1
|
Sreesada P, Vandana, Krishnan B, Amrutha R, Chavan Y, Alfia H, Jyothis A, Venugopal P, Aradhya R, Suravajhala P, Nair BG. Matrix metalloproteinases: Master regulators of tissue morphogenesis. Gene 2025; 933:148990. [PMID: 39393432 DOI: 10.1016/j.gene.2024.148990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/01/2024] [Accepted: 10/07/2024] [Indexed: 10/13/2024]
Abstract
The matrix metalloproteinases (MMPs) are a class of zinc proteases that aid in breaking most of the extracellular matrix's (ECM) constituents. Additionally, MMPs play a part in processing elements that affect inflammation, cell development and proliferation, and many more. In vivo genetic study of the Drosophila MMPs Mmp1 and Mmp2 reveals they are essential for tissue remodeling but not embryonic development. The canonical and conserved MMP domain organization is present in both fly MMPs. Because Mmp2 appeared to be membrane-anchored and Mmp1 appeared to be released, the pericellular localization of Drosophila MMPs has been used to classify them. This suggests that the protein's localization is the critical distinction in this small MMP family. The signal sequence, the propeptide, the catalytic domain, and the hemopexin-like domain are among the numerous domains found in MMPs. Following secretion from the extracellular environment to the endoplasmic reticulum, the pre-domain, also known as the signal sequence, serves to direct MMP production. MMPs of the secretory and membrane types (MT-MMPs) are two groups of MMPs that have been widely recognized. Subgroups of MMPs are categorized based on their structure and function. While analysis of the intracellular activity of human MMPs is challenging because the human genome contains around 23 distinct MMPs with overlapping functions, only two MMPs, dMMP1 and dMMP2, are encoded by the Drosophila melanogaster genome. On the other hand, the balance between MMPs and the family members are implicated in various pathophysiology/progression of diseases, but whether or not the mechanisms of MMP inhibition are not clearly understood as master regulators. In this review, we outline the role of MMPs as master regulators of tissue morphogenesis.
Collapse
Affiliation(s)
- P Sreesada
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana PO 690525, Kerala, India
| | - Vandana
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana PO 690525, Kerala, India
| | - Bhagath Krishnan
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana PO 690525, Kerala, India
| | - R Amrutha
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana PO 690525, Kerala, India
| | - Yash Chavan
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana PO 690525, Kerala, India
| | - Hasanath Alfia
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana PO 690525, Kerala, India
| | - Anjali Jyothis
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana PO 690525, Kerala, India
| | - Parvathy Venugopal
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana PO 690525, Kerala, India
| | - Rajaguru Aradhya
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana PO 690525, Kerala, India.
| | - Prashanth Suravajhala
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana PO 690525, Kerala, India.
| | - Bipin G Nair
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana PO 690525, Kerala, India
| |
Collapse
|
2
|
Zhu Y, Wang X, Wang S, Song Z, Du Y. No Evidence for Wolbachia Effects on the Thermal Preference of the Invasive Pest Liriomyza huidobrensis. INSECTS 2024; 15:784. [PMID: 39452360 PMCID: PMC11508833 DOI: 10.3390/insects15100784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/27/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024]
Abstract
Heritable endosymbiont Wolbachia is prevalent among arthropods, serving multiple functions for their hosts. However, the role of Wolbachia in mediating thermal preference selection remains largely unexplored. In this study, we utilized a custom-built thermal gradient to evaluate the thermal preference (Tp) of 1367 individuals of the invasive leaf-miner Liriomyza huidobrensis with or without Wolbachia wLhui from Yunnan and Xinjiang populations. Under meticulously controlled conditions and with a vast sample size, we found no significant difference in the mean Tp between wLhui-infected and uninfected leaf miners from either population when host age and sex were not considered. Furthermore, generalized linear model (GLM) analysis revealed no significant correlation between average Tp and age, sex, or Wolbachia infection, nor interactions among these factors, except in the Xinjiang population, where Tp was strongly associated with host age. Finally, we discuss the ecological implications of these findings and propose future research directions on Wolbachia-mediated host Tp in the leaf miner. Overall, our findings do not provide evidence that Wolbachia significantly affects the thermal preference of L. huidobrensis. Further studies across different systems are needed to investigate the complex interactions between Wolbachia and insect thermal behavior.
