1
|
Milewski M, Murashov M, Kapoor Y, Zhang J, Zhu W, Cueto MA, Buist N. Predicting Human Subcutaneous Bioavailability of Therapeutic Monoclonal Antibodies from Systemic Clearance and Volume of Distribution. Mol Pharm 2024; 21:4947-4959. [PMID: 39226331 DOI: 10.1021/acs.molpharmaceut.4c00132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Subcutaneous delivery of monoclonal antibody therapeutics is often preferred to intravenous delivery due to better patient compliance and overall lower cost to the healthcare system. However, the systemic absorption of biologics dosed subcutaneously is often incomplete. The aim of this work was to describe a human bioavailability prediction method for monoclonal antibodies delivered subcutaneously that utilizes intravenous pharmacokinetic parameters as input. A two-compartment pharmacokinetic model featuring a parallel-competitive absorption pathway and a presystemic metabolism pathway was employed. A training data set comprised 19 monoclonal antibodies (geometric mean bioavailability of 68%), with previously reported human pharmacokinetic parameters, while a validation set included data compiled from 5 commercial drug products (geometric mean bioavailability of 69%). A single fitted absorption rate constant, paired with compound-specific estimates of presystemic metabolism rate proportional to compound-specific systemic clearance parameters, resulted in calculations of human subcutaneous bioavailability closely mimicking clinical data in the training data set with a root-mean-square error of 5.5%. Application of the same approach to the validation data set resulted in predictions characterized by 12.6% root-mean-square error. Factors that may have impacted the prediction accuracy include a limited number of validation data set compounds and an uncertainty in the absorption rate, which were subsequently discussed. The predictive method described herein provides an initial estimate of the subcutaneous bioavailability based exclusively on pharmacokinetic parameters available from intravenous dosing.
Collapse
Affiliation(s)
- Mikolaj Milewski
- Merck & Co., Inc. 126 East Lincoln Avenue, P.O. Box 2000 Rahway New Jersey 07065 United States
| | - Mikhail Murashov
- Merck & Co., Inc. 126 East Lincoln Avenue, P.O. Box 2000 Rahway New Jersey 07065 United States
| | - Yash Kapoor
- Merck & Co., Inc. 126 East Lincoln Avenue, P.O. Box 2000 Rahway New Jersey 07065 United States
| | - Jingtao Zhang
- Merck & Co., Inc. 126 East Lincoln Avenue, P.O. Box 2000 Rahway New Jersey 07065 United States
| | - Wei Zhu
- Merck & Co., Inc. 126 East Lincoln Avenue, P.O. Box 2000 Rahway New Jersey 07065 United States
| | - Maria A Cueto
- Merck & Co., Inc. 126 East Lincoln Avenue, P.O. Box 2000 Rahway New Jersey 07065 United States
| | - Nicole Buist
- Merck & Co., Inc. 126 East Lincoln Avenue, P.O. Box 2000 Rahway New Jersey 07065 United States
| |
Collapse
|
2
|
Tollenaere MA, Mølck C, Henderson I, Pollack S, Addis P, Petersen HH, Norsgaard H. Tralokinumab Effectively Disrupts the IL-13/IL-13Rα1/IL-4Rα Signaling Complex but Not the IL-13/IL-13Rα2 Complex. JID INNOVATIONS 2023; 3:100214. [PMID: 37554517 PMCID: PMC10405097 DOI: 10.1016/j.xjidi.2023.100214] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 08/10/2023] Open
Abstract
Tralokinumab, a fully human mAb specifically targeting the IL-13 cytokine, has demonstrated clinical efficacy and safety in patients with moderate-to-severe atopic dermatitis. Tralokinumab binds IL-13 with high affinity, which prevents the interaction of IL-13 with IL-13Rα1 and subsequent signaling. Similarly, tralokinumab-bound IL-13 cannot bind to IL-13Rα2, a proposed decoy receptor that is reported to bind IL-13 with extraordinarily high affinity. It has however not been fully elucidated to what extent tralokinumab interferes with the endogenous regulation of IL-13 through IL-13Rα2. In this mechanistic study, we used biophysical, biochemical, and cellular assays to investigate the effect of tralokinumab on the interaction between IL-13 and IL-13Rα1 and IL-13Rα2, respectively, as well as the effects on IL-13Rα2-mediated IL-13 internalization. We demonstrate that IL-13Rα2 binds IL-13 with exceptionally high affinity and that tralokinumab is unable to displace IL-13 from IL-13Rα2. In contrast to this, tralokinumab is able to disrupt the IL-13/IL-13Rα1 and IL-13Rα1/IL-13/IL-4Rα complex. Furthermore, we demonstrate that whereas the IL-13/tralokinumab complex is unable to bind IL-13Rα2, any IL-13 that is not bound by tralokinumab (i.e., free IL-13) can be bound by IL-13Rα2 and subsequently internalized, regardless of the presence of tralokinumab. In summary, our study indicates that tralokinumab does not interfere with endogenous IL-13Rα2-mediated regulation of free IL-13.
