1
|
Kim A, Geller D, Min H, Miyazaki B, Raymond J, Vidmar AP, Zipursky R, Chao LC. Decline in case rates of youth onset type 2 diabetes in year three of the COVID-19 pandemic. J Pediatr Endocrinol Metab 2024; 37:360-362. [PMID: 38410000 DOI: 10.1515/jpem-2023-0498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/05/2024] [Indexed: 02/28/2024]
Abstract
OBJECTIVES To determine changes in case rates of youth onset type 2 diabetes in the three years following the COVID-19 pandemic. METHODS A single-center, retrospective medical record review was conducted for patients newly diagnosed with T2D between 3/1/18 and 2/28/23 at a pediatric tertiary care center. The number of patients referred to CHLA with a T2D diagnosis date between 3/1/2020 and 2/28/2023 was compared to historical rates between 3/1/2018 and 2/29/2020. χ2 or Fisher's exact test was used to compare categorical variables between each year and 2019. RESULTS Compared to prepandemic baseline (3/1/19-2/29/20, 11.8±3.7 cases/month), there was a significant increase in new T2D monthly case rates in pandemic year 1 (3/1/20-2/28/21, 20.1±6.0 cases/month, 171 %, p=0.005) and pandemic year 2 (3/1/21-2/28/22, 25.9±8.9 cases/month, 221 %, p=0.002). Case rates declined in pandemic year 3 to 14.5±4.1 cases/month (3/1/22-2/28/23, p=0.43). Compared to prepandemic year 1, the frequency of DKA at diagnosis was higher in pandemic year 1 (13.3 vs. 5.0 %, p=0.009). The DKA rate in pandemic years 2 (6.8 %) and 3 (3.4 %) were comparable to prepandemic year 1 (p=0.53 and 0.58, respectively). CONCLUSIONS Youth onset type 2 diabetes cases and DKA rates in year 3 of the pandemic have returned to prepandemic level.
Collapse
Affiliation(s)
- Ahlee Kim
- Division of Endocrinology, Department of Pediatrics, 5150 Children's Hospital Los Angeles , Los Angeles, CA, USA
- 5150 Keck School of Medicine of University of Southern California , Los Angeles, CA, USA
| | - David Geller
- Division of Endocrinology, Department of Pediatrics, 5150 Children's Hospital Los Angeles , Los Angeles, CA, USA
- 5150 Keck School of Medicine of University of Southern California , Los Angeles, CA, USA
| | - Hyojin Min
- Division of Endocrinology, Department of Pediatrics, 5150 Children's Hospital Los Angeles , Los Angeles, CA, USA
| | - Brian Miyazaki
- Division of Endocrinology, Department of Pediatrics, 5150 Children's Hospital Los Angeles , Los Angeles, CA, USA
- 5150 Keck School of Medicine of University of Southern California , Los Angeles, CA, USA
| | - Jennifer Raymond
- Division of Endocrinology, Department of Pediatrics, 5150 Children's Hospital Los Angeles , Los Angeles, CA, USA
- 5150 Keck School of Medicine of University of Southern California , Los Angeles, CA, USA
| | - Alaina P Vidmar
- Division of Endocrinology, Department of Pediatrics, 5150 Children's Hospital Los Angeles , Los Angeles, CA, USA
- 5150 Keck School of Medicine of University of Southern California , Los Angeles, CA, USA
| | - Rachel Zipursky
- Division of Endocrinology, Department of Pediatrics, 5150 Children's Hospital Los Angeles , Los Angeles, CA, USA
| | - Lily C Chao
- Division of Endocrinology, Department of Pediatrics, 5150 Children's Hospital Los Angeles , Los Angeles, CA, USA
- 5150 Keck School of Medicine of University of Southern California , Los Angeles, CA, USA
| |
Collapse
|
2
|
Meng H, Liao Z, Ji Y, Wang D, Han Y, Huang C, Hu X, Chen J, Zhang H, Li Z, Wang C, Sun H, Sun J, Chen L, Yin J, Zhao J, Xu T, Liu H. FGF7 enhances the expression of ACE2 in human islet organoids aggravating SARS-CoV-2 infection. Signal Transduct Target Ther 2024; 9:104. [PMID: 38654010 PMCID: PMC11039711 DOI: 10.1038/s41392-024-01790-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/04/2024] [Accepted: 03/10/2024] [Indexed: 04/25/2024] Open
Abstract
The angiotensin-converting enzyme 2 (ACE2) is a primary cell surface viral binding receptor for SARS-CoV-2, so finding new regulatory molecules to modulate ACE2 expression levels is a promising strategy against COVID-19. In the current study, we utilized islet organoids derived from human embryonic stem cells (hESCs), animal models and COVID-19 patients to discover that fibroblast growth factor 7 (FGF7) enhances ACE2 expression within the islets, facilitating SARS-CoV-2 infection and resulting in impaired insulin secretion. Using hESC-derived islet organoids, we demonstrated that FGF7 interacts with FGF receptor 2 (FGFR2) and FGFR1 to upregulate ACE2 expression predominantly in β cells. This upregulation increases both insulin secretion and susceptibility of β cells to SARS-CoV-2 infection. Inhibiting FGFR counteracts the FGF7-induced ACE2 upregulation, subsequently reducing viral infection and replication in the islets. Furthermore, retrospective clinical data revealed that diabetic patients with severe COVID-19 symptoms exhibited elevated serum FGF7 levels compared to those with mild symptoms. Finally, animal experiments indicated that SARS-CoV-2 infection increased pancreatic FGF7 levels, resulting in a reduction of insulin concentrations in situ. Taken together, our research offers a potential regulatory strategy for ACE2 by controlling FGF7, thereby protecting islets from SARS-CoV-2 infection and preventing the progression of diabetes in the context of COVID-19.
Collapse
Affiliation(s)
- Hao Meng
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, 511495, Guangdong, China
- Guangzhou National Laboratory, Guangzhou, 510320, Guangdong, China
| | - Zhiying Liao
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, 511495, Guangdong, China
- Guangzhou National Laboratory, Guangzhou, 510320, Guangdong, China
| | - Yanting Ji
- Guangzhou National Laboratory, Guangzhou, 510320, Guangdong, China
| | - Dong Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Yang Han
- Center for Translational Medicine, Wuhan Jinyintan Hospital, Wuhan, 430023, Hubei, China
| | - Chaolin Huang
- Center for Translational Medicine, Wuhan Jinyintan Hospital, Wuhan, 430023, Hubei, China
| | - Xujuan Hu
- Center for Translational Medicine, Wuhan Jinyintan Hospital, Wuhan, 430023, Hubei, China
| | - Jingyi Chen
- Guangzhou National Laboratory, Guangzhou, 510320, Guangdong, China
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Hengrui Zhang
- Guangzhou National Laboratory, Guangzhou, 510320, Guangdong, China
| | - Zonghong Li
- Guangzhou National Laboratory, Guangzhou, 510320, Guangdong, China
| | - Changliang Wang
- Guangzhou National Laboratory, Guangzhou, 510320, Guangdong, China
| | - Hui Sun
- Guangzhou National Laboratory, Guangzhou, 510320, Guangdong, China
| | - Jiaqi Sun
- Guangzhou National Laboratory, Guangzhou, 510320, Guangdong, China
| | - Lihua Chen
- Guangzhou National Laboratory, Guangzhou, 510320, Guangdong, China
| | - Jiaxiang Yin
- Guangzhou National Laboratory, Guangzhou, 510320, Guangdong, China
| | - Jincun Zhao
- Guangzhou National Laboratory, Guangzhou, 510320, Guangdong, China.
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
| | - Tao Xu
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, 511495, Guangdong, China.
- Guangzhou National Laboratory, Guangzhou, 510320, Guangdong, China.
| | - Huisheng Liu
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, 511495, Guangdong, China.
- Guangzhou National Laboratory, Guangzhou, 510320, Guangdong, China.
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
3
|
Li L, Li L, Cai X, Pan Z. New Insights into the Effects of SARS-CoV-2 on Metabolic Organs: A Narrative Review of COVID-19 Induced Diabetes. Diabetes Metab Syndr Obes 2024; 17:1383-1389. [PMID: 38529167 PMCID: PMC10962470 DOI: 10.2147/dmso.s454408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/15/2024] [Indexed: 03/27/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19)-induced new-onset diabetes has raised widespread concerns. Increased glucose concentration and insulin resistance levels were observed in the COVID-19 patients. COVID-19 patients with newly diagnosed diabetes may have worse clinical outcomes and can have serious consequences. The types and exact mechanisms of COVID-19-caused diabetes are not well understood. Understanding the direct effects of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on pancreatic beta cells and insulin target metabolism organs, such as the liver, muscle, and adipose tissues, will provide new ideas for preventing and treating the new-onset diabetes induced by COVID-19.
Collapse
Affiliation(s)
- Lu Li
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Lin Li
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Xianhui Cai
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Zongfu Pan
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
4
|
McIntyre T, Sarah S, Benjamin R, Balikcioglu PG. Disrupted Pediatric Diabetes Trends in the Second Year of the COVID-19 Pandemic. J Endocr Soc 2023; 7:bvad092. [PMID: 37457848 PMCID: PMC10349346 DOI: 10.1210/jendso/bvad092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Indexed: 07/18/2023] Open
Abstract
Context Increases in incident cases of pediatric type 1 (T1D) and type 2 diabetes (T2D) were observed during the first year of the COVID-19 pandemic. Objective This work aimed to identify trends in incidence and presentation of pediatric new-onset T1D and T2D during the second year of the COVID-19 pandemic. Methods A retrospective chart review was conducted. Demographics, anthropometrics, and initial laboratory results from patients aged 0 to 21 years who presented with new-onset diabetes to a pediatric tertiary care center were recorded. Results The incident cases of T1D (n = 46) and T2D (n = 46) in 2021-2022 (second year of the pandemic) were consistent with the incident cases of T1D (n = 46) and T2D (n = 53) in 2020 to 2021 (first year of the pandemic). Compared to the incident cases of diabetes in the prepandemic years, in the second year, the incident cases of T1D increased 48%, and the incident cases of T2D increased 188%. In the second year of the pandemic, incident cases of T2D represented half (50%) of all newly diagnosed pediatric diabetes cases. Patients with T2D were more likely to present in diabetic ketoacidosis, though this was not statistically significant (P = .08). Conclusion The increase in incident cases of pediatric T1D and T2D observed during the first year of the COVID-19 pandemic persisted during the second pandemic year. This suggests that despite pediatric vaccination efforts and return to social in-person activities, we may continue to see effects of the pandemic on pediatric diabetes trends.
Collapse
Affiliation(s)
- Tatiana McIntyre
- Correspondence: Tatiana McIntyre, MD, Department of Pediatrics, Duke University Medical Center, 2301 Erwin Rd, Box 3127 DUMC, Durham, NC 27710, USA.
| | | | - Robert Benjamin
- Division of Pediatric Endocrinology and Diabetes, Duke University Medical Center, Durham, NC 27705, USA
| | - Pinar Gumus Balikcioglu
- Division of Pediatric Endocrinology and Diabetes, Duke University Medical Center, Durham, NC 27705, USA
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27701, USA
| |
Collapse
|
5
|
Wander PL, Lowy E, Korpak A, Beste LA, Kahn SE, Boyko EJ. SARS-CoV-2 infection is associated with higher odds of insulin treatment but not with hemoglobin A1c at 120 days in U.S. Veterans with new-onset diabetes. DIABETES EPIDEMIOLOGY AND MANAGEMENT 2023; 11:100151. [PMID: 37333508 PMCID: PMC10263386 DOI: 10.1016/j.deman.2023.100151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 05/22/2023] [Indexed: 06/20/2023]
Abstract
Aims To examine associations of SARS-CoV-2 infection/COVID-19 with insulin treatment in new-onset diabetes. Methods We conducted a retrospective cohort study using Veterans Health Administration data (March 1, 2020-June 1, 2022). Individuals with ≥1 positive nasal swab for SARS-CoV-2 (n = 6,706) comprised the exposed group, and individuals with no positive swab and ≥1 laboratory test of any type (n = 20,518) the unexposed group. For exposed, the index date was the date of first positive swab, and for unexposed a random date during the month of the qualifying laboratory test. Among Veterans with new-onset diabetes after the index date, we modeled associations of SARS-CoV-2 with most recent A1c prior to insulin treatment or end of follow-up and receipt of >1 outpatient insulin prescription starting within 120 days. Results SARS-CoV-2 was associated with a 40% higher odds of insulin treatment compared to no positive test (95%CI 1.2-1.8) but not with most recent A1c (ß 0.00, 95%CI -0.04-0.04). Among Veterans with SARS-CoV-2, ≥2 vaccine doses prior to the index date was marginally associated with lower odds of insulin treatment (OR 0.6, 95%CI 0.3-1.0). Conclusions SARS-CoV-2 is associated with higher odds of insulin treatment but not with higher A1c. Vaccination may be protective.
Collapse
Affiliation(s)
- Pandora L Wander
- Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States
- Department of Medicine, University of Washington, Seattle, WA, United States
| | - Elliott Lowy
- Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States
- Department of Health Systems and Population Health, University of Washington, Seattle, WA, United States
| | - Anna Korpak
- Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States
| | - Lauren A Beste
- Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States
- Department of Medicine, University of Washington, Seattle, WA, United States
| | - Steven E Kahn
- Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States
- Department of Medicine, University of Washington, Seattle, WA, United States
| | - Edward J Boyko
- Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States
- Department of Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
6
|
Huang L, Liang M, He Y. New-Onset Fulminant Type 1 Diabetes Following SARS-CoV-2 Protein Subunit Vaccine: A Case Report and Literature Review. J Korean Med Sci 2023; 38:e209. [PMID: 37337812 DOI: 10.3346/jkms.2023.38.e209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/24/2023] [Indexed: 06/21/2023] Open
Abstract
The ravages of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) worldwide have sped up the development of relevant vaccines, which is accompanied by public concerns over possible adverse effects. We report a rare case of a 39-year-old woman who suffered from severe hyperglycemia and ketoacidosis with normal hemoglobin A1c four days after SARS-CoV-2 protein subunit vaccine, which is consistent with the diagnosis of fulminant type 1 diabetes (FT1D). She received insulin therapy and recovered after 24 days from onset of the symptoms. This is the first case of new-onset FT1D after SARS-CoV-2 protein subunit vaccination and one of only six that developed after any form of SARS-CoV-2 vaccination. We hope to raise awareness of this potential adverse consequence and recommend careful monitoring after vaccination in patients even without a medical history of diabetes.
Collapse
Affiliation(s)
- Lanhui Huang
- Department of Geriatric Endocrinology and Metabolism, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Min Liang
- Department of Geriatric Endocrinology and Metabolism, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| | - Yuling He
- Department of Geriatric Endocrinology and Metabolism, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| |
Collapse
|
7
|
Ferguson M, Vel J, Phan V, Ali R, Mabe L, Cherner A, Doan T, Manakatt B, Jose M, Powell AR, McKinney K, Serag H, Sallam HS. Coronavirus Disease 2019, Diabetes, and Inflammation: A Systemic Review. Metab Syndr Relat Disord 2023; 21:177-187. [PMID: 37130311 DOI: 10.1089/met.2022.0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023] Open
Abstract
People with cardiometabolic diseases [namely type 2 diabetes (T2D), obesity, or metabolic syndrome] are more susceptible to coronavirus disease 2019 (COVID-19) infection and endure more severe illness and poorer outcomes. Hyperinflammation has been suggested as a common pathway for both diseases. To examine the role of inflammatory biomarkers shared between COVID-19 and cardiometabolic diseases, we reviewed and evaluated published data using PubMed, SCOPUS, and World Health Organization COVID-19 databases for English articles from December 2019 to February 2022. Of 248 identified articles, 50 were selected and included. We found that people with diabetes or obesity have (i) increased risk of COVID-19 infection; (ii) increased risk of hospitalization (those with diabetes have a higher risk of intensive care unit admissions) and death; and (iii) heightened inflammatory and stress responses (hyperinflammation) to COVID-19, which worsen their prognosis. In addition, COVID-19-infected patients have a higher risk of developing T2D, especially if they have other comorbidities. Treatments controlling blood glucose levels and or ameliorating the inflammatory response may be valuable for improving clinical outcomes in these patient populations. In conclusion, it is critical for health care providers to clinically evaluate hyperinflammatory states to drive clinical decisions for COVID-19 patients.
Collapse
Affiliation(s)
- Monique Ferguson
- John Sealy School of Medicine, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jaysonn Vel
- John Sealy School of Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | - Vincent Phan
- John Sealy School of Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | - Roshaneh Ali
- John Sealy School of Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | - Lainie Mabe
- John Sealy School of Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | - Annie Cherner
- John Sealy School of Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | - Thao Doan
- John Sealy School of Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | - Bushra Manakatt
- School of Nursing, University of Texas Medical Branch, Galveston, Texas, USA
| | - Mini Jose
- School of Nursing, University of Texas Medical Branch, Galveston, Texas, USA
| | - Audrey Ross Powell
- University of Texas Medical Branch Alumni, Galveston, Texas, USA
- Madrigal Pharmaceuticals, Conshohocken, Pennsylvania, USA
| | - Kevin McKinney
- John Sealy School of Medicine, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | - Hani Serag
- John Sealy School of Medicine, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | - Hanaa S Sallam
- John Sealy School of Medicine, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, USA
- Physiology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
8
|
Gavkare AM, Nanaware N, Rayate AS, Mumbre S, Nagoba BS. COVID-19 associated diabetes mellitus: A review. World J Diabetes 2022; 13:729-737. [PMID: 36188145 PMCID: PMC9521440 DOI: 10.4239/wjd.v13.i9.729] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/20/2022] [Accepted: 08/17/2022] [Indexed: 02/05/2023] Open
Abstract
A significantly higher rate of new-onset diabetes in many coronavirus disease 2019 (COVID-19) patients is a frequently observed phenomenon. The resultant hyperglycemia is known to influence the clinical outcome, thereby increasing the cost of treatment and stay in hospital. This will also affect the post-hospitalization recuperation. It has been observed that new-onset diabetes in COVID-19 patients is associated with considerable increase in morbidity and may be associated with increased mortality in some cases. This mini-review focuses on the possible causes to understand how COVID-19-related diabetes develops, various associated risk factors, and possible mechanism to understand the natural history of the disease process, clinical outcome, associated morbidities and various treatment options in the mana-gement of post COVID-19 diabetes. A literature search was performed in PubMed and other online database using appropriate keywords. A total of 80 articles were found, among which, 53 of the most relevant were evaluated/ analyzed and relevant data were included. The studies show that patients who have had severe acute respiratory syndrome coronavirus 2 infection leading to development of COVID-19 may manifest not only with new-onset diabetes but also worsening of pre-existing diabetes. Cytopathic effect and autoimmune destruction of insulin-secreting pancreatic beta cells, cytokine storm during the active phase of infection causing impaired insulin secretion and resistance, drug-induced hyperglycemia, undetected pre-existing hyperglycemia/diabetic condition, and stress-induced impairment of glucose metabolism are some of the possible potential mechanisms of COVID-19-associated new-onset diabetes mellitus. Many studies published in recent times have found a significantly higher rate of new-onset diabetes mellitus in many COVID-19 patients. Whether it is an inflammatory or immune-mediated response, direct effect of virus or combination of these is unclear. The resultant hyperglycemia is known to influence the clinical outcome and has been associated with considerable increase in morbidity and increased mortality in some cases.
Collapse
Affiliation(s)
- Ajay M Gavkare
- Physiology, Maharashtra Institute of Medical Sciences & Research (Medical College), Latur 413531, Maharashtra, India
| | - Neeta Nanaware
- Physiology, Vilasrao Deshmukh Government Medical College, Latur 413512, Maharashtra, India
| | - Abhijit S Rayate
- Surgery, Maharashtra Institute of Medical Sciences & Research (Medical College), Latur 413531, Maharashtra, India
| | - Sachin Mumbre
- Community Medicine, Ashwini Rural Medical College, Solapur 413006, Maharashtra, India
| | - Basavraj S Nagoba
- Microbiology, Maharashtra Institute of Medical Sciences & Research (Medical College), Latur 413531, Maharashtra, India
| |
Collapse
|
9
|
Gerganova A, Assyov Y, Kamenov Z. Stress Hyperglycemia, Diabetes Mellitus and COVID-19 Infection: Risk Factors, Clinical Outcomes and Post-Discharge Implications. FRONTIERS IN CLINICAL DIABETES AND HEALTHCARE 2022; 3:826006. [PMID: 36992767 PMCID: PMC10012081 DOI: 10.3389/fcdhc.2022.826006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/07/2022] [Indexed: 01/08/2023]
Abstract
The novel severe acute respiratory distress syndrome-coronavirus 2 (SARS-CoV-2) has caused one of the most substantial pandemics that has affected humanity in the last century. At the time of the preparation of this review, it has caused the death of around 5 million people around the globe. There is ample evidence linking higher mortality risk rates from Coronavirus disease-19 (COVID-19) with male gender, advancing age and comorbidities, such as obesity, arterial hypertension, cardiovascular disease, chronic obstructive pulmonary disease, diabetes mellitus, and cancer. Hyperglycemia has been found to be accompanying COVID-19 not only in individuals with overt diabetes. Many authors claim that blood glucose levels should also be monitored in non-diabetic patients; moreover, it has been confirmed that hyperglycemia worsens the prognosis even without pre-existing diabetes. The pathophysiological mechanisms behind this phenomenon are complex, remain controversial, and are poorly understood. Hyperglycemia in the setting of COVID-19 could be a consequence of deterioration in pre-existing diabetes, new-onset diabetes, stress-induced or iatrogenic due to substantial usage of corticosteroids within the context of a severe COVID-19 infection. It is also plausible that it might be a result of adipose tissue dysfunction and insulin resistance. Last but not least, SARS-CoV-2 is also claimed to trigger sporadically direct β-cell destruction and β-cell autoimmunity. Pending further validations with longitudinal data are needed to legitimize COVID-19 as a potential risk factor for the development of diabetes. Hereby, we present an emphasized critical review of the available clinical data in an attempt to unravel the complex mechanisms behind hyperglycemia in COVID-19 infection. The secondary endpoint was to evaluate the bidirectional relationship between COVID-19 and diabetes mellitus. As the worldwide pandemic is still expanding, demand for answering these questions is arising. It will be of immense help for the management of COVID-19 patients, as well as for the implementation of post-discharge policies for patients with a high risk of developing diabetes.
Collapse
Affiliation(s)
- Antonina Gerganova
- Department of Internal Medicine, Medical University - Sofia, Sofia, Bulgaria
- Clinic of Endocrinology, University Hospital Alexandrovska, Sofia, Bulgaria
| | - Yavor Assyov
- Department of Internal Medicine, Medical University - Sofia, Sofia, Bulgaria
- Clinic of Endocrinology, University Hospital Alexandrovska, Sofia, Bulgaria
| | - Zdravko Kamenov
- Department of Internal Medicine, Medical University - Sofia, Sofia, Bulgaria
- Clinic of Endocrinology, University Hospital Alexandrovska, Sofia, Bulgaria
- *Correspondence: Zdravko Kamenov, orcid.org/0000-0002-4829-9449
| |
Collapse
|
10
|
Wander PL, Lowy E, Beste LA, Tulloch-Palomino L, Korpak A, Peterson AC, Kahn SE, Boyko EJ. The Incidence of Diabetes Among 2,777,768 Veterans With and Without Recent SARS-CoV-2 Infection. Diabetes Care 2022; 45:782-788. [PMID: 35085391 PMCID: PMC9016731 DOI: 10.2337/dc21-1686] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 01/01/2022] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To examine associations of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection/coronavirus disease 2019 with incident diabetes. RESEARCH DESIGN AND METHODS We conducted a retrospective cohort study using Veterans Health Administration data. We defined all patients without preexisting diabetes with one or more nasal swabs positive for SARS-CoV-2 (1 March 2020-10 March 2021; n = 126,710) as exposed and those with no positive swab and one or more laboratory tests (1 March 2020-31 March 2021; n = 2,651,058) as unexposed. The index date for patients exposed was the date of first positive swab and for patients unexposed a random date during the month of the qualifying laboratory test. We fit sex-stratified logistic regression models examining associations of SARS-CoV-2 with incident diabetes within 120 days and all follow-up time through 1 June 2021. A subgroup analysis was performed among hospitalized subjects only to help equalize laboratory surveillance. RESULTS SARS-CoV-2 was associated with higher risk of incident diabetes, compared with no positive tests, among men (120 days, odds ratio [OR] 2.56 [95% CI 2.32-2.83]; all time, 1.95 [1.80-2.12]) but not women (120 days, 1.21 [0.88-1.68]; all time, 1.04 [0.82-1.31]). Among hospitalized participants, SARS-CoV-2 was associated with higher risk of diabetes at 120 days and at the end of follow-up in men (OR 1.42 [95% CI 1.22-1.65] and 1.32 [1.16-1.50], respectively) but not women (0.72 [0.34-1.52] and 0.80 [0.44-1.45]). Sex ∗ SARS-CoV-2 interaction P values were all <0.1. CONCLUSIONS SARS-CoV-2 is associated with higher risk of incident diabetes in men but not in women even after greater surveillance related to hospitalization is accounted for.
Collapse
Affiliation(s)
- Pandora L Wander
- Veterans Affairs Puget Sound Health Care System, Seattle, WA.,Department of Medicine, University of Washington, Seattle, WA
| | - Elliott Lowy
- Veterans Affairs Puget Sound Health Care System, Seattle, WA.,Department of Health Systems and Population Health, University of Washington, Seattle, WA
| | - Lauren A Beste
- Veterans Affairs Puget Sound Health Care System, Seattle, WA.,Department of Medicine, University of Washington, Seattle, WA
| | - Luis Tulloch-Palomino
- Veterans Affairs Puget Sound Health Care System, Seattle, WA.,Department of Medicine, University of Washington, Seattle, WA
| | - Anna Korpak
- Veterans Affairs Puget Sound Health Care System, Seattle, WA
| | | | - Steven E Kahn
- Veterans Affairs Puget Sound Health Care System, Seattle, WA.,Department of Medicine, University of Washington, Seattle, WA
| | - Edward J Boyko
- Veterans Affairs Puget Sound Health Care System, Seattle, WA.,Department of Medicine, University of Washington, Seattle, WA
| |
Collapse
|
11
|
van der Heide V, Jangra S, Cohen P, Rathnasinghe R, Aslam S, Aydillo T, Geanon D, Handler D, Kelley G, Lee B, Rahman A, Dawson T, Qi J, D'Souza D, Kim-Schulze S, Panzer JK, Caicedo A, Kusmartseva I, Posgai AL, Atkinson MA, Albrecht RA, García-Sastre A, Rosenberg BR, Schotsaert M, Homann D. Limited extent and consequences of pancreatic SARS-CoV-2 infection. Cell Rep 2022; 38:110508. [PMID: 35247306 PMCID: PMC8858708 DOI: 10.1016/j.celrep.2022.110508] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/17/2021] [Accepted: 02/16/2022] [Indexed: 02/05/2023] Open
Abstract
Concerns that infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent of coronavirus disease 2019 (COVID-19), may cause new-onset diabetes persist in an evolving research landscape, and precise risk assessment is hampered by, at times, conflicting evidence. Here, leveraging comprehensive single-cell analyses of in vitro SARS-CoV-2-infected human pancreatic islets, we demonstrate that productive infection is strictly dependent on the SARS-CoV-2 entry receptor ACE2 and targets practically all pancreatic cell types. Importantly, the infection remains highly circumscribed and largely non-cytopathic and, despite a high viral burden in infected subsets, promotes only modest cellular perturbations and inflammatory responses. Similar experimental outcomes are also observed after islet infection with endemic coronaviruses. Thus, the limits of pancreatic SARS-CoV-2 infection, even under in vitro conditions of enhanced virus exposure, challenge the proposition that in vivo targeting of β cells by SARS-CoV-2 precipitates new-onset diabetes. Whether restricted pancreatic damage and immunological alterations accrued by COVID-19 increase cumulative diabetes risk, however, remains to be evaluated.
Collapse
Affiliation(s)
- Verena van der Heide
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sonia Jangra
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Phillip Cohen
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Raveen Rathnasinghe
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sadaf Aslam
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Teresa Aydillo
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniel Geanon
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Diana Handler
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Geoffrey Kelley
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brian Lee
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adeeb Rahman
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Travis Dawson
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jingjing Qi
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Darwin D'Souza
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Seunghee Kim-Schulze
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Julia K Panzer
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Alejandro Caicedo
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Irina Kusmartseva
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL, USA
| | - Amanda L Posgai
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL, USA
| | - Mark A Atkinson
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL, USA; Department of Pediatrics, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Randy A Albrecht
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brad R Rosenberg
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Dirk Homann
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Diabetes Obesity & Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
12
|
Clinical Significance of COVID-19 and Diabetes: In the Pandemic Situation of SARS-CoV-2 Variants including Omicron (B.1.1.529). BIOLOGY 2022; 11:biology11030400. [PMID: 35336774 PMCID: PMC8945151 DOI: 10.3390/biology11030400] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 02/06/2023]
Abstract
Simple Summary Amidst the dual pandemics of diabetes and coronavirus disease 2019 (COVID-19), with the constant emergence of novel variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a vicious cycle has been created, i.e., a hyperglycemic state contributes to the severe clinical course of COVID-19, which in turn has deleterious effects on glycometabolism and in some cases causes new-onset diabetes. Here, we present a comprehensive review of the current literature on the clinical and experimental findings associated with the interrelationship between diabetes and COVID-19. To control disease outcomes and glucometabolic complications in COVID-19, this issue is still being investigated. Abstract The coronavirus disease 2019 (COVID-19) global pandemic, which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), remains uncontrolled, with the spread of emerging variants. According to accumulating evidence, diabetes is one of the leading risk factors for a severe COVID-19 clinical course, depending on the glycemic state before admission and during COVID-19 hospitalization. Multiple factors are thought to be responsible, including an altered immune response, coexisting comorbidity, and disruption of the renin-angiotensin system through the virus–host interaction. However, the precise underlying mechanisms remain under investigation. Alternatively, the focus is currently on the diabetogenic and ketosis-prone potential of SARS-CoV-2 itself, even for probable triggers of stress and steroid-induced hyperglycemia in COVID-19. In this article, we present a comprehensive review of the recent literature on the clinical and experimental findings associated with diabetes and COVID-19, and we discuss their bidirectional relationship, i.e., the risk for an adverse prognosis and the deleterious effects on glycometabolism. Accurate assessments of the incidence of new-onset diabetes induced by COVID-19 and its pathogenicity are still unknown, especially in the context of the circulation of SARS-CoV-2 variants, such as Omicron (B.1.1.529), which is a major challenge for the future.
Collapse
|
13
|
Deux années de Covid-19 : premières leçons de cette pandémie. MÉDECINE DES MALADIES MÉTABOLIQUES 2022. [PMCID: PMC8768022 DOI: 10.1016/j.mmm.2022.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Metwally AA, Mehta P, Johnson BS, Nagarjuna A, Snyder MP. COVID-19-Induced New-Onset Diabetes: Trends and Technologies. Diabetes 2021; 70:2733-2744. [PMID: 34686519 PMCID: PMC8660988 DOI: 10.2337/dbi21-0029] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/23/2021] [Indexed: 01/15/2023]
Abstract
The coronavirus disease 2019 (COVID-19) global pandemic continues to spread worldwide with approximately 216 million confirmed cases and 4.49 million deaths to date. Intensive efforts are ongoing to combat this disease by suppressing viral transmission, understanding its pathogenesis, developing vaccination strategies, and identifying effective therapeutic targets. Individuals with preexisting diabetes also show higher incidence of COVID-19 illness and poorer prognosis upon infection. Likewise, an increased frequency of diabetes onset and diabetes complications has been reported in patients following COVID-19 diagnosis. COVID-19 may elevate the risk of hyperglycemia and other complications in patients with and without prior diabetes history. It is unclear whether the virus induces type 1 or type 2 diabetes or instead causes a novel atypical form of diabetes. Moreover, it remains unknown if recovering COVID-19 patients exhibit a higher risk of developing new-onset diabetes or its complications going forward. The aim of this review is to summarize what is currently known about the epidemiology and mechanisms of this bidirectional relationship between COVID-19 and diabetes. We highlight major challenges that hinder the study of COVID-19-induced new-onset of diabetes and propose a potential framework for overcoming these obstacles. We also review state-of-the-art wearables and microsampling technologies that can further study diabetes management and progression in new-onset diabetes cases. We conclude by outlining current research initiatives investigating the bidirectional relationship between COVID-19 and diabetes, some with emphasis on wearable technology.
Collapse
Affiliation(s)
- Ahmed A Metwally
- Department of Genetics, Stanford University, Stanford, CA
- Illumina Artificial Intelligence Laboratory, Illumina Inc., San Diego, CA
- Systems and Biomedical Engineering Department, Faculty of Engineering, Cairo University, Giza, Egypt
| | | | | | | | | |
Collapse
|
15
|
Shklyaev SS, Melnichenko GA, Volevodz NN, Falaleeva NA, Ivanov SA, Kaprin AD, Mokrysheva NG. Adiponectin: a pleiotropic hormone with multifaceted roles. PROBLEMY ENDOKRINOLOGII 2021; 67:98-112. [PMID: 35018766 PMCID: PMC9753852 DOI: 10.14341/probl12827] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 10/22/2021] [Indexed: 05/28/2023]
Abstract
Adipose tissue mostly composed of different types of fat is one of the largest endocrine organs in the body playing multiple intricate roles including but not limited to energy storage, metabolic homeostasis, generation of heat, participation in immune functions and secretion of a number of biologically active factors known as adipokines. The most abundant of them is adiponectin. This adipocite-derived hormone exerts pleiotropic actions and exhibits insulin-sensitizing, antidiabetic, anti-obesogenic, anti-inflammatory, antiatherogenic, cardio- and neuroprotective properties. Contrariwise to its protective effects against various pathological events in different cell types, adiponectin may have links to several systemic diseases and malignances. Reduction in adiponectin levels has an implication in COVID-19-associated respiratory failure, which is attributed mainly to a phenomenon called 'adiponectin paradox'. Ample evidence about multiple functions of adiponectin in the body was obtained from animal, mostly rodent studies. Our succinct review is entirely about multifaceted roles of adiponectin and mechanisms of its action in different physiological and pathological states.
Collapse
Affiliation(s)
- S. S. Shklyaev
- National Research Center for Endocrinology of the Ministry of Health of the Russian Federation;
A. Tsyb Medical Radiological Research Center — Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation
| | - G. A. Melnichenko
- National Research Center for Endocrinology of the Ministry of Health of the Russian Federatio
| | - N. N. Volevodz
- National Research Center for Endocrinology of the Ministry of Health of the Russian Federatio
| | - N. A. Falaleeva
- A. Tsyb Medical Radiological Research Center — Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation
| | - S. A. Ivanov
- A. Tsyb Medical Radiological Research Center — Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation
| | - A. D. Kaprin
- A. Tsyb Medical Radiological Research Center — Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation
| | - N. G. Mokrysheva
- National Research Center for Endocrinology of the Ministry of Health of the Russian Federation
| |
Collapse
|