Collapse
Affiliation(s)
- Yuxi Zhu
- Department of Entomology, College of Plant Protection, Yangzhou University, Yangzhou 225009, China; (Y.Z.); (X.W.); (S.W.)
| | - Xinyu Wang
- Department of Entomology, College of Plant Protection, Yangzhou University, Yangzhou 225009, China; (Y.Z.); (X.W.); (S.W.)
| | - Sibo Wang
- Department of Entomology, College of Plant Protection, Yangzhou University, Yangzhou 225009, China; (Y.Z.); (X.W.); (S.W.)
| | - Zhangrong Song
- Entomology and Nematology Department, University of Florida, Gainesville, FL 32611, USA;
| | - Yuzhou Du
- Department of Entomology, College of Plant Protection, Yangzhou University, Yangzhou 225009, China; (Y.Z.); (X.W.); (S.W.)
| |
Collapse
|
3
|
Berardi S, Rhodes JA, Berner MC, Greenblum SI, Bitter MC, Behrman EL, Betancourt NJ, Bergland AO, Petrov DA, Rajpurohit S, Schmidt P. Drosophila melanogaster pigmentation demonstrates adaptive phenotypic parallelism but genomic unpredictability over multiple timescales. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.09.607378. [PMID: 39211235 PMCID: PMC11361081 DOI: 10.1101/2024.08.09.607378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Populations are capable of responding to environmental change over ecological timescales via adaptive tracking. However, the translation from patterns of allele frequency change to rapid adaptation of complex traits remains unresolved. We used abdominal pigmentation in Drosophila melanogaster as a model phenotype to address the nature, genetic architecture, and repeatability of rapid adaptation in the field. We show that D. melanogaster pigmentation evolves as a highly parallel and deterministic response to shared environmental gradients across latitude and season in natural North American populations. We then experimentally evolved replicate, genetically diverse fly populations in field mesocosms to remove any confounding effects of demography and/or cryptic structure that may drive patterns in wild populations; we show that pigmentation rapidly responds, in parallel, in fewer than ten generations. Thus, pigmentation evolves concordantly in response to spatial and temporal climatic gradients. We next examined whether phenotypic differentiation was associated with allele frequency change at loci with established links to genetic variance in pigmentation in natural populations. We found that across all spatial and temporal scales, phenotypic patterns were associated with variation at pigmentation-related loci, and the sets of genes we identified in each context were largely nonoverlapping. Therefore, our findings suggest that parallel phenotypic evolution is associated with an unpredictable genomic response, with distinct components of the polygenic architecture shifting across each environmental gradient to produce redundant adaptive patterns. Significance Statement Shifts in global climate conditions have heightened our need to understand the dynamics and pace of adaptation in natural populations. In order to anticipate the population-level response to rapidly changing environmental conditions, we need to understand whether trait evolution is predictable over short timescales, and whether the genetic basis of adaptation is shared or distinct across multiple timescales. Here, we explored parallelism in the adaptive response of a complex phenotype, D. melanogaster pigmentation, to shared conditions that varied over multiple spatiotemporal scales. Our results demonstrate that while phenotypic adaptation proceeds as a predictable response to environmental gradients, even over short timescales, the genetic basis of the adaptive response is variable and nuanced across spatial and temporal contexts.
Collapse
|
4
|
Hague MTJ, Wheeler TB, Cooper BS. Comparative analysis of Wolbachia maternal transmission and localization in host ovaries. Commun Biol 2024; 7:727. [PMID: 38877196 PMCID: PMC11178894 DOI: 10.1038/s42003-024-06431-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 06/07/2024] [Indexed: 06/16/2024] Open
Abstract
Many insects and other animals carry microbial endosymbionts that influence their reproduction and fitness. These relationships only persist if endosymbionts are reliably transmitted from one host generation to the next. Wolbachia are maternally transmitted endosymbionts found in most insect species, but transmission rates can vary across environments. Maternal transmission of wMel Wolbachia depends on temperature in natural Drosophila melanogaster hosts and in transinfected Aedes aegypti, where wMel is used to block pathogens that cause human disease. In D. melanogaster, wMel transmission declines in the cold as Wolbachia become less abundant in host ovaries and at the posterior pole plasm (the site of germline formation) in mature oocytes. Here, we assess how temperature affects maternal transmission and underlying patterns of Wolbachia localization across 10 Wolbachia strains diverged up to 50 million years-including strains closely related to wMel-and their natural Drosophila hosts. Many Wolbachia maintain high transmission rates across temperatures, despite highly variable (and sometimes low) levels of Wolbachia in the ovaries and at the developing germline in late-stage oocytes. Identifying strains like closely related wMel-like Wolbachia with stable transmission across variable environmental conditions may improve the efficacy of Wolbachia-based biocontrol efforts as they expand into globally diverse environments.
Collapse
Affiliation(s)
| | - Timothy B Wheeler
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Brandon S Cooper
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| |
Collapse
|
5
|
Vivero-Gomez R, Duque-Granda D, Rader JA, Stuckert A, Santander-Gualdron R, Cadavid-Restrepo G, Moreno-Herrera CX, Matute DR. Humidity and temperature preference in two Neotropical species of sand flies. Parasit Vectors 2024; 17:246. [PMID: 38831449 PMCID: PMC11149334 DOI: 10.1186/s13071-024-06325-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 05/15/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND Arthropods vector a multitude of human disease-causing organisms, and their geographic ranges are shifting rapidly in response to changing climatic conditions. This is, in turn, altering the landscape of disease risk for human populations that are brought into novel contact with the vectors and the diseases they carry. Sand flies in the genera Lutzomyia and Pintomyia are vectors of serious disease-causing agents such as Leishmania (the etiological agent of leishmaniasis) and may be expanding their range in the face of climate change. Understanding the climatic conditions that vector species both tolerate physiologically and prefer behaviorally is critical to predicting the direction and magnitude of range expansions and the resulting impacts on human health. Temperature and humidity are key factors that determine the geographic extent of many arthropods, including vector species. METHODS We characterized the habitat of two species of sand flies, Lutzomyia longipalpis and Pintomyia evansi. Additionally, we studied two behavioral factors of thermal fitness-thermal and humidity preference in two species of sand flies alongside a key aspect of physiological tolerance-desiccation resistance. RESULTS We found that Lu. longipalpis is found at cooler and drier conditions than Pi. evansi. Our results also show significant interspecific differences in both behavioral traits, with Pi. evansi preferring warmer, more humid conditions than Lu. longipalpis. Finally, we found that Lu. longipalpis shows greater tolerance to extreme low humidity, and that this is especially pronounced in males of the species. CONCLUSIONS Taken together, our results suggest that temperature and humidity conditions are key aspects of the climatic niche of Lutzomyia and Pintomyia sand flies and underscore the value of integrative studies of climatic tolerance and preference in vector biology.
Collapse
Affiliation(s)
- Rafael Vivero-Gomez
- Grupo de Microdiversidad and Bioprospección, Facultad de Ciencias, Departamento de Biociencias, Laboratorio de Procesos Moleculares, Universidad Nacional de Colombia, Sede Medellín, Medellín, Colombia
- PECET (Programa de Estudio y Control de Enfermedades Tropicales), Universidad de Antioquia, SIU-Sede de Investigación Universitaria, Street 62 # 52-59Laboratory 632, 050003, Medellín, Postal Code, Colombia
| | - Daniela Duque-Granda
- Grupo de Microdiversidad and Bioprospección, Facultad de Ciencias, Departamento de Biociencias, Laboratorio de Procesos Moleculares, Universidad Nacional de Colombia, Sede Medellín, Medellín, Colombia
| | - Jonathan A Rader
- Biology Department, University of North Carolina, Chapel Hill, USA
| | - Adam Stuckert
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Ricardo Santander-Gualdron
- Grupo de Microdiversidad and Bioprospección, Facultad de Ciencias, Departamento de Biociencias, Laboratorio de Procesos Moleculares, Universidad Nacional de Colombia, Sede Medellín, Medellín, Colombia
| | - Gloria Cadavid-Restrepo
- Grupo de Microdiversidad and Bioprospección, Facultad de Ciencias, Departamento de Biociencias, Laboratorio de Procesos Moleculares, Universidad Nacional de Colombia, Sede Medellín, Medellín, Colombia
| | - Claudia X Moreno-Herrera
- Grupo de Microdiversidad and Bioprospección, Facultad de Ciencias, Departamento de Biociencias, Laboratorio de Procesos Moleculares, Universidad Nacional de Colombia, Sede Medellín, Medellín, Colombia
| | - Daniel R Matute
- Biology Department, University of North Carolina, Chapel Hill, USA.
| |
Collapse
|
6
|
Hague MT, Wheeler TB, Cooper BS. Comparative analysis of Wolbachia maternal transmission and localization in host ovaries. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.03.583170. [PMID: 38496649 PMCID: PMC10942406 DOI: 10.1101/2024.03.03.583170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Many insects and other animals carry microbial endosymbionts that influence their reproduction and fitness. These relationships only persist if endosymbionts are reliably transmitted from one host generation to the next. Wolbachia are maternally transmitted endosymbionts found in most insect species, but transmission rates can vary across environments. Maternal transmission of wMel Wolbachia depends on temperature in natural Drosophila melanogaster hosts and in transinfected Aedes aegypti, where wMel is used to block pathogens that cause human disease. In D. melanogaster, wMel transmission declines in the cold as Wolbachia become less abundant in host ovaries and at the posterior pole plasm (the site of germline formation) in mature oocytes. Here, we assess how temperature affects maternal transmission and underlying patterns of Wolbachia localization across 10 Wolbachia strains diverged up to 50 million years-including strains closely related to wMel-and their natural Drosophila hosts. Many Wolbachia maintain high transmission rates across temperatures, despite highly variable (and sometimes low) levels of Wolbachia in the ovaries and at the developing germline in late-stage oocytes. Identifying strains like closely related wMel-like Wolbachia with stable transmission across variable environmental conditions may improve the efficacy of Wolbachia-based biocontrol efforts as they expand into globally diverse environments.