Collapse
|
3
|
Utility of in silico prediction of target suppression for antibodies against soluble targets: static versus dynamic models. Eur J Clin Pharmacol 2023; 79:137-147. [PMID: 36416938 DOI: 10.1007/s00228-022-03425-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/11/2022] [Indexed: 11/24/2022]
Abstract
PURPOSE Antibodies that bind soluble targets such as cytokines belong to an important class of immunotherapies. Target levels can significantly accumulate after antibody administration due to formation of antibody-target complex, accompanied with suppression in free target which is often difficult to measure. Being a surrogate for pharmacodynamic activity, free target suppression is often predicted using in silico tools. The objective of this work is to illustrate the utility of modelling and to compare static versus dynamic models in the prediction of free target suppression. METHODS Using binding principles, we have derived a static equation to predict free target suppression at steady state (FTSS). This equation operates with five input parameters and accounts for target accumulation over time. Its predictivity was compared to a dynamic model and to other existing metrics in literature via simulations and assumptions were illustrated. RESULTS We demonstrated the utility of in silico tools in prediction of free target suppression using static and dynamic models and clarified the assumptions in key input parameters and their limitations. Predicted values using the FTSS equation correlate very well with those from the dynamic model at level > 20% target suppression, relevant for antagonistic antibodies. CONCLUSION In silico tools are needed to predict target suppression by antibody drugs. Static or dynamic models can be used dependant on the scope, available data and undertaken assumptions. These tools can be used to guide discovery and development of antibodies and has the potential to reduce clinical failure.
Collapse
|
4
|
Ménochet K, Yu H, Wang B, Tibbitts J, Hsu CP, Kamath AV, Richter WF, Baumann A. Non-human primates in the PKPD evaluation of biologics: Needs and options to reduce, refine, and replace. A BioSafe White Paper. MAbs 2022; 14:2145997. [PMID: 36418217 PMCID: PMC9704389 DOI: 10.1080/19420862.2022.2145997] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/07/2022] [Indexed: 11/27/2022] Open
Abstract
Monoclonal antibodies (mAbs) deliver great benefits to patients with chronic and/or severe diseases thanks to their strong specificity to the therapeutic target. As a result of this specificity, non-human primates (NHP) are often the only preclinical species in which therapeutic antibodies cross-react with the target. Here, we highlight the value and limitations that NHP studies bring to the design of safe and efficient early clinical trials. Indeed, data generated in NHPs are integrated with in vitro information to predict the concentration/effect relationship in human, and therefore the doses to be tested in first-in-human trials. The similarities and differences in the systems defining the pharmacokinetics and pharmacodynamics (PKPD) of mAbs in NHP and human define the nature and the potential of the preclinical investigations performed in NHPs. Examples have been collated where the use of NHP was either pivotal to the design of the first-in-human trial or, inversely, led to the termination of a project prior to clinical development. The potential impact of immunogenicity on the results generated in NHPs is discussed. Strategies to optimize the use of NHPs for PKPD purposes include the addition of PD endpoints in safety assessment studies and the potential re-use of NHPs after non-terminal studies or cassette dosing several therapeutic agents of interest. Efforts are also made to reduce the use of NHPs in the industry through the use of in vitro systems, alternative in vivo models, and in silico approaches. In the case of prediction of ocular PK, the body of evidence gathered over the last two decades renders the use of NHPs obsolete. Expert perspectives, advantages, and pitfalls with these alternative approaches are shared in this review.
Collapse
Affiliation(s)
| | - Hongbin Yu
- R&D Project Management and Development Strategies, Boehringer Ingelheim Pharmaceuticals, Inc, Ridgefield, CT, USA
| | - Bonnie Wang
- Nonclinical Disposition and Bioanalysis, Bristol Myers Squibb, Inc, Princeton, NJ, USA
| | - Jay Tibbitts
- Nonclinical Development, South San Francisco, CA, USA
| | - Cheng-Pang Hsu
- Preclinical Development and Clinical Pharmacology, AskGene Pharma Inc, Camarillo, CA, USA
| | - Amrita V. Kamath
- Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc, South San Francisco, CA, USA
| | - Wolfgang F. Richter
- Roche Pharma Research and Early Development, Roche Innovation, Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Andreas Baumann
- R&D, Bayer Pharma AG, Berlin, Germany & Non-clinical Biotech Consulting, Potsdam, Germany °(° present affiliation)
| |
Collapse
|
5
|
Kapitanov GI, Chabot JR, Narula J, Roy M, Neubert H, Palandra J, Farrokhi V, Johnson JS, Webster R, Jones HM. A Mechanistic Site-Of-Action Model: A Tool for Informing Right Target, Right Compound, And Right Dose for Therapeutic Antagonistic Antibody Programs. FRONTIERS IN BIOINFORMATICS 2021; 1:731340. [DOI: 10.3389/fbinf.2021.731340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/23/2021] [Indexed: 11/13/2022] Open
Abstract
Quantitative modeling is increasingly utilized in the drug discovery and development process, from the initial stages of target selection, through clinical studies. The modeling can provide guidance on three major questions–is this the right target, what are the right compound properties, and what is the right dose for moving the best possible candidate forward. In this manuscript, we present a site-of-action modeling framework which we apply to monoclonal antibodies against soluble targets. We give a comprehensive overview of how we construct the model and how we parametrize it and include several examples of how to apply this framework for answering the questions postulated above. The utilities and limitations of this approach are discussed.
Collapse
|
6
|
Foerster J, Molęda A. Virus-Like Particle-Mediated Vaccination against Interleukin-13 May Harbour General Anti-Allergic Potential beyond Atopic Dermatitis. Viruses 2020; 12:v12040438. [PMID: 32294982 PMCID: PMC7232523 DOI: 10.3390/v12040438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/31/2020] [Accepted: 04/09/2020] [Indexed: 12/23/2022] Open
Abstract
Virus-like particle (VLP)-based anti-infective prophylactic vaccination has been established in clinical use. Although validated in proof-of-concept clinical trials in humans, no VLP-based therapeutic vaccination against self-proteins to modulate chronic disease has yet been licensed. The present review summarises recent scientific advances, identifying interleukin-13 as an excellent candidate to validate the concept of anti-cytokine vaccination. Based on numerous clinical studies, long-term elimination of IL-13 is not expected to trigger target-related serious adverse effects and is likely to be safer than combined targeting of IL-4/IL-13. Furthermore, recently published results from large-scale trials confirm that elimination of IL-13 is highly effective in atopic dermatitis, an exceedingly common condition, as well as eosinophilic esophagitis. The distinctly different mode of action of a polyclonal vaccine response is discussed in detail, suggesting that anti-IL-13 vaccination has the potential of outperforming monoclonal antibody-based approaches. Finally, recent data have identified a subset of follicular T helper cells dependent on IL-13 which selectively trigger massive IgE accumulation in response to anaphylactoid allergens. Thus, prophylactic IL-13 vaccination may have broad application in a number of allergic conditions.
Collapse
MESH Headings
- Animals
- Anti-Allergic Agents/administration & dosage
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/immunology
- Antibodies, Neutralizing/immunology
- Cytokines/metabolism
- Dermatitis, Atopic/immunology
- Dermatitis, Atopic/metabolism
- Dermatitis, Atopic/prevention & control
- Humans
- Interleukin-13/antagonists & inhibitors
- Interleukin-13/immunology
- Ligands
- T-Lymphocytes, Helper-Inducer/immunology
- T-Lymphocytes, Helper-Inducer/metabolism
- Vaccination
- Vaccines, Virus-Like Particle/administration & dosage
- Vaccines, Virus-Like Particle/immunology
- Vaccines, Virus-Like Particle/therapeutic use
Collapse
|
7
|
Bieber T. Interleukin-13: Targeting an underestimated cytokine in atopic dermatitis. Allergy 2020; 75:54-62. [PMID: 31230370 DOI: 10.1111/all.13954] [Citation(s) in RCA: 176] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/10/2019] [Accepted: 06/18/2019] [Indexed: 12/17/2022]
Abstract
Atopic dermatitis (AD) is a common inflammatory skin condition that has traditionally been considered a paradigmatic type 2 immunity (T2)-driven disease. Interleukin (IL)-4 and IL-13 are both pivotal cytokines involved in the generation of allergic diseases. Currently, besides dupilumab, which blocks the binding of both cytokines to their receptors, a number of new pharmacologic entities have been designed to target both T2 cytokines and/or their receptors and/or receptor-associated signal transduction machinery such as Janus kinases. Recently, IL-13 has been suggested to be the key T2 cytokine driving inflammation in the periphery, while IL-4 may merely have a central effect. There is increasing evidence that this concept holds true for the inflammatory reaction underlying AD, where IL-13 is overexpressed locally and has a significant impact on skin biology, including the recruitment of inflammatory cells, the alteration of the skin microbiome, and the decrease in the epidermal barrier function. This review provides an update on the role of IL-13 in AD and discusses the different strategies aimed at interfering with its biologic activity as well as their potential in a precision medicine approach in the management of AD.
Collapse
Affiliation(s)
- Thomas Bieber
- Department of Dermatology and Allergy, Christine Kühne—Center for Allergy Research and Education (CK‐CARE) University Medical Center Bonn Germany
| |
Collapse
|
8
|
Moyle M, Cevikbas F, Harden JL, Guttman‐Yassky E. Understanding the immune landscape in atopic dermatitis: The era of biologics and emerging therapeutic approaches. Exp Dermatol 2019; 28:756-768. [PMID: 30825336 PMCID: PMC6850480 DOI: 10.1111/exd.13911] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/28/2019] [Accepted: 02/14/2019] [Indexed: 12/15/2022]
Abstract
Atopic dermatitis (AD) is a chronic, systemic, inflammatory disease that affects the skin and is characterized by persistent itch and marked redness. AD is associated with an increased risk of skin infections and a reduced quality of life. Most AD treatment options to date were not designed to selectively target disease-causing pathways that have been established for this indication. Topical therapies have limited efficacy in moderate-to-severe disease, and systemic agents such as corticosteroids and immunosuppressants present with tolerability issues. Advances in the understanding of AD pathobiology have made possible a new generation of more disease-specific AD therapies. AD is characterized by the inappropriate activation of type 2 T helper (Th2) cells and type 2 innate lymphoid (ILC2) cells, with a predominant increase in type 2 cytokines in the skin, including interleukin (IL)-13 and IL-4. Both cytokines are implicated in tissue inflammation and epidermal barrier dysfunction, and monoclonal antibodies targeting each of these interleukins or their receptors are in clinical development in AD. In March 2017, dupilumab, a human anti-IL-4Rα antibody, became the first biologic to receive approval in the United States for the treatment of moderate-to-severe AD. The anti-IL-13 monoclonal antibodies lebrikizumab and tralokinumab, which bind different IL-13 epitopes with potentially different effects, are currently in advanced-stage trials. Here, we briefly review the underlying pathobiology of AD, the scientific basis for current AD targets, and summarize current clinical studies of these agents, including new research to develop both predictive and response biomarkers to further advance AD therapy in the era of precision medicine.
Collapse
|
9
|
Zhang TT, Ma J, Durbin KR, Montavon T, Lacy SE, Jenkins GJ, Doktor S, Kalvass JC. Determination of IL-23 Pharmacokinetics by Highly Sensitive Accelerator Mass Spectrometry and Subsequent Modeling to Project IL-23 Suppression in Psoriasis Patients Treated with Anti-IL-23 Antibodies. AAPS JOURNAL 2019; 21:82. [PMID: 31250228 DOI: 10.1208/s12248-019-0352-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 06/10/2019] [Indexed: 02/08/2023]
Abstract
The pro-inflammatory cytokine interleukin (IL)-23 is a key modulator of the immune response, making it an attractive target for the treatment of autoimmune disease. Correspondingly, several monoclonal antibodies against IL-23 are either in development or approved for autoimmune indications such as psoriasis. Despite being a clinical validated target, IL-23 pharmacokinetics (e.g., IL-23 synthesis and elimination rates) and the degree of target suppression (i.e., decrease in free "active" IL-23) associated with clinical efficacy are not well understood, primarily due to its ultra-low circulating levels and the lack of sensitive and accurate measurement methods. In the current work, this issue was overcome by using accelerator mass spectrometry (AMS) to measure the concentration and pharmacokinetics of human recombinant [14C]-IL-23 following an intravenous trace-dose in cynomolgus monkeys. IL-23 pharmacokinetic parameters along with clinical drug exposure and IL-23 binding affinities from four different anti-IL-23 antibodies (ustekinumab, tildrakizumab, guselkumab, and risankizumab) were used to build a pharmacokinetics/pharmacodynamics (PK/PD) model to assess the time course of free IL-23 over one year in psoriasis patients following different dosing regimens. The predicted rank order of reduction of free IL-23 was consistent with their reported rank order of Psoriasis Area and Severity Index (PASI) 100 scores in clinical efficacy trials (ustekinumab < tildrakizumab < guselkumab < risankizumab), thus demonstrating the utility of highly sensitive AMS for determining target pharmacokinetics to inform PK/PD modeling and assessing target suppression associated with clinical efficacy.
Collapse
Affiliation(s)
- Ting-Ting Zhang
- DMPK, Takeda Pharmaceuticals International Co., Cambridge, Massachusetts, USA
| | - Junli Ma
- DMPK-BA, AbbVie, Inc., North Chicago, Illinois, USA
| | | | | | - Susan E Lacy
- Immuno-oncology, AbbVie, Inc., Redwood City, California, USA
| | | | | | | |
Collapse
|
10
|
Nair P, O'Byrne PM. The interleukin-13 paradox in asthma: effective biology, ineffective biologicals. Eur Respir J 2019; 53:53/2/1802250. [PMID: 30760544 DOI: 10.1183/13993003.02250-2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 11/28/2018] [Indexed: 01/08/2023]
Affiliation(s)
- Parameswaran Nair
- Firestone Institute for Respiratory Health, St Joseph's Healthcare and Dept of Medicine, McMaster University, Hamilton, ON, Canada
| | - Paul M O'Byrne
- Firestone Institute for Respiratory Health, St Joseph's Healthcare and Dept of Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
11
|
Improvement of pharmacokinetic properties of therapeutic antibodies by antibody engineering. Drug Metab Pharmacokinet 2018; 34:25-41. [PMID: 30472066 DOI: 10.1016/j.dmpk.2018.10.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/13/2018] [Accepted: 10/23/2018] [Indexed: 01/17/2023]
Abstract
Monoclonal antibodies (mAbs) have become an important therapeutic option for several diseases. Since several mAbs have shown promising efficacy in clinic, the competition to develop mAbs has become severe. In efforts to gain a competitive advantage over other mAbs and provide significant benefits to patients, innovations in antibody engineering have aimed at improving the pharmacokinetic properties of mAbs. Because engineering can provide therapeutics that are more convenient, safer, and more efficacious for patients in several disease areas, it is an attractive approach to provide significant benefits to patients. Further advances in engineering mAbs to modulate their pharmacokinetics were driven by the increase of total soluble target antigen concentration that is often observed after injecting a mAb, which then requires a high dosage to antagonize. To decrease the required dosage, several antibody engineering techniques have been invented that reduce the total concentration of soluble target antigen. Here, we review the various ways that antibody engineering can improve the pharmacokinetic properties of mAbs.
Collapse
|
12
|
Venkataramani S, Low S, Weigle B, Dutcher D, Jerath K, Menzenski M, Frego L, Truncali K, Gupta P, Kroe-Barrett R, Ganesan R, Singh S, Erb KJ. Design and characterization of Zweimab and Doppelmab, high affinity dual antagonistic anti-TSLP/IL13 bispecific antibodies. Biochem Biophys Res Commun 2018; 504:19-24. [PMID: 30126632 DOI: 10.1016/j.bbrc.2018.08.064] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 08/07/2018] [Indexed: 12/28/2022]
Abstract
Patients with severe Th2 type asthma often have a steroid resistant phenotype and are prone to acute exacerbations. Current novel therapies have only marginal therapeutic effects. One of the hypotheses for lack of major efficacy in most patients is targeting only one redundant pathway leaving others active. Hence, we have designed and developed novel highly potent bispecific anti-TSLP/IL13 antibodies called Zweimabs (monovalent bispecific) and Doppelmabs (bivalent bispecific) that concurrently inhibits the signaling by these two cytokines.
Collapse
Affiliation(s)
| | - Sarah Low
- Boehringer Ingelheim Pharmaceuticals Inc, 900 Ridgebury Rd, Ridgefield, CT, USA
| | - Bernd Weigle
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Darrin Dutcher
- Boehringer Ingelheim Pharmaceuticals Inc, 900 Ridgebury Rd, Ridgefield, CT, USA
| | - Kavita Jerath
- Boehringer Ingelheim Pharmaceuticals Inc, 900 Ridgebury Rd, Ridgefield, CT, USA
| | - Monica Menzenski
- Boehringer Ingelheim Pharmaceuticals Inc, 900 Ridgebury Rd, Ridgefield, CT, USA
| | - Lee Frego
- Boehringer Ingelheim Pharmaceuticals Inc, 900 Ridgebury Rd, Ridgefield, CT, USA
| | - Kris Truncali
- Boehringer Ingelheim Pharmaceuticals Inc, 900 Ridgebury Rd, Ridgefield, CT, USA
| | - Pankaj Gupta
- Boehringer Ingelheim Pharmaceuticals Inc, 900 Ridgebury Rd, Ridgefield, CT, USA
| | - Rachel Kroe-Barrett
- Boehringer Ingelheim Pharmaceuticals Inc, 900 Ridgebury Rd, Ridgefield, CT, USA
| | - Rajkumar Ganesan
- Boehringer Ingelheim Pharmaceuticals Inc, 900 Ridgebury Rd, Ridgefield, CT, USA
| | - Sanjaya Singh
- Boehringer Ingelheim Pharmaceuticals Inc, 900 Ridgebury Rd, Ridgefield, CT, USA
| | - Klaus J Erb
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany.
| |
Collapse
|
13
|
Ntontsi P, Papathanassiou E, Loukides S, Bakakos P, Hillas G. Targeted anti-IL-13 therapies in asthma: current data and future perspectives. Expert Opin Investig Drugs 2018; 27:179-186. [PMID: 29334288 DOI: 10.1080/13543784.2018.1427729] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
INTRODUCTION The identification of patients with severe asthma who will benefit from a personalized management approach remains an unmet need. Interleukin-13 (IL-13) is a cytokine possessing a significant role in asthma pathogenesis and progression of disease. Humanised monoclonal antibodies against IL-13 and IL-13 and IL-4 receptors are mainly proposed as add-on therapy in patients with TH2-high inflammation with uncontrolled asthma despite maximum therapy. AREAS COVERED The role of IL-13 in airway inflammation in severe asthma, the targeted anti-IL-13 therapies and biomarkers that predict response to anti-IL-13 treatment are discussed. EXPERT OPINION New effective individualized therapies in severe asthma are urgently needed to block specific inflammatory pathways using monoclonal antibodies. Studies on anti-IL-13 therapies showed that asthmatic patients could benefit from this novel targeted therapy as far as lung function and exacerbation rate are concerned. TH2-high and especially periostin-high groups of asthmatics with moderate-to-severe uncontrolled asthma seem to compose the group that could benefit from anti-IL-13 therapy. Targeting IL-13 alone may not be sufficient to achieve asthma control. Inhibition of IL-13 and IL-4 with mabs may be more encouraging and patients will probably have additional benefits from these therapeutic interventions because of IL-13/IL-4 overlapping actions in asthma pathophysiology.
Collapse
Affiliation(s)
- Polyxeni Ntontsi
- a 2nd Respiratory Medicine Department , National and Kapodistrian University of Athens, Medical School, Attikon Hospital , Athens , Greece
| | - Evgenia Papathanassiou
- a 2nd Respiratory Medicine Department , National and Kapodistrian University of Athens, Medical School, Attikon Hospital , Athens , Greece
| | - Stelios Loukides
- a 2nd Respiratory Medicine Department , National and Kapodistrian University of Athens, Medical School, Attikon Hospital , Athens , Greece
| | - Petros Bakakos
- b 1st Respiratory Medicine Department , National and Kapodistrian University of Athens, Medical School, Sotiria Chest Hospital , Athens , Greece
| | - Georgios Hillas
- c Department of Critical Care and Pulmonary Services , National and Kapodistrian University of Athens, Medical School, Evangelismos Hospital , Athens , Greece
| |
Collapse
|
14
|
Haraya K, Tachibana T, Nezu J. Quantitative prediction of therapeutic antibody pharmacokinetics after intravenous and subcutaneous injection in human. Drug Metab Pharmacokinet 2017; 32:208-217. [DOI: 10.1016/j.dmpk.2017.05.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 05/15/2017] [Accepted: 05/17/2017] [Indexed: 01/29/2023]
|
15
|
Tripp CS, Cuff C, Campbell AL, Hendrickson BA, Voss J, Melim T, Wu C, Cherniack AD, Kim K. RPC4046, A Novel Anti-interleukin-13 Antibody, Blocks IL-13 Binding to IL-13 α1 and α2 Receptors: A Randomized, Double-Blind, Placebo-Controlled, Dose-Escalation First-in-Human Study. Adv Ther 2017; 34:1364-1381. [PMID: 28455782 PMCID: PMC5487860 DOI: 10.1007/s12325-017-0525-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Indexed: 11/27/2022]
Abstract
Introduction A unique anti-interleukin (IL)-13 monoclonal antibody, RPC4046, was generated on the basis of differential IL-13 receptor (R) blockade as assessed in a murine asthma model; the safety, tolerability, pharmacokinetics, and pharmacodynamics of RPC4046 were evaluated in a first-in-human study. Methods Anti-IL-13 antibodies with varying receptor blocking specificity were evaluated in the ovalbumin-induced murine asthma model. A randomized, double-blind, placebo-controlled, dose-escalation first-in-human study (NCT00986037) was conducted with RPC4046 in healthy adults and patients with mild to moderate controlled asthma. Results In the ovalbumin model, blocking IL-13 binding to both IL-13Rs (IL-13Rα1 and IL-13Rα2) inhibited more asthma phenotypic features and more fully normalized the distinct IL-13 gene transcription associated with asthma compared with blocking IL-13Rα1 alone. In humans, RPC4046 exposure increased dose-dependently; pharmacokinetics were similar in healthy and asthmatic subjects, and blockade of both IL-13Rs uniquely affected IL-13 gene transcription. A minority of participants (28%) had antidrug antibodies, which were transient and appeared not to affect pharmacokinetics. Adverse event profiles were similar in healthy and asthmatic subjects, without dose-related or administration route differences, systemic infusion-related reactions, or asthma symptom worsening. Adverse events were mild to moderate, with none reported as probably related to RPC4046 or leading to discontinuations. Non-serious upper respiratory tract infections were more frequent with RPC4046 versus placebo. Conclusion RPC4046 is a novel anti-IL-13 antibody that blocks IL-13 binding to both receptors and more fully blocks the asthma phenotype. These results support further investigation of RPC4046 for IL-13-related allergic/inflammatory diseases (e.g., asthma and eosinophilic esophagitis). Funding AbbVie Inc. sponsored the studies and contributed to the design and conduct of the studies, data management, data analysis, interpretation of the data, and in the preparation and approval of the manuscript.
Electronic supplementary material The online version of this article (doi:10.1007/s12325-017-0525-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Carolyn Cuff
- AbbVie, Global Pharmaceutical R&D, Worcester, MA, USA.
| | | | | | - Jeff Voss
- AbbVie, Global Pharmaceutical R&D, Worcester, MA, USA
| | - Terry Melim
- AbbVie, Global Pharmaceutical R&D, Worcester, MA, USA
| | - Chengbin Wu
- AbbVie, Global Pharmaceutical R&D, Worcester, MA, USA
- EpimAb Biotherapeutics Inc., Shanghai, China
| | - Andrew D Cherniack
- AbbVie, Global Pharmaceutical R&D, Worcester, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | |
Collapse
|
16
|
Tiwari A, Luo H, Chen X, Singh P, Bhattacharya I, Jasper P, Tolsma JE, Jones HM, Zutshi A, Abraham AK. Assessing the Impact of Tissue Target Concentration Data on Uncertainty in In Vivo Target Coverage Predictions. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2016; 5:565-574. [PMID: 27770597 PMCID: PMC5080652 DOI: 10.1002/psp4.12126] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 08/19/2016] [Indexed: 01/18/2023]
Abstract
Understanding pharmacological target coverage is fundamental in drug discovery and development as it helps establish a sequence of research activities, from laboratory objectives to clinical doses. To this end, we evaluated the impact of tissue target concentration data on the level of confidence in tissue coverage predictions using a site of action (SoA) model for antibodies. By fitting the model to increasing amounts of synthetic tissue data and comparing the uncertainty in SoA coverage predictions, we confirmed that, in general, uncertainty decreases with longitudinal tissue data. Furthermore, a global sensitivity analysis showed that coverage is sensitive to experimentally identifiable parameters, such as baseline target concentration in plasma and target turnover half‐life and fixing them reduces uncertainty in coverage predictions. Overall, our computational analysis indicates that measurement of baseline tissue target concentration reduces the uncertainty in coverage predictions and identifies target‐related parameters that greatly impact the confidence in coverage predictions.
Collapse
Affiliation(s)
- A Tiwari
- Department of Pharmacokinetics, Dynamics, and Metabolism, Pfizer Worldwide R&D, Cambridge, Massachusetts, USA.
| | - H Luo
- RES Group, Needham, Massachusetts, USA
| | - X Chen
- Department of Pharmacokinetics, Dynamics, and Metabolism, Pfizer Worldwide R&D, Cambridge, Massachusetts, USA
| | - P Singh
- Department of Pharmacokinetics, Dynamics, and Metabolism, Pfizer Worldwide R&D, Cambridge, Massachusetts, USA
| | - I Bhattacharya
- Quantitative Clinical Sciences, PharmaTherapeