelligence and high potential individuals, there is still a lack of international consensus on the terminology and clinical characteristics associated to this population. It has been argued that unstandardized use of diagnosis tools and research methods make comparisons and interpretations of scientific and epidemiological evidence difficult in this field. If multiple cognitive and psychological models have attempted to explain the mechanisms underlying high potentiality, there is a need to confront new scientific evidence with the old, to uproot a global understanding of what constitutes the neurocognitive profile of high-potential in gifted individuals. Another particularly relevant aspect of applied research on high potentiality concerns the challenges faced by individuals referred to as "twice exceptional" in the field of education and in their socio-affective life. Some individuals have demonstrated high forms of intelligence together with learning, affective or neurodevelopmental disorders posing the question as to whether compensating or exacerbating psycho-cognitive mechanisms might underlie their observed behavior. Elucidating same will prove relevant to questions concerning the possible need for differential diagnosis tools, specialized educational and clinical support. A meta-review of the latest findings from neuroscience to developmental psychology, might help in the conception and reviewing of intervention strategies.
Collapse
Affiliation(s)
- Tatiana Desvaux
- CNRS, Laboratoire de Neurosciences Cognitives, Aix-Marseille University, UMR 7291, Marseille, France
| | - J Danna
- CLLE, Université de Toulouse, CNRS, Toulouse, France
| | - J-L Velay
- CNRS, Laboratoire de Neurosciences Cognitives, Aix-Marseille University, UMR 7291, Marseille, France
| | - A Frey
- CNRS, Laboratoire de Neurosciences Cognitives, Aix-Marseille University, UMR 7291, Marseille, France
- INSPE of Aix-Marseille University, Marseille, France
| |
Collapse
|
3
|
Ren X, Libertus ME. Identifying the Neural Bases of Math Competence Based on Structural and Functional Properties of the Human Brain. J Cogn Neurosci 2023; 35:1212-1228. [PMID: 37172121 DOI: 10.1162/jocn_a_02008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Human populations show large individual differences in math performance and math learning abilities. Early math skill acquisition is critical for providing the foundation for higher quantitative skill acquisition and succeeding in modern society. However, the neural bases underlying individual differences in math competence remain unclear. Modern neuroimaging techniques allow us to not only identify distinct local cortical regions but also investigate large-scale neural networks underlying math competence both structurally and functionally. To gain insights into the neural bases of math competence, this review provides an overview of the structural and functional neural markers for math competence in both typical and atypical populations of children and adults. Although including discussion of arithmetic skills in children, this review primarily focuses on the neural markers associated with complex math skills. Basic number comprehension and number comparison skills are outside the scope of this review. By synthesizing current research findings, we conclude that neural markers related to math competence are not confined to one particular region; rather, they are characterized by a distributed and interconnected network of regions across the brain, primarily focused on frontal and parietal cortices. Given that human brain is a complex network organized to minimize the cost of information processing, an efficient brain is capable of integrating information from different regions and coordinating the activity of various brain regions in a manner that maximizes the overall efficiency of the network to achieve the goal. We end by proposing that frontoparietal network efficiency is critical for math competence, which enables the recruitment of task-relevant neural resources and the engagement of distributed neural circuits in a goal-oriented manner. Thus, it will be important for future studies to not only examine brain activation patterns of discrete regions but also examine distributed network patterns across the brain, both structurally and functionally.
Collapse
|
4
|
Zhu Y, Gong W, Lu X, Wang H. Effective connectivity analysis of brain networks of mathematically gifted adolescents using transfer entropy. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2023. [DOI: 10.3233/jifs-223819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Using functional neuroimaging, electrophysiological techniques and neural data processing techniques, neuroscientists have found that mathematically gifted adolescents exhibit unusual neurocognitive features in the activation of task-related brain regions. Hemispheric information interaction, functional reorganization of networks, and utilization of task-related brain regions are beneficial to rapid and efficient task processing. Based on Granger causality channel selection, the transfer entropy (TE) value between effective channels was computed, and the information flow patterns in the directed functional brain networks derived from electroencephalography (EEG) data during deductive reasoning tasks were explored. We evaluated the workspace configuration patterns of the brain network and the global integration characteristics of separated brain regions using node strength, motif, directed clustering coefficient and characteristic path length in the brain networks of mathematically gifted adolescents with effective connectivity. The empirical results demonstrated that a more integrated functional network at the global level and a more efficient clique at the local level support a pattern of workspace configuration in the mathematically gifted brain that is more conducive to task-related information processing.
Collapse
|
5
|
Waisman I, Brunner C, Grabner RH, Leikin M, Leikin R. (Lack of) neural efficiency related to general giftedness and mathematical excellence: An EEG study. Neuropsychologia 2023; 179:108448. [PMID: 36528220 DOI: 10.1016/j.neuropsychologia.2022.108448] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Previous studies on intelligence have demonstrated that higher abilities are associated with lower brain activation, indicating a higher neural efficiency. In other words, more able individuals use fewer brain resources. However, it is unclear whether the neural efficiency phenomenon also appears for mathematical performance, which is influenced by both domain-general giftedness and domain-specific competencies. Therefore, this study examined the effects of general giftedness (G) and excellence in mathematics (EM) on performance and brain activation while solving learning-based mathematical tasks that required translation from graphical to symbolic representations of functions. Overall, 118 high school students (aged 16-18) participated in the present study and were divided according to G and EM using a 2 × 2 study design. Participants worked on a function task requiring translation between symbolic and graphical representations of functions. Analyses of the behavioral data revealed positive effects of both G and EM on the accuracy of solutions and an interaction effect of both factors on reaction times, reflecting a positive effect of EM only among the gifted individuals. EEG analyses focused on oscillatory activity in the theta and alpha frequency bands and showed a significant effect of EM in the upper alpha band (10-12 Hz) event-related desynchronization (ERD) for both graphical and symbolic representations. Specifically, higher (compared to lower) EM was associated with a larger alpha ERD, indicating a higher level of brain activity. This stands in contrast with the neural efficiency phenomenon. These findings suggest that the neural efficiency phenomenon cannot be generalized to higher-order mathematical demands in high-performing individuals. Several explanations for this limitation are offered.
Collapse
Affiliation(s)
- Ilana Waisman
- Faculty of Education, RANGE Center, University of Haifa, Israel.
| | | | | | - Mark Leikin
- Faculty of Education, RANGE Center, University of Haifa, Israel
| | - Roza Leikin
- Faculty of Education, RANGE Center, University of Haifa, Israel.
| |
Collapse
|
6
|
Amalric M, Cantlon JF. Common Neural Functions during Children's Learning from Naturalistic and Controlled Mathematics Paradigms. J Cogn Neurosci 2022; 34:1164-1182. [PMID: 35303098 DOI: 10.1162/jocn_a_01848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Two major goals of human neuroscience are to understand how the brain functions in the real world and to measure neural processes under conditions that are ecologically valid. A critical step toward these goals is understanding how brain activity during naturalistic tasks that mimic the real world relates to brain activity in more traditional laboratory tasks. In this study, we used intersubject correlations to locate reliable stimulus-driven cerebral processes among children and adults in a naturalistic video lesson and a laboratory forced-choice task that shared the same arithmetic concept. We show that relative to a control condition with grammatical content, naturalistic and laboratory arithmetic tasks evoked overlapping activation within brain regions previously associated with math semantics. The regions of specific functional overlap between the naturalistic mathematics lesson and laboratory mathematics task included bilateral intraparietal cortex, which confirms that this region processes mathematical content independently of differences in task mode. These findings suggest that regions of the intraparietal cortex process mathematical content when children are learning about mathematics in a naturalistic setting.
Collapse
|
7
|
Nguyen M, Chang A, Micciche E, Meshulam M, Nastase SA, Hasson U. Teacher-student neural coupling during teaching and learning. Soc Cogn Affect Neurosci 2022; 17:367-376. [PMID: 34450637 PMCID: PMC8972247 DOI: 10.1093/scan/nsab103] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 08/10/2021] [Accepted: 08/26/2021] [Indexed: 11/17/2022] Open
Abstract
Human communication is remarkably versatile, enabling teachers to share highly abstracted and novel information with their students. What neural processes enable such transfer of information across brains during naturalistic teaching and learning? Here, a teacher was scanned in functional magnetic resonance imaging while giving an oral lecture with slides on a scientific topic followed by a review lecture. Students were then scanned while watching either the intact Lecture and Review (N = 20) or a temporally scrambled version of the lecture (N = 20). Using intersubject correlation, we observed widespread Teacher-Student neural coupling spanning sensory cortex and language regions along the superior temporal sulcus as well as higher-level regions including posterior medial cortex (PMC), superior parietal lobule, and dorsolateral and dorsomedial prefrontal cortex. Teacher-student alignment in higher-level areas was not observed when learning was disrupted by temporally scrambling the lecture. Moreover, teacher-student coupling in PMC was significantly correlated with learning: the more closely the student's brain mirrored the teacher's brain, the more the student improved their learning score. Together, these results suggest that the alignment of neural responses between teacher and students may reflect effective communication of complex information across brains in classroom settings.
Collapse
Affiliation(s)
- Mai Nguyen
- Department of Psychology, Princeton University, Princeton, NJ 08540, USA
| | - Ashley Chang
- Department of Psychology, Princeton University, Princeton, NJ 08540, USA
| | - Emily Micciche
- Department of Psychology, Vanderbilt University, Nashville, TN 37240, USA
| | - Meir Meshulam
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA
| | - Samuel A Nastase
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA
| | - Uri Hasson
- Department of Psychology, Princeton University, Princeton, NJ 08540, USA
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA
| |
Collapse
|
8
|
Zhang L, Gan JQ, Zhu Y, Wang J, Wang H. EEG source-space synchrostate transitions and Markov modeling in the math-gifted brain during a long-chain reasoning task. Hum Brain Mapp 2020; 41:3620-3636. [PMID: 32469458 PMCID: PMC7416043 DOI: 10.1002/hbm.25035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 04/06/2020] [Accepted: 04/26/2020] [Indexed: 12/23/2022] Open
Abstract
To reveal transition dynamics of global neuronal networks of math-gifted adolescents in handling long-chain reasoning, this study explores momentary phase-synchronized patterns, that is, electroencephalogram (EEG) synchrostates, of intracerebral sources sustained in successive 50 ms time windows during a reasoning task and non-task idle process. Through agglomerative hierarchical clustering for functional connectivity graphs and nested iterative cosine similarity tests, this study identifies seven general and one reasoning-specific prototypical functional connectivity patterns from all synchrostates. Markov modeling is performed for the time-sequential synchrostates of each trial to characterize the interstate transitions. The analysis reveals that default mode network, central executive network (CEN), dorsal attention network, cingulo-opercular network, left/right ventral frontoparietal network, and ventral visual network aperiodically recur over non-task or reasoning process, exhibiting high predictability in interactively reachable transitions. Compared to non-gifted subjects, math-gifted adolescents show higher fractional occupancy and mean duration in CEN and reasoning-triggered transient right frontotemporal network (rFTN) in the time course of the reasoning process. Statistical modeling of Markov chains reveals that there are more self-loops in CEN and rFTN of the math-gifted brain, suggesting robust state durability in temporally maintaining the topological structures. Besides, math-gifted subjects show higher probabilities in switching from the other types of synchrostates to CEN and rFTN, which represents more adaptive reconfiguration of connectivity pattern in the large-scale cortical network for focused task-related information processing, which underlies superior executive functions in controlling goal-directed persistence and high predictability of implementing imagination and creative thinking during long-chain reasoning.
Collapse
Affiliation(s)
- Li Zhang
- School of Medical Imaging, Bengbu Medical College, Bengbu, Anhui, China
| | - John Q Gan
- School of Computer Science and Electronic Engineering, University of Essex, Colchester, UK
| | - Yanmei Zhu
- Key Laboratory of Child Development and Learning Science of Ministry of Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, China
| | - Jing Wang
- School of Computer Science and Information Technology, Xinyang Normal University, Xinyang, Henan, China
| | - Haixian Wang
- Key Laboratory of Child Development and Learning Science of Ministry of Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
9
|
Wang H, Lyu F, Sugand K, Wong S, Lin Y, Wang Q. Learning Acetabular Fracture Classification using a Three-Dimensional Interactive Software: A Randomized Controlled Trial. ANATOMICAL SCIENCES EDUCATION 2019; 12:655-663. [PMID: 30411521 DOI: 10.1002/ase.1843] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 10/23/2018] [Accepted: 10/26/2018] [Indexed: 06/08/2023]
Abstract
Acetabular fractures are a real challenge for junior doctors as well as experienced orthopedic surgeons. Correct fracture classification is crucial for appreciating the fracture type, surgical planning, and predicting prognosis. Although three-dimensional (3D) tutorial is believed to improve the understanding of the complex anatomy structure, there have been few applications and randomized controlled trials to confirm it in orthopedics. This study aims to develop a 3D interactive software system for teaching acetabular fracture classification and evaluate its efficacy. Participants were randomly but evenly allocated into either the experimental group (who learned the acetabular fracture classification using a 3D software) or the control group (who used a traditional two-dimensional [2D] tutorial). Both groups were then tasked to classify 10 acetabular fractures and complete a five-point Likert scale on their satisfaction of each learning modality. To calculate significance (P < 0.05), independent t-test was used for normally distributed data whereas Mann-Whitney U test for non-normally distributed data. The experimental group significantly outperformed the control group (t (28) = 2.526, P = 0.017) with identifying correct acetabular fracture classification. Moreover, Likert scale score in the experimental group was also significantly higher than in the control group (Z = 2.477, P = 0.013). This 3D classification software has objectively and subjectively showed an advantage over the traditional 2D tutorial, resulting in an improved classification accuracy and higher Likert scale score. The 3D software has the potential to improve both clinical knowledge as well as identifying correct patient management in orthopedics.
Collapse
Affiliation(s)
- Huixiang Wang
- Orthopedic Traumatology, Trauma Center, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, Peoples' Republic of China
| | - Fei Lyu
- Orthopedic Traumatology, Trauma Center, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, Peoples' Republic of China
| | - Kapil Sugand
- Musculoskeletal Laboratory (MSk Lab), Charing Cross Hospital, Faculty of Medicine, Imperial College, London, United Kingdom
| | - Sheungting Wong
- Musculoskeletal Laboratory (MSk Lab), Charing Cross Hospital, Faculty of Medicine, Imperial College, London, United Kingdom
| | - Yanping Lin
- Institute of Biomedical Manufacturing and Life Quality Engineering, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, Peoples' Republic of China
| | - Qiugen Wang
- Orthopedic Traumatology, Trauma Center, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, Peoples' Republic of China
| |
Collapse
|
10
|
Yuan L, Kong F, Luo Y, Zeng S, Lan J, You X. Gender Differences in Large-Scale and Small-Scale Spatial Ability: A Systematic Review Based on Behavioral and Neuroimaging Research. Front Behav Neurosci 2019; 13:128. [PMID: 31275121 PMCID: PMC6591491 DOI: 10.3389/fnbeh.2019.00128] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/29/2019] [Indexed: 12/20/2022] Open
Abstract
Background: As we human beings are living in a multidimensional space all the time. Therefore, spatial ability is vital for the survival and development of individuals. However, males and females show gender differences in this ability. So, are these gender differences influenced by the scale type of spatial ability? It's not well specified. Therefore, to tackle this issue, we conducted the current research from the behavioral and neural level. Methods: Study 1 used the general meta-analysis method to explore whether individuals display the same gender differences in large- and small-scale spatial ability. Study 2 used the method of Activation Likelihood Estimation to identify the commonalities and distinctions of the brain activity between males and females on large- and small-scale spatial ability. Results: Study 1 showed that in behavior performance, males outperformed females in both large-scale and small-scale spatial ability, but the effect size of the gender difference in large-scale spatial ability is significantly greater than that in small-scale spatial ability. In addition, Study 2 showed that in terms of neural activity, males and females exhibited both similarities and differences no matter in large-scale or small-scale spatial ability. Especially, the contrast analysis between females and males demonstrated a stronger activation in the brain regions of bilateral lentiform nucleus and bilateral parahippocampal gyrus in large-scale spatial ability, and correspondence in right sub-gyral, right precuneus, and left middle frontal gyrus in small-scale spatial ability. Conclusions: The results indicated that the reason why females performed not so well in large-scale spatial ability was that they were more susceptible to emotions and their parahippocampal gyrus worked less efficiently than males; females performed not so well in small-scale spatial ability because they mostly adopted the egocentric strategy and their sub-gyral also worked less efficiently than males. The two different reasons have made for gender differences in favor of males in terms of spatial ability and such gender differences have different manifestations in large-scale and small-scale spatial ability. Possible implications of the results for understanding the issue of gender differences in spatial ability are discussed.
Collapse
Affiliation(s)
- Li Yuan
- Shaanxi Provincial Key Laboratory of Behavior and Cognitive Neuroscience, School of Psychology, Shaanxi Normal University, Xi'an, China
| | - Feng Kong
- Shaanxi Provincial Key Laboratory of Behavior and Cognitive Neuroscience, School of Psychology, Shaanxi Normal University, Xi'an, China
| | - Yangmei Luo
- Shaanxi Provincial Key Laboratory of Behavior and Cognitive Neuroscience, School of Psychology, Shaanxi Normal University, Xi'an, China
| | - Siyao Zeng
- Shaanxi Provincial Key Laboratory of Behavior and Cognitive Neuroscience, School of Psychology, Shaanxi Normal University, Xi'an, China
| | - Jijun Lan
- Shaanxi Provincial Key Laboratory of Behavior and Cognitive Neuroscience, School of Psychology, Shaanxi Normal University, Xi'an, China
| | - Xuqun You
- Shaanxi Provincial Key Laboratory of Behavior and Cognitive Neuroscience, School of Psychology, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
11
|
Li Y, Kong F, Ji M, Luo Y, Lan J, You X. Shared and Distinct Neural Bases of Large- and Small-Scale Spatial Ability: A Coordinate-Based Activation Likelihood Estimation Meta-Analysis. Front Neurosci 2019; 12:1021. [PMID: 30686987 PMCID: PMC6335367 DOI: 10.3389/fnins.2018.01021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 12/18/2018] [Indexed: 11/19/2022] Open
Abstract
Background: Spatial ability is vital for human survival and development. However, the relationship between large-scale and small-scale spatial ability remains poorly understood. To address this issue from a novel perspective, we performed an activation likelihood estimation (ALE) meta-analysis of neuroimaging studies to determine the shared and distinct neural bases of these two forms of spatial ability. Methods: We searched Web of Science, PubMed, PsycINFO, and Google Scholar for studies regarding "spatial ability" published within the last 20 years (January 1988 through June 2018). A final total of 103 studies (Table 1) involving 2,085 participants (male = 1,116) and 2,586 foci were incorporated into the meta-analysis. Results: Large-scale spatial ability was associated with activation in the limbic lobe, posterior lobe, occipital lobe, parietal lobe, right anterior lobe, frontal lobe, and right sub-lobar area. Small-scale spatial ability was associated with activation in the parietal lobe, occipital lobe, frontal lobe, right posterior lobe, and left sub-lobar area. Furthermore, conjunction analysis revealed overlapping regions in the sub-gyrus, right superior frontal gyrus, right superior parietal lobule, right middle occipital gyrus, right superior occipital gyrus, left inferior occipital gyrus, and precuneus. The contrast analysis demonstrated that the parahippocampal gyrus, left lingual gyrus, culmen, right middle temporal gyrus, left declive, left superior occipital gyrus, and right lentiform nucleus were more strongly activated during large-scale spatial tasks. In contrast, the precuneus, right inferior frontal gyrus, right precentral gyrus, left inferior parietal lobule, left supramarginal gyrus, left superior parietal lobule, right inferior occipital gyrus, and left middle frontal gyrus were more strongly activated during small-scale spatial tasks. Our results further indicated that there is no absolute difference in the cognitive strategies associated with the two forms of spatial ability (egocentric/allocentric). Conclusion: The results of the present study verify and expand upon the theoretical model of spatial ability proposed by Hegarty et al. Our analysis revealed a shared neural basis between large- and small-scale spatial abilities, as well as specific yet independent neural bases underlying each. Based on these findings, we proposed a more comprehensive version of the behavioral model.
Collapse
Affiliation(s)
- Yuan Li
- School of Psychology, Shaanxi Normal University, Xi'an, China
- Shaanxi Provincial Key Laboratory of Behavior and Cognitive Neuroscience, Xi'an, China
| | - Feng Kong
- School of Psychology, Shaanxi Normal University, Xi'an, China
- Shaanxi Provincial Key Laboratory of Behavior and Cognitive Neuroscience, Xi'an, China
| | - Ming Ji
- School of Psychology, Shaanxi Normal University, Xi'an, China
- Shaanxi Provincial Key Laboratory of Behavior and Cognitive Neuroscience, Xi'an, China
| | - Yangmei Luo
- School of Psychology, Shaanxi Normal University, Xi'an, China
- Shaanxi Provincial Key Laboratory of Behavior and Cognitive Neuroscience, Xi'an, China
| | - Jijun Lan
- School of Psychology, Shaanxi Normal University, Xi'an, China
- Shaanxi Provincial Key Laboratory of Behavior and Cognitive Neuroscience, Xi'an, China
| | - Xuqun You
- School of Psychology, Shaanxi Normal University, Xi'an, China
- Shaanxi Provincial Key Laboratory of Behavior and Cognitive Neuroscience, Xi'an, China
| |
Collapse
|
12
|
Varriale V, van der Molen MW, De Pascalis V. Mental rotation and fluid intelligence: A brain potential analysis. INTELLIGENCE 2018. [DOI: 10.1016/j.intell.2018.05.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
13
|
Myers T, Carey E, Szűcs D. Cognitive and Neural Correlates of Mathematical Giftedness in Adults and Children: A Review. Front Psychol 2017; 8:1646. [PMID: 29118725 PMCID: PMC5661150 DOI: 10.3389/fpsyg.2017.01646] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 09/07/2017] [Indexed: 12/01/2022] Open
Abstract
Most mathematical cognition research has focused on understanding normal adult function and child development as well as mildly and moderately impaired mathematical skill, often labeled developmental dyscalculia and/or mathematical learning disability. In contrast, much less research is available on cognitive and neural correlates of gifted/excellent mathematical knowledge in adults and children. In order to facilitate further inquiry into this area, here we review 40 available studies, which examine the cognitive and neural basis of gifted mathematics. Studies associated a large number of cognitive factors with gifted mathematics, with spatial processing and working memory being the most frequently identified contributors. However, the current literature suffers from low statistical power, which most probably contributes to variability across findings. Other major shortcomings include failing to establish domain and stimulus specificity of findings, suggesting causation without sufficient evidence and the frequent use of invalid backward inference in neuro-imaging studies. Future studies must increase statistical power and neuro-imaging studies must rely on supporting behavioral data when interpreting findings. Studies should investigate the factors shown to correlate with math giftedness in a more specific manner and determine exactly how individual factors may contribute to gifted math ability.
Collapse
Affiliation(s)
- Timothy Myers
- Department of Psychology, Centre for Neuroscience in Education, University of Cambridge, Cambridge, United Kingdom
| | | | - Dénes Szűcs
- Department of Psychology, Centre for Neuroscience in Education, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
14
|
Martínez K, Janssen J, Pineda-Pardo JÁ, Carmona S, Román FJ, Alemán-Gómez Y, Garcia-Garcia D, Escorial S, Quiroga MÁ, Santarnecchi E, Navas-Sánchez FJ, Desco M, Arango C, Colom R. Individual differences in the dominance of interhemispheric connections predict cognitive ability beyond sex and brain size. Neuroimage 2017; 155:234-244. [DOI: 10.1016/j.neuroimage.2017.04.029] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 03/28/2017] [Accepted: 04/13/2017] [Indexed: 01/25/2023] Open
|
15
|
Searle JA, Hamm JP. Mental rotation: an examination of assumptions. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2017; 8. [PMID: 28387440 DOI: 10.1002/wcs.1443] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 01/26/2017] [Accepted: 02/24/2017] [Indexed: 11/12/2022]
Abstract
Since first presented by Shepard and Metzler, Science 1971, 171: 701-703, mental rotation has been described as a rotary transformation of a visual stimulus allowing it to be represented in a new orientation. For a given stimulus, the transformation is thought to occur at a constant speed, though speed may vary between stimuli; three-dimensional abstract shapes made out of blocks tend to be rotated much more slowly than alphanumeric characters or line drawings of common objects. Rotation is also presumed to be performed through the shortest angle. These assumptions are based upon the fact that response times tend to increase with angle of rotation, peaking at 180° of separation for abstract block figures or from upright for common objects and alphanumeric stimuli. The symmetry about 180° provides evidence supporting rotation through the shortest angle. In order to determine the shortest direction, the current orientation of the stimulus is assumed to be known prior to mental rotation. Moreover, in order to determine the current orientation of a common object or alphanumeric stimulus, it is assumed the stimulus is identified prior to mental rotation because the current orientation is defined by what the object is. In mirror/normal discriminations or left/right facing discriminations of rotated stimuli response times are often examined by collapsing over response options as this variable is assumed to be uninteresting in terms of mental rotation. This article examines these assumptions, and suggests that many of them are not entirely safe. WIREs Cogn Sci 2017, 8:e1443. doi: 10.1002/wcs.1443 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Jordan A Searle
- Cognitive Neuroscience Research Group, School of Psychology, The University of Auckland, Auckland, New Zealand
| | - Jeff P Hamm
- Cognitive Neuroscience Research Group, School of Psychology, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
16
|
Nusbaum F, Hannoun S, Kocevar G, Stamile C, Fourneret P, Revol O, Sappey-Marinier D. Hemispheric Differences in White Matter Microstructure between Two Profiles of Children with High Intelligence Quotient vs. Controls: A Tract-Based Spatial Statistics Study. Front Neurosci 2017; 11:173. [PMID: 28420955 PMCID: PMC5376583 DOI: 10.3389/fnins.2017.00173] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 03/15/2017] [Indexed: 01/09/2023] Open
Abstract
Objectives: The main goal of this study was to investigate and compare the neural substrate of two children's profiles of high intelligence quotient (HIQ). Methods: Two groups of HIQ children were included with either a homogeneous (Hom-HIQ: n = 20) or a heterogeneous IQ profile (Het-HIQ: n = 24) as defined by a significant difference between verbal comprehension index and perceptual reasoning index. Diffusion tensor imaging was used to assess white matter (WM) microstructure while tract-based spatial statistics (TBSS) analysis was performed to detect and localize WM regional differences in fractional anisotropy (FA), mean diffusivity, axial (AD), and radial diffusivities. Quantitative measurements were performed on 48 regions and 21 fiber-bundles of WM. Results: Hom-HIQ children presented higher FA than Het-HIQ children in widespread WM regions including central structures, and associative intra-hemispheric WM fasciculi. AD was also greater in numerous WM regions of Total-HIQ, Hom-HIQ, and Het-HIQ groups when compared to the Control group. Hom-HIQ and Het-HIQ groups also differed by their hemispheric lateralization in AD differences compared to Controls. Het-HIQ and Hom-HIQ groups showed a lateralization ratio (left/right) of 1.38 and 0.78, respectively. Conclusions: These findings suggest that both inter- and intra-hemispheric WM integrity are enhanced in HIQ children and that neural substrate differs between Hom-HIQ and Het-HIQ. The left hemispheric lateralization of Het-HIQ children is concordant with their higher verbal index while the relative right hemispheric lateralization of Hom-HIQ children is concordant with their global brain processing and adaptation capacities as evidenced by their homogeneous IQ.
Collapse
Affiliation(s)
- Fanny Nusbaum
- Laboratoire Parcours Santé Systémique (EA4129), Université Claude Bernard-Lyon 1 & Centre PSYRENELyon, France
| | - Salem Hannoun
- CREATIS (CNRS UMR5220 & INSERM U1206), Université Claude Bernard-Lyon 1Villeurbanne, France.,Faculty of Medicine, Abu-Haidar Neuroscience Institute, American University of BeirutBeirut, Lebanon
| | - Gabriel Kocevar
- CREATIS (CNRS UMR5220 & INSERM U1206), Université Claude Bernard-Lyon 1Villeurbanne, France
| | - Claudio Stamile
- CREATIS (CNRS UMR5220 & INSERM U1206), Université Claude Bernard-Lyon 1Villeurbanne, France
| | - Pierre Fourneret
- Service de Psychopathologie du Développement, Hôpital Femme-Mère-Enfant, Hospices Civils de LyonBron, France
| | - Olivier Revol
- Service de Psychopathologie de l'Enfant et de l'Adolescent, Hôpital Neurologique, Hospices Civils de LyonBron, France
| | - Dominique Sappey-Marinier
- CREATIS (CNRS UMR5220 & INSERM U1206), Université Claude Bernard-Lyon 1Villeurbanne, France.,CERMEP-Imagerie du Vivant, Université de LyonBron, France
| |
Collapse
|
17
|
Gilger JW, Bayda M, Olulade OA, Altman MN, O'Boyle M. Preliminary Report on Neuroanatomical Differences Among Reading Disabled, Nonverbally Gifted, and Gifted-Reading Disabled College Students. Dev Neuropsychol 2017; 42:25-38. [PMID: 28128987 DOI: 10.1080/87565641.2016.1256402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Regional comparisons (cortical surface area and thickness) were performed on a well described sample of adults with reading disability alone (RD), nonverbal giftedness alone (G), and reading disability and nonverbal giftedness combined (GRD). These anatomical results are considered in relation to behavioral and functional work previously reported on this sample. GRD-RD regional differences were found in both hemispheres and were more common than GRD-G differences. Regional differences were found in the temporal, parietal, occipital and frontal lobes. While these data are preliminary given the small sample sizes, they suggest future avenues of research on the neurodevelopment of atypical samples.
Collapse
Affiliation(s)
- Jeffrey W Gilger
- a Psychological Sciences , University of California , Merced , California
| | - Mollie Bayda
- b Department of Psychiatry , University of California , San Francisco , California
| | - Olumide A Olulade
- c Center for the Study of Learning , Georgetown University Medical Center , Washington , District of Columbia
| | - Meaghan N Altman
- a Psychological Sciences , University of California , Merced , California
| | - Michael O'Boyle
- d Department of Human Development and Family Studies , Texas Tech University , Lubbock , Texas
| |
Collapse
|
18
|
Origins of the brain networks for advanced mathematics in expert mathematicians. Proc Natl Acad Sci U S A 2016; 113:4909-17. [PMID: 27071124 DOI: 10.1073/pnas.1603205113] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The origins of human abilities for mathematics are debated: Some theories suggest that they are founded upon evolutionarily ancient brain circuits for number and space and others that they are grounded in language competence. To evaluate what brain systems underlie higher mathematics, we scanned professional mathematicians and mathematically naive subjects of equal academic standing as they evaluated the truth of advanced mathematical and nonmathematical statements. In professional mathematicians only, mathematical statements, whether in algebra, analysis, topology or geometry, activated a reproducible set of bilateral frontal, Intraparietal, and ventrolateral temporal regions. Crucially, these activations spared areas related to language and to general-knowledge semantics. Rather, mathematical judgments were related to an amplification of brain activity at sites that are activated by numbers and formulas in nonmathematicians, with a corresponding reduction in nearby face responses. The evidence suggests that high-level mathematical expertise and basic number sense share common roots in a nonlinguistic brain circuit.
Collapse
|
19
|
Zhang L, Gan JQ, Wang H. Neurocognitive mechanisms of mathematical giftedness: A literature review. APPLIED NEUROPSYCHOLOGY-CHILD 2016; 6:79-94. [PMID: 27049546 DOI: 10.1080/21622965.2015.1119692] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
20
|
Navas-Sánchez FJ, Carmona S, Alemán-Gómez Y, Sánchez-González J, Guzmán-de-Villoria J, Franco C, Robles O, Arango C, Desco M. Cortical morphometry in frontoparietal and default mode networks in math-gifted adolescents. Hum Brain Mapp 2016; 37:1893-902. [PMID: 26917433 DOI: 10.1002/hbm.23143] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 01/12/2016] [Accepted: 02/08/2016] [Indexed: 12/19/2022] Open
Abstract
Math-gifted subjects are characterized by above-age performance in intelligence tests, exceptional creativity, and high task commitment. Neuroimaging studies reveal enhanced functional brain organization and white matter microstructure in the frontoparietal executive network of math-gifted individuals. However, the cortical morphometry of these subjects remains largely unknown. The main goal of this study was to compare the cortical morphometry of math-gifted adolescents with that of an age- and IQ-matched control group. We used surface-based methods to perform a vertex-wise analysis of cortical thickness and surface area. Our results show that math-gifted adolescents present a thinner cortex and a larger surface area in key regions of the frontoparietal and default mode networks, which are involved in executive processing and creative thinking, respectively. The combination of reduced cortical thickness and larger surface area suggests above-age neural maturation of these networks in math-gifted individuals. Hum Brain Mapp 37:1893-1902, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Francisco J Navas-Sánchez
- Departamento De Bioingeniería E Ingeniería Aeroespacial, Universidad Carlos III Madrid, Madrid, Spain.,Centro De Investigación Biomédica En Red De Salud Mental (CIBERSAM), Madrid, Spain
| | - Susana Carmona
- Departamento De Bioingeniería E Ingeniería Aeroespacial, Universidad Carlos III Madrid, Madrid, Spain
| | - Yasser Alemán-Gómez
- Departamento De Bioingeniería E Ingeniería Aeroespacial, Universidad Carlos III Madrid, Madrid, Spain.,Centro De Investigación Biomédica En Red De Salud Mental (CIBERSAM), Madrid, Spain
| | | | - Juan Guzmán-de-Villoria
- Departamento De Radiología, Hospital General Universitario Gregorio Marañón, Instituto De Investigación Biomédica Gregorio Marañón, Madrid, Spain
| | - Carolina Franco
- Departamento De Psiquiatría Infantil Y Adolescente, Hospital General Universitario Gregorio Marañón, Instituto De Investigación Biomédica Gregorio Marañón, Madrid, Spain
| | - Olalla Robles
- Departamento De Psiquiatría Infantil Y Adolescente, Hospital General Universitario Gregorio Marañón, Instituto De Investigación Biomédica Gregorio Marañón, Madrid, Spain.,Centro De Referencia Estatal De Atención Al Daño Cerebral (CEADAC), Madrid, Spain
| | - Celso Arango
- Centro De Investigación Biomédica En Red De Salud Mental (CIBERSAM), Madrid, Spain.,Departamento De Psiquiatría Infantil Y Adolescente, Hospital General Universitario Gregorio Marañón, Instituto De Investigación Biomédica Gregorio Marañón, Madrid, Spain.,Departamento De Psiquiatría, Facultad De Medicina, Universidad Complutense De Madrid, Madrid, Spain
| | - Manuel Desco
- Departamento De Bioingeniería E Ingeniería Aeroespacial, Universidad Carlos III Madrid, Madrid, Spain.,Centro De Investigación Biomédica En Red De Salud Mental (CIBERSAM), Madrid, Spain.,Unidad De Medicina Y Cirugía Experimental, Hospital General Universitario Gregorio Marañón, Instituto De Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| |
Collapse
|
21
|
Zhu H, Zhu J, Bao FS, Liu H, Zhu X, Wu T, Yang L, Zou Y, Zhang R, Zheng G. Statistical parametric mapping for analyzing interictal magnetoencephalography in patients with left frontal lobe epilepsy. Seizure 2015; 34:38-43. [PMID: 26707266 DOI: 10.1016/j.seizure.2015.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 11/11/2015] [Accepted: 11/13/2015] [Indexed: 10/22/2022] Open
Abstract
PURPOSE Frontal lobe epilepsy is a common epileptic disorder and is characterized by recurring seizures that arise in the frontal lobes. The purpose of this study is to identify the epileptogenic regions and other abnormal regions in patients with left frontal lobe epilepsy (LFLE) based on the magnetoencephalogram (MEG), and to understand the effects of clinical variables on brain activities in patients with LFLE. METHOD Fifteen patients with LFLE (23.20 ± 8.68 years, 6 female and 9 male) and 16 healthy controls (23.13 ± 7.66 years, 6 female and 10 male) were included in resting-stage MEG examinations. Epileptogenic regions of LFLE patients were confirmed by surgery. Regional brain activations were quantified using statistical parametric mapping (SPM). The correlation between the activations of the abnormal brain regions and the clinical seizure parameters were computed for LFLE patients. RESULTS Brain activations of LFLE patients were significantly elevated in left superior/middle/inferior frontal gyri, postcentral gyrus, inferior temporal gyrus, insula, parahippocampal gyrus and amygdala, including the epileptogenic regions. Remarkable decreased activations were found mainly in the left parietal gyrus and precuneus. There is a positive correlation between the duration of the epilepsy (in month) and activations of the abnormal regions, while no relation was found between age of seizure onset (year), seizure frequency and the regions of the abnormal activity of the epileptic patients. CONCLUSION Our findings suggest that the aberrant brain activities of LFLE patients were not restricted to the epileptogenic zones. Long duration of epilepsy might induce further functional damage in patients with LFLE.
Collapse
Affiliation(s)
- Haitao Zhu
- Department of Neurosurgery, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Jinlong Zhu
- Department of Neurosurgery, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Forrest Sheng Bao
- Department of Electrical and Computer Engineering, University of Akron, Akron, OH, USA
| | - Hongyi Liu
- Department of Neurosurgery, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Xuchuang Zhu
- Department of Neurosurgery, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Ting Wu
- MEG Center, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Lu Yang
- MEG Center, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Yuanjie Zou
- Department of Neurosurgery, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Rui Zhang
- Department of Neurosurgery, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing 210029, Jiangsu, China.
| | - Gang Zheng
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu, China; College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, Jiangsu, China.
| |
Collapse
|
22
|
Zhang L, Gan JQ, Wang H. Localization of neural efficiency of the mathematically gifted brain through a feature subset selection method. Cogn Neurodyn 2015; 9:495-508. [PMID: 26379800 PMCID: PMC4568001 DOI: 10.1007/s11571-015-9345-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 04/29/2015] [Accepted: 05/18/2015] [Indexed: 11/29/2022] Open
Abstract
Based on the neural efficiency hypothesis and task-induced EEG gamma-band response (GBR), this study investigated the brain regions where neural resource could be most efficiently recruited by the math-gifted adolescents in response to varying cognitive demands. In this experiment, various GBR-based mental states were generated with three factors (level of mathematical ability, task complexity, and short-term learning) modulating the level of neural activation. A feature subset selection method based on the sequential forward floating search algorithm was used to identify an "optimal" combination of EEG channel locations, where the corresponding GBR feature subset could obtain the highest accuracy in discriminating pairwise mental states influenced by each experiment factor. The integrative results from multi-factor selections suggest that the right-lateral fronto-parietal system is highly involved in neural efficiency of the math-gifted brain, primarily including the bilateral superior frontal, right inferior frontal, right-lateral central and right temporal regions. By means of the localization method based on single-trial classification of mental states, new GBR features and EEG channel-based brain regions related to mathematical giftedness were identified, which could be useful for the brain function improvement of children/adolescents in mathematical learning through brain-computer interface systems.
Collapse
Affiliation(s)
- Li Zhang
- />Key Lab of Child Development and Learning Science of Ministry of Education, Research Center for Learning Science, Southeast University, Nanjing, 210096 Jiangsu China
| | - John Q. Gan
- />Key Lab of Child Development and Learning Science of Ministry of Education, Research Center for Learning Science, Southeast University, Nanjing, 210096 Jiangsu China
- />School of Computer Science and Electronic Engineering, University of Essex, Colchester, UK
| | - Haixian Wang
- />Key Lab of Child Development and Learning Science of Ministry of Education, Research Center for Learning Science, Southeast University, Nanjing, 210096 Jiangsu China
| |
Collapse
|
23
|
Zhang L, Gan JQ, Wang H. Mathematically gifted adolescents mobilize enhanced workspace configuration of theta cortical network during deductive reasoning. Neuroscience 2015; 289:334-48. [PMID: 25595993 DOI: 10.1016/j.neuroscience.2014.12.072] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 12/21/2014] [Accepted: 12/23/2014] [Indexed: 11/30/2022]
Abstract
Previous studies have established the importance of the fronto-parietal brain network in the information processing of reasoning. At the level of cortical source analysis, this eletroencepalogram (EEG) study investigates the functional reorganization of the theta-band (4-8Hz) neurocognitive network of mathematically gifted adolescents during deductive reasoning. Depending on the dense increase of long-range phase synchronizations in the reasoning process, math-gifted adolescents show more significant adaptive reorganization and enhanced "workspace" configuration in the theta network as compared with average-ability control subjects. The salient areas are mainly located in the anterior cortical vertices of the fronto-parietal network. Further correlation analyses have shown that the enhanced workspace configuration with respect to the global topological metrics of the theta network in math-gifted subjects is correlated with the intensive frontal midline theta (fm theta) response that is related to strong neural effort for cognitive events. These results suggest that by investing more cognitive resources math-gifted adolescents temporally mobilize an enhanced task-related global neuronal workspace, which is manifested as a highly integrated fronto-parietal information processing network during the reasoning process.
Collapse
Affiliation(s)
- L Zhang
- Key Lab of Child Development and Learning Science of Ministry of Education, Research Center for Learning Science, Southeast University, Nanjing, Jiangsu 210096, China
| | - J Q Gan
- Key Lab of Child Development and Learning Science of Ministry of Education, Research Center for Learning Science, Southeast University, Nanjing, Jiangsu 210096, China; School of Computer Science and Electronic Engineering, University of Essex, Colchester, UK
| | - H Wang
- Key Lab of Child Development and Learning Science of Ministry of Education, Research Center for Learning Science, Southeast University, Nanjing, Jiangsu 210096, China.
| |
Collapse
|
24
|
Zhang L, Gan JQ, Wang H. Optimized Gamma Synchronization Enhances Functional Binding of Fronto-Parietal Cortices in Mathematically Gifted Adolescents during Deductive Reasoning. Front Hum Neurosci 2014; 8:430. [PMID: 24966829 PMCID: PMC4052339 DOI: 10.3389/fnhum.2014.00430] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 05/28/2014] [Indexed: 11/25/2022] Open
Abstract
As enhanced fronto-parietal network has been suggested to support reasoning ability of math-gifted adolescents, the main goal of this EEG source analysis is to investigate the temporal binding of the gamma-band (30–60 Hz) synchronization between frontal and parietal cortices in adolescents with exceptional mathematical ability, including the functional connectivity of gamma neurocognitive network, the temporal dynamics of fronto-parietal network (phase-locking durations and network lability in time domain), and the self-organized criticality of synchronizing oscillation. Compared with the average-ability subjects, the math-gifted adolescents show a highly integrated fronto-parietal network due to distant gamma phase-locking oscillations, which is indicated by lower modularity of the global network topology, more “connector bridges” between the frontal and parietal cortices and less “connector hubs” in the sensorimotor cortex. The time domain analysis finds that, while maintaining more stable phase dynamics of the fronto-parietal coupling, the math-gifted adolescents are characterized by more extensive fronto-parietal connection reconfiguration. The results from sample fitting in the power-law model further find that the phase-locking durations in the math-gifted brain abides by a wider interval of the power-law distribution. This phase-lock distribution mechanism could represent a relatively optimized pattern for the functional binding of frontal–parietal network, which underlies stable fronto-parietal connectivity and increases flexibility of timely network reconfiguration.
Collapse
Affiliation(s)
- Li Zhang
- Key Laboratory of Child Development and Learning Science of Ministry of Education, Research Center for Learning Science, Southeast University , Nanjing , China
| | - John Q Gan
- Key Laboratory of Child Development and Learning Science of Ministry of Education, Research Center for Learning Science, Southeast University , Nanjing , China ; School of Computer Science and Electronic Engineering, University of Essex , Colchester , UK
| | - Haixian Wang
- Key Laboratory of Child Development and Learning Science of Ministry of Education, Research Center for Learning Science, Southeast University , Nanjing , China
| |
Collapse
|
25
|
Navas-Sánchez FJ, Alemán-Gómez Y, Sánchez-Gonzalez J, Guzmán-De-Villoria JA, Franco C, Robles O, Arango C, Desco M. White matter microstructure correlates of mathematical giftedness and intelligence quotient. Hum Brain Mapp 2013; 35:2619-31. [PMID: 24038774 DOI: 10.1002/hbm.22355] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 05/31/2013] [Accepted: 06/04/2013] [Indexed: 11/06/2022] Open
Abstract
Recent functional neuroimaging studies have shown differences in brain activation between mathematically gifted adolescents and controls. The aim of this study was to investigate the relationship between mathematical giftedness, intelligent quotient (IQ), and the microstructure of white matter tracts in a sample composed of math-gifted adolescents and aged-matched controls. Math-gifted subjects were selected through a national program based on detecting enhanced visuospatial abilities and creative thinking. We used diffusion tensor imaging to assess white matter microstructure in neuroanatomical connectivity. The processing included voxel-wise and region of interest-based analyses of the fractional anisotropy (FA), a parameter which is purportedly related to white matter microstructure. In a whole-sample analysis, IQ showed a significant positive correlation with FA, mainly in the corpus callosum, supporting the idea that efficient information transfer between hemispheres is crucial for higher intellectual capabilities. In addition, math-gifted adolescents showed increased FA (adjusted for IQ) in white matter tracts connecting frontal lobes with basal ganglia and parietal regions. The enhanced anatomical connectivity observed in the forceps minor and splenium may underlie the greater fluid reasoning, visuospatial working memory, and creative capabilities of these children.
Collapse
Affiliation(s)
- Francisco J Navas-Sánchez
- Unidad de Medicina y Cirugía Experimental, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Ward J, Thompson-Schill S. Highlights of the first two volumes and the new challenges ahead. Cogn Neurosci 2012. [DOI: 10.1080/17588928.2012.694626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
27
|
Hoppe C, Fliessbach K, Stausberg S, Stojanovic J, Trautner P, Elger CE, Weber B. A key role for experimental task performance: Effects of math talent, gender and performance on the neural correlates of mental rotation. Brain Cogn 2012; 78:14-27. [DOI: 10.1016/j.bandc.2011.10.008] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 10/13/2011] [Accepted: 10/18/2011] [Indexed: 01/22/2023]
|
28
|
van den Bos W, Crone EA, Güroğlu B. Brain function during probabilistic learning in relation to IQ and level of education. Dev Cogn Neurosci 2011; 2 Suppl 1:S78-89. [PMID: 22682914 DOI: 10.1016/j.dcn.2011.09.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 09/29/2011] [Accepted: 09/29/2011] [Indexed: 12/21/2022] Open
Abstract
Knowing how to adapt your behavior based on feedback lies at the core of successful learning. We investigated the relation between brain function, grey matter volume, educational level and IQ in a Dutch adolescent sample. In total 45 healthy volunteers between ages 13 and 16 were recruited from schools for pre-vocational and pre-university education. For each individual, IQ was estimated using two subtests from the WISC-III-R (similarities and block design). While in the magnetic resonance imaging (MRI) scanner, participants performed a probabilistic learning task. Behavioral comparisons showed that participants with higher IQ used a more adaptive learning strategy after receiving positive feedback. Analysis of neural activation revealed that higher IQ was associated with increased activation in DLPFC and dACC when receiving positive feedback, specifically for rules with low reward probability (i.e., unexpected positive feedback). Furthermore, VBM analyses revealed that IQ correlated positively with grey matter volume within these regions. These results provide support for IQ-related individual differences in the developmental time courses of neural circuitry supporting feedback-based learning. Current findings are interpreted in terms of a prolonged window of flexibility and opportunity for adolescents with higher IQ scores.
Collapse
|
29
|
Desco M, Navas-Sanchez FJ, Sanchez-González J, Reig S, Robles O, Franco C, Guzmán-De-Villoria JA, García-Barreno P, Arango C. Mathematically gifted adolescents use more extensive and more bilateral areas of the fronto-parietal network than controls during executive functioning and fluid reasoning tasks. Neuroimage 2011; 57:281-292. [PMID: 21463696 DOI: 10.1016/j.neuroimage.2011.03.063] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 03/01/2011] [Accepted: 03/22/2011] [Indexed: 10/18/2022] Open
Abstract
The main goal of this study was to investigate the neural substrates of fluid reasoning and visuospatial working memory in adolescents with precocious mathematical ability. The study population comprised two groups of adolescents: 13 math-gifted adolescents and 14 controls with average mathematical skills. Patterns of activation specific to reasoning tasks in math-gifted subjects were examined using functional magnetic resonance images acquired while the subjects were performing Raven's Advanced Progressive Matrices (RAPM) and the Tower of London (TOL) tasks. During the tasks, both groups showed significant activations in the frontoparietal network. In the math-gifted group, clusters of activation were always bilateral and more regions were recruited, especially in the right hemisphere. In the TOL task, math-gifted adolescents showed significant hyper-activations relative to controls in the precuneus, superior occipital lobe (BA 19), and medial temporal lobe (BA 39). The maximum differences between the groups were detected during RAPM tasks at the highest level of difficulty, where math-gifted subjects showed significant activations relative to controls in the right inferior parietal lobule (BA 40), anterior cingulated gyrus (BA 32), and frontal (BA 9, and BA 6) areas. Our results support the hypothesis that greater ability for complex mathematical reasoning may be related to more bilateral patterns of activation and that increased activation in the parietal and frontal regions of math-gifted adolescents is associated with enhanced skills in visuospatial processing and logical reasoning.
Collapse
Affiliation(s)
- Manuel Desco
- Dept. of Bioengineering and Aerospace Engineering, University Carlos III of Madrid, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain; Dept. of Experimental Surgery and Medicine, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Francisco J Navas-Sanchez
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain; Dept. of Experimental Surgery and Medicine, Hospital General Universitario Gregorio Marañón, Madrid, Spain.
| | - Javier Sanchez-González
- Dept. of Experimental Surgery and Medicine, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Philips Healthcare, Clinical Science, Madrid, Spain
| | - Santiago Reig
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain; Dept. of Experimental Surgery and Medicine, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Olalla Robles
- Adolescent Psychiatry Unit, Dept. of Psychiatry, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Centro de Referencia Estatal de Atención al Daño Cerebral (CEADAC), Madrid, Spain
| | - Carolina Franco
- Adolescent Psychiatry Unit, Dept. of Psychiatry, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Juan A Guzmán-De-Villoria
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain; Diagnostic Radiology Dept, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Pedro García-Barreno
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain; Dept. of Experimental Surgery and Medicine, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Spanish Royal Academy of Mathematical, Physical and Natural Sciences Madrid, Spain
| | - Celso Arango
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain; Adolescent Psychiatry Unit, Dept. of Psychiatry, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| |
Collapse
|
30
|
Preusse F, Elke VDM, Deshpande G, Krueger F, Wartenburger I. Fluid intelligence allows flexible recruitment of the parieto-frontal network in analogical reasoning. Front Hum Neurosci 2011; 5:22. [PMID: 21415916 PMCID: PMC3049247 DOI: 10.3389/fnhum.2011.00022] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 02/17/2011] [Indexed: 11/28/2022] Open
Abstract
Fluid intelligence is the ability to think flexibly and to understand abstract relations. People with high fluid intelligence (hi-fluIQ) perform better in analogical reasoning tasks than people with average fluid intelligence (ave-fluIQ). Although previous neuroimaging studies reported involvement of parietal and frontal brain regions in geometric analogical reasoning (which is a prototypical task for fluid intelligence), however, neuroimaging findings on geometric analogical reasoning in hi-fluIQ are sparse. Furthermore, evidence on the relation between brain activation and intelligence while solving cognitive tasks is contradictory. The present study was designed to elucidate the cerebral correlates of geometric analogical reasoning in a sample of hi-fluIQ and ave-fluIQ high school students. We employed a geometric analogical reasoning task with graded levels of task difficulty and confirmed the involvement of the parieto-frontal network in solving this task. In addition to characterizing the brain regions involved in geometric analogical reasoning in hi-fluIQ and ave-fluIQ, we found that blood oxygenation level dependency (BOLD) signal changes were greater for hi-fluIQ than for ave-fluIQ in parietal brain regions. However, ave-fluIQ showed greater BOLD signal changes in the anterior cingulate cortex and medial frontal gyrus than hi-fluIQ. Thus, we showed that a similar network of brain regions is involved in geometric analogical reasoning in both groups. Interestingly, the relation between brain activation and intelligence is not mono-directional, but rather, it is specific for each brain region. The negative brain activation-intelligence relationship in frontal brain regions in hi-fluIQ goes along with a better behavioral performance and reflects a lower demand for executive monitoring compared to ave-fluIQ individuals. In conclusion, our data indicate that flexibly modulating the extent of regional cerebral activity is characteristic for fluid intelligence.
Collapse
Affiliation(s)
- Franziska Preusse
- Department of Neurology, Berlin NeuroImaging Center, Charité – Universitaetsmedizin BerlinBerlin, Germany
- Department of Psychology, Humboldt-Universitaet zu BerlinBerlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universitaet zu BerlinBerlin, Germany
| | - van der Meer Elke
- Department of Psychology, Humboldt-Universitaet zu BerlinBerlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universitaet zu BerlinBerlin, Germany
| | - Gopikrishna Deshpande
- Department of Electrical and Computer Engineering, AU Magnetic Resonance Imaging Research Center, Auburn UniversityAuburn, AL, USA
- Department of Psychology, Auburn UniversityAuburn, AL, USA
| | - Frank Krueger
- Department of Molecular Neuroscience, Krasnow Institute for Advanced Study, George Mason UniversityFairfax, VA, USA
| | - Isabell Wartenburger
- Department of Neurology, Berlin NeuroImaging Center, Charité – Universitaetsmedizin BerlinBerlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universitaet zu BerlinBerlin, Germany
- Center of Excellence Cognitive Sciences, Department of Linguistics, University of PotsdamPotsdam, Germany
| |
Collapse
|