Collapse
Affiliation(s)
| | - Timothy B. Wheeler
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Brandon S. Cooper
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| |
Collapse
|
7
|
Baleba SBS, Mahadevan VP, Knaden M, Hansson BS. Temperature-dependent modulation of odor-dependent behavior in three drosophilid fly species of differing thermal preference. Commun Biol 2023; 6:905. [PMID: 37666902 PMCID: PMC10477191 DOI: 10.1038/s42003-023-05280-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/24/2023] [Indexed: 09/06/2023] Open
Abstract
Rapid and ongoing climate change increases global temperature, impacts feeding, and reproduction in insects. The olfaction plays an important underlying role in these behaviors in most insect species. Here, we investigated how changing temperatures affect odor detection and ensuing behavior in three drosophilid flies: Drosophila novamexicana, D. virilis and D. ezoana, species adapted to life in desert, global, and subarctic climates, respectively. Using a series of thermal preference assays, we confirmed that the three species indeed exhibit distinct temperature preferences. Next, using single sensillum recording technique, we classified olfactory sensory neurons (OSNs) present in basiconic sensilla on the antenna of the three species and thereby identified ligands for each OSN type. In a series of trap assays we proceeded to establish the behavioral valence of the best ligands and chose guaiacol, methyl salicylate and isopropyl benzoate as representatives of a repellent, attractant and neutral odor. Next, we assessed the behavioral valence of these three odors in all three species across a thermal range (10-35 °C), with flies reared at 18 °C and 25 °C. We found that both developmental and experimental temperatures affected the behavioral performance of the flies. Our study thus reveals temperature-dependent changes in odor-guided behavior in drosophilid flies.
Collapse
Affiliation(s)
- Steve B S Baleba
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany
- Next Generation Insect Chemical Ecology, Max Planck Centre, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany
| | - Venkatesh Pal Mahadevan
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany
- Next Generation Insect Chemical Ecology, Max Planck Centre, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany
| | - Markus Knaden
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany
- Next Generation Insect Chemical Ecology, Max Planck Centre, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany
| | - Bill S Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany.
- Next Generation Insect Chemical Ecology, Max Planck Centre, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany.
| |
Collapse
|
8
|
Lownds RM, Turbill C, White TE, Umbers KDL. The impact of elevated aestivation temperatures on the behaviour of bogong moths (Agrotis infusa). J Therm Biol 2023; 113:103538. [PMID: 37055116 DOI: 10.1016/j.jtherbio.2023.103538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023]
Abstract
Bogong moths are an iconic Australian insect. They migrate annually in spring from low elevation locations in southern Australia to the Australian Alps where they aestivate during summer. As summer ends they make their return journey to the breeding grounds where they mate, lay eggs, and die. Given the moth's extreme behaviour in seeking out cool alpine habitat and with the knowledge that average temperatures at their aestivation sites are rising because of climate change, we first asked whether increased temperatures affect bogong moth activity during aestivation. We found that moth behaviour patterns changed from showing peaks at dawn and dusk with supressed activity during the day at cooler temperatures to near-constant activity at all times of day at 15 °C. Second, we asked whether moth mass changes after aestivating at different temperatures for a week due to dehydration or consumption of body energy reserves. We found that moth wet mass loss increased with increasing temperature, but found no difference in dry mass among temperature treatments. Overall, our results suggest that bogong moth aestivation behaviour changes with temperature and that it may be lost at around 15 °C. The impact of warming on the likelihood of individuals to complete their aestivation in the field should be investigated as a matter of priority to better understand the impact of climate change on the Australian alpine ecosystem.
Collapse
|
9
|
Comparative analysis of temperature preference behavior and effects of temperature on daily behavior in 11 Drosophila species. Sci Rep 2022; 12:12692. [PMID: 35879333 PMCID: PMC9314439 DOI: 10.1038/s41598-022-16897-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/18/2022] [Indexed: 11/08/2022] Open
Abstract
Temperature is one of the most critical environmental factors that influence various biological processes. Species distributed in different temperature regions are considered to have different optimal temperatures for daily life activities. However, how organisms have acquired various features to cope with particular temperature environments remains to be elucidated. In this study, we have systematically analyzed the temperature preference behavior and effects of temperatures on daily locomotor activity and sleep using 11 Drosophila species. We also investigated the function of antennae in the temperature preference behavior of these species. We found that, (1) an optimal temperature for daily locomotor activity and sleep of each species approximately matches with temperatures it frequently encounters in its habitat, (2) effects of temperature on locomotor activity and sleep are diverse among species, but each species maintains its daily activity and sleep pattern even at different temperatures, and (3) each species has a unique temperature preference behavior, and the contribution of antennae to this behavior is diverse among species. These results suggest that Drosophila species inhabiting different climatic environments have acquired species-specific temperature response systems according to their life strategies. This study provides fundamental information for understanding the mechanisms underlying their temperature adaptation and lifestyle diversification.
Collapse
|
10
|
Kiral FR, Dutta SB, Linneweber GA, Hilgert S, Poppa C, Duch C, von Kleist M, Hassan BA, Hiesinger PR. Brain connectivity inversely scales with developmental temperature in Drosophila. Cell Rep 2021; 37:110145. [PMID: 34936868 DOI: 10.1016/j.celrep.2021.110145] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 10/04/2021] [Accepted: 11/29/2021] [Indexed: 11/17/2022] Open
Abstract
Variability of synapse numbers and partners despite identical genes reveals the limits of genetic determinism. Here, we use developmental temperature as a non-genetic perturbation to study variability of brain wiring and behavior in Drosophila. Unexpectedly, slower development at lower temperatures increases axo-dendritic branching, synapse numbers, and non-canonical synaptic partnerships of various neurons, while maintaining robust ratios of canonical synapses. Using R7 photoreceptors as a model, we show that changing the relative availability of synaptic partners using a DIPγ mutant that ablates R7's preferred partner leads to temperature-dependent recruitment of non-canonical partners to reach normal synapse numbers. Hence, R7 synaptic specificity is not absolute but based on the relative availability of postsynaptic partners and presynaptic control of synapse numbers. Behaviorally, movement precision is temperature robust, while movement activity is optimized for the developmentally encountered temperature. These findings suggest genetically encoded relative and scalable synapse formation to develop functional, but not identical, brains and behaviors.
Collapse
Affiliation(s)
- Ferdi Ridvan Kiral
- Division of Neurobiology, Institute for Biology, Freie Universität Berlin, 14195 Berlin, Germany
| | - Suchetana B Dutta
- Division of Neurobiology, Institute for Biology, Freie Universität Berlin, 14195 Berlin, Germany
| | - Gerit Arne Linneweber
- Division of Neurobiology, Institute for Biology, Freie Universität Berlin, 14195 Berlin, Germany
| | - Selina Hilgert
- Institute of Developmental Biology and Neurobiology (iDN), Hanns-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany
| | - Caroline Poppa
- Division of Neurobiology, Institute for Biology, Freie Universität Berlin, 14195 Berlin, Germany
| | - Carsten Duch
- Institute of Developmental Biology and Neurobiology (iDN), Hanns-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany
| | - Max von Kleist
- MF1 Bioinformatics, Robert Koch-Institute, 13353 Berlin, Germany
| | - Bassem A Hassan
- Division of Neurobiology, Institute for Biology, Freie Universität Berlin, 14195 Berlin, Germany; Institut du Cerveau - Paris Brain Institute - ICM, Sorbonne Université, Inserm, CNRS, Hôpital Pitié-Salpêtrière, Paris, France
| | - P Robin Hiesinger
- Division of Neurobiology, Institute for Biology, Freie Universität Berlin, 14195 Berlin, Germany.
| |
Collapse
|
11
|
Iltis C, Tougeron K, Hance T, Louâpre P, Foray V. A perspective on insect-microbe holobionts facing thermal fluctuations in a climate-change context. Environ Microbiol 2021; 24:18-29. [PMID: 34713541 DOI: 10.1111/1462-2920.15826] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/16/2021] [Accepted: 10/19/2021] [Indexed: 11/29/2022]
Abstract
Temperature influences the ecology and evolution of insects and their symbionts by impacting each partner independently and their interactions, considering the holobiont as a primary unit of selection. There are sound data about the responses of these partnerships to constant temperatures and sporadic thermal stress (mostly heat shock). However, the current understanding of the thermal ecology of insect-microbe holobionts remains patchy because the complex thermal fluctuations (at different spatial and temporal scales) experienced by these organisms in nature have often been overlooked experimentally. This may drastically constrain our ability to predict the fate of mutualistic interactions under climate change, which will alter both mean temperatures and thermal variability. Here, we tackle down these issues by focusing on the effects of temperature fluctuations on the evolutionary ecology of insect-microbe holobionts. We propose potentially worth-investigating research avenues to (i) evaluate the relevance of theoretical concepts used to predict the biological impacts of temperature fluctuations when applied to holobionts; (ii) acknowledge the plastic (behavioural thermoregulation, physiological acclimation) and genetic responses (evolution) expressed by holobionts in fluctuating thermal environments; and (iii) explore the potential impacts of previously unconsidered patterns of temperature fluctuations on the outcomes and the dynamic of these insect-microbe associations.
Collapse
Affiliation(s)
- Corentin Iltis
- Earth and Life Institute, Biodiversity Research Center, Université catholique de Louvain, Croix du Sud 4-5, Louvain-la-Neuve, 1348, Belgium
| | - Kévin Tougeron
- Earth and Life Institute, Biodiversity Research Center, Université catholique de Louvain, Croix du Sud 4-5, Louvain-la-Neuve, 1348, Belgium.,UMR CNRS 7058 EDYSAN (Ecologie et Dynamique des Systèmes Anthropisés), Université de Picardie Jules Verne, 33 rue St Leu, Amiens, 80039, France
| | - Thierry Hance
- Earth and Life Institute, Biodiversity Research Center, Université catholique de Louvain, Croix du Sud 4-5, Louvain-la-Neuve, 1348, Belgium
| | - Philippe Louâpre
- UMR CNRS 6282 Biogéosciences, Université Bourgogne Franche-Comté, 6 Boulevard Gabriel, Dijon, 21000, France
| | - Vincent Foray
- UMR CNRS 7261 Institut de Recherche sur la Biologie de l'Insecte, Université de Tours, Parc Grandmont, Tours, 37200, France
| |
Collapse
|
12
|
Hoover MM, Marks C. Short communication: Context matters: Adult size is contingent on embryonic temperature in Drosophila melanogaster. J Therm Biol 2020; 95:102820. [PMID: 33454028 DOI: 10.1016/j.jtherbio.2020.102820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/05/2020] [Accepted: 12/14/2020] [Indexed: 11/17/2022]
Abstract
Temperature is a critical factor in shaping ectothermic development. Developmental temperature may constrain, alter, or redirect phenotypes expressed later in life. Recent studies have begun to analyze the consequences of mismatches between developmental and adult environments. Few studies analyze the consequences environmental mismatches during development yield on adult phenotypes. The aim of this study was to determine how mismatched temperatures during development affect adult size in Drosophila melanogaster. We employed a full factorial design in which eggs were incubated for 24 h in one of two temperature treatments (18 °C or 28 °C) with half of the flies subsequently being switched to the opposite temperature treatment for the remainder of development. We measured body size shortly after eclosure. We found that variation in size after eclosure was contingent upon the temperature during the embryo stage. Flies reared initially in 18 °C eclosed larger regardless of the subsequent temperature until eclsoure. Flies reared initially in 28 °C, however, eclosed smaller only if they remained in 28 °C until eclosure. The degree of plasticity in size was therefore contingent upon temperature during the embryo stage. We discuss the implications of employing full factorial approaches to consider the full context of phenotypic outcomes in light of changing developmental environments.
Collapse
Affiliation(s)
- Megan M Hoover
- Department of Biology, University of Mount Union, Alliance, OH, USA.
| | - Christopher Marks
- Department of Biology, University of Mount Union, Alliance, OH, USA.
| |
Collapse
|
13
|
Hague MTJ, Caldwell CN, Cooper BS. Pervasive Effects of Wolbachia on Host Temperature Preference. mBio 2020; 11:e01768-20. [PMID: 33024036 PMCID: PMC7542361 DOI: 10.1128/mbio.01768-20] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023] Open
Abstract
Heritable symbionts can modify a range of ecologically important host traits, including behavior. About half of all insect species are infected with maternally transmitted Wolbachia, a bacterial endosymbiont known to alter host reproduction, nutrient acquisition, and virus susceptibility. Here, we broadly test the hypothesis that Wolbachia modifies host behavior by assessing the effects of eight different Wolbachia strains on the temperature preference of six Drosophila melanogaster subgroup species. Four of the seven host genotypes infected with A-group Wolbachia strains (wRi in Drosophila simulans, wHa in D. simulans, wSh in Drosophila sechellia, and wTei in Drosophila teissieri) prefer significantly cooler temperatures relative to uninfected genotypes. Contrastingly, when infected with divergent B-group wMau, Drosophila mauritiana prefers a warmer temperature. For most strains, changes to host temperature preference do not alter Wolbachia titer. However, males infected with wSh and wTei tend to experience an increase in titer when shifted to a cooler temperature for 24 h, suggesting that Wolbachia-induced changes to host behavior may promote bacterial replication. Our results indicate that Wolbachia modifications to host temperature preference are likely widespread, which has important implications for insect thermoregulation and physiology. Understanding the fitness consequences of these Wolbachia effects is crucial for predicting evolutionary outcomes of host-symbiont interactions, including how Wolbachia spreads to become common.IMPORTANCE Microbes infect a diversity of species, influencing the performance and fitness of their hosts. Maternally transmitted Wolbachia bacteria infect most insects and other arthropods, making these bacteria some of the most common endosymbionts in nature. Despite their global prevalence, it remains mostly unknown how Wolbachia influence host physiology and behavior to proliferate. We demonstrate pervasive effects of Wolbachia on Drosophila temperature preference. Most hosts infected with A-group Wolbachia prefer cooler temperatures, whereas the one host species infected with divergent B-group Wolbachia prefers warmer temperatures, relative to uninfected genotypes. Changes to host temperature preference generally do not alter Wolbachia abundance in host tissues, but for some A-group strains, adult males have increased Wolbachia titer when shifted to a cooler temperature. This suggests that Wolbachia-induced changes to host behavior may promote bacterial replication. Our results help elucidate the impact of endosymbionts on their hosts amid the global Wolbachia pandemic.
Collapse
Affiliation(s)
- Michael T J Hague
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Chelsey N Caldwell
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Brandon S Cooper
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| |
Collapse
|
14
|
Simões P, Santos MA, Carromeu-Santos A, Quina AS, Santos M, Matos M. Beneficial developmental acclimation in reproductive performance under cold but not heat stress. J Therm Biol 2020; 90:102580. [DOI: 10.1016/j.jtherbio.2020.102580] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/09/2020] [Accepted: 03/30/2020] [Indexed: 01/03/2023]
|
15
|
MacLean HJ, Overgaard J, Kristensen TN, Lyster C, Hessner L, Olsvig E, Sørensen JG. Temperature preference across life stages and acclimation temperatures investigated in four species of Drosophila. J Therm Biol 2019; 86:102428. [PMID: 31789224 DOI: 10.1016/j.jtherbio.2019.102428] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/24/2019] [Accepted: 10/04/2019] [Indexed: 11/27/2022]
Abstract
Ectotherms can use microclimatic variation and behavioral thermoregulation to cope with unfavorable environmental temperatures. However, relatively little is known about how and if thermoregulatory behavior is used across life stages in small ectothermic insects. Here we investigate differences between three specialized Drosophila species from temperate, tropical or desert habitats and one cosmopolitan species by estimating the preferred temperature (Tpref) and the breadth (Tbreadth) of the distribution of adults, adult egg-laying, and larvae in thermal gradients. We also assess the plasticity of thermal preference following developmental acclimation to three constant temperatures. For egg-laying and larvae, we observe significant species differences in preferred temperature but this is not predicted by thermal ecology of the species. We corroborated this with previous studies of other Drosophila species and found that Tpref for egg laying and larvae have no relationship with annual mean temperature of the species' natural habitat. While adults have the greatest mobility, they show the greater variation in preference compared to juveniles contradicting common assumptions. We found evidence of developmental thermal acclimation in adult egg-laying preferred temperature, Tpref increasing with acclimation temperature, and in the breadth of the temperature preference distributions, Tbreadth decreasing with increasing acclimation temperature. Together, these data provide a high resolution and comprehensive look at temperature preferences across life stages and in response to acclimation. Results suggest that thermal preference, particularly in the early life stages, is relatively conserved among species and unrelated to temperature at species origin. Measuring thermal preference, in addition to thermal performance, is essential for understanding how species have adapted/will adapt to their thermal environment.
Collapse
Affiliation(s)
- Heidi J MacLean
- Department for Bioscience, Aarhus University, Ny Munkegade 116, 8000, Aarhus C, Denmark.
| | - Johannes Overgaard
- Department for Bioscience, Aarhus University, Ny Munkegade 116, 8000, Aarhus C, Denmark
| | - Torsten N Kristensen
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg E, Denmark
| | - Catrine Lyster
- Department for Bioscience, Aarhus University, Ny Munkegade 116, 8000, Aarhus C, Denmark
| | - Leander Hessner
- Department for Bioscience, Aarhus University, Ny Munkegade 116, 8000, Aarhus C, Denmark
| | - Esajas Olsvig
- Department for Bioscience, Aarhus University, Ny Munkegade 116, 8000, Aarhus C, Denmark
| | - Jesper G Sørensen
- Department for Bioscience, Aarhus University, Ny Munkegade 116, 8000, Aarhus C, Denmark
| |
Collapse
|
16
|
Cocciardi JM, Hoskin CJ, Morris W, Warburton R, Edwards L, Higgie M. Adjustable temperature array for characterizing ecological and evolutionary effects on thermal physiology. Methods Ecol Evol 2019. [DOI: 10.1111/2041-210x.13236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Conrad J. Hoskin
- College of Science and Engineering James Cook University Douglas Qld Australia
| | - Wayne Morris
- Innovation Centre James Cook University Douglas Qld Australia
| | | | - Lexie Edwards
- College of Science and Engineering James Cook University Douglas Qld Australia
| | - Megan Higgie
- College of Science and Engineering James Cook University Douglas Qld Australia
| |
Collapse
|
17
|
Phenology of Drosophila species across a temperate growing season and implications for behavior. PLoS One 2019; 14:e0216601. [PMID: 31095588 PMCID: PMC6521991 DOI: 10.1371/journal.pone.0216601] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 04/24/2019] [Indexed: 11/25/2022] Open
Abstract
Drosophila community composition is complex in temperate regions with different abundance of flies and species across the growing season. Monitoring Drosophila populations provides insights into the phenology of both native and invasive species. Over a single growing season, we collected Drosophila at regular intervals and determined the number of individuals of the nine species we found in Kansas, USA. Species varied in their presence and abundance through the growing season with peak diversity occurring after the highest seasonal temperatures. We developed models for the abundance of the most common species, Drosophila melanogaster, D. simulans, D. algonquin, and the recent invasive species, D. suzukii. These models revealed that temperature played the largest role in abundance of each species across the season. For the two most commonly studied species, D. melanogaster and D. simulans, the best models indicate shifted thermal optima compared to laboratory studies, implying that fluctuating temperature may play a greater role in the physiology and ecology of these insects than indicated by laboratory studies, and should be considered in global climate change studies.
Collapse
|
18
|
Soto-Padilla A, Ruijsink R, Span M, van Rijn H, Billeter JC. An Automated Method to Determine the Performance of Drosophila in Response to Temperature Changes in Space and Time. J Vis Exp 2018. [PMID: 30371661 DOI: 10.3791/58350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Temperature is a ubiquitous environmental factor that affects how species distribute and behave. Different species of Drosophila fruit flies have specific responses to changing temperatures according to their physiological tolerance and adaptability. Drosophila flies also possess a temperature sensing system that has become fundamental to understanding the neural basis of temperature processing in ectotherms. We present here a temperature-controlled arena that permits fast and precise temperature changes with temporal and spatial control to explore the response of individual flies to changing temperatures. Individual flies are placed in the arena and exposed to pre-programmed temperature challenges, such as uniform gradual increases in temperature to determine reaction norms or spatially distributed temperatures at the same time to determine preferences. Individuals are automatically tracked, allowing the quantification of speed or location preference. This method can be used to rapidly quantify the response over a large range of temperatures to determine temperature performance curves in Drosophila or other insects of similar size. In addition, it can be used for genetic studies to quantify temperature preferences and reactions of mutants or wild-type flies. This method can help uncover the basis of thermal speciation and adaptation, as well as the neural mechanisms behind temperature processing.
Collapse
Affiliation(s)
- Andrea Soto-Padilla
- Groningen Institute for Evolutionary Life Sciences, University of Groningen; Department of Cell Biology, University of Groningen, University Medical Center Groningen
| | | | - Mark Span
- Department of Psychology, University of Groningen
| | | | | |
Collapse
|
19
|
Rajpurohit S, Gefen E, Bergland AO, Petrov DA, Gibbs AG, Schmidt P. Spatiotemporal dynamics and genome-wide association genome-wide association analysis of desiccation tolerance in Drosophila melanogaster. Mol Ecol 2018; 27:3525-3540. [PMID: 30051644 PMCID: PMC6129450 DOI: 10.1111/mec.14814] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 06/11/2018] [Accepted: 06/20/2018] [Indexed: 12/13/2022]
Abstract
Water availability is a major environmental challenge to a variety of terrestrial organisms. In insects, desiccation tolerance varies predictably over spatial and temporal scales and is an important physiological determinant of fitness in natural populations. Here, we examine the dynamics of desiccation tolerance in North American populations of Drosophila melanogaster using: (a) natural populations sampled across latitudes and seasons; (b) experimental evolution in field mesocosms over seasonal time; (c) genome-wide associations to identify SNPs/genes associated with variation for desiccation tolerance; and (d) subsequent analysis of patterns of clinal/seasonal enrichment in existing pooled sequencing data of populations sampled in both North America and Australia. A cline in desiccation tolerance was observed, for which tolerance exhibited a positive association with latitude; tolerance also varied predictably with culture temperature, demonstrating a significant degree of thermal plasticity. Desiccation tolerance evolved rapidly in field mesocosms, although only males showed differences in desiccation tolerance between spring and autumn collections from natural populations. Water loss rates did not vary significantly among latitudinal or seasonal populations; however, changes in metabolic rates during prolonged exposure to dry conditions are consistent with increased tolerance in higher latitude populations. Genome-wide associations in a panel of inbred lines identified twenty-five SNPs in twenty-one loci associated with sex-averaged desiccation tolerance, but there is no robust signal of spatially varying selection on genes associated with desiccation tolerance. Together, our results suggest that desiccation tolerance is a complex and important fitness component that evolves rapidly and predictably in natural populations.
Collapse
Affiliation(s)
- Subhash Rajpurohit
- Department of Biology, University of Pennsylvania, 433 S. University Ave, Philadelphia, PA 19104, USA
| | - Eran Gefen
- Department of Biology, University of Haifa-Oranim, Tivon 36006, Israel
| | - Alan O. Bergland
- Department of Biology, University of Virginia, Charlottesville, VA 22903
| | - Dmitri A. Petrov
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Allen G. Gibbs
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154, USA
| | - Paul Schmidt
- Department of Biology, University of Pennsylvania, 433 S. University Ave, Philadelphia, PA 19104, USA
| |
Collapse
|
20
|
Truitt AM, Kapun M, Kaur R, Miller WJ. Wolbachia modifies thermal preference in Drosophila melanogaster. Environ Microbiol 2018; 21:3259-3268. [PMID: 29971900 PMCID: PMC6766989 DOI: 10.1111/1462-2920.14347] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/26/2018] [Accepted: 06/28/2018] [Indexed: 01/14/2023]
Abstract
Environmental variation can have profound and direct effects on fitness, fecundity, and host-symbiont interactions. Replication rates of microbes within arthropod hosts, for example, are correlated with incubation temperature but less is known about the influence of host-symbiont dynamics on environmental preference. Hence, we conducted thermal preference (Tp ) assays and tested if infection status and genetic variation in endosymbiont bacterium Wolbachia affected temperature choice of Drosophila melanogaster. We demonstrate that isogenic flies infected with Wolbachia preferred lower temperatures compared with uninfected Drosophila. Moreover, Tp varied with respect to three investigated Wolbachia variants (wMel, wMelCS, and wMelPop). While uninfected individuals preferred 24.4°C, we found significant shifts of -1.2°C in wMel- and -4°C in flies infected either with wMelCS or wMelPop. We, therefore, postulate that Wolbachia-associated Tp variation within a host species might represent a behavioural accommodation to host-symbiont interactions and trigger behavioural self-medication and bacterial titre regulation by the host.
Collapse
Affiliation(s)
- Amy M. Truitt
- Department of Environmental Science and ManagementPortland State UniversityPortlandORUSA
| | - Martin Kapun
- Department of BiologyUniversité de FribourgFribourgSwitzerland
| | - Rupinder Kaur
- Department of Cell and Developmental BiologyMedical University of ViennaViennaAustria
| | - Wolfgang J. Miller
- Department of Cell and Developmental BiologyMedical University of ViennaViennaAustria
| |
Collapse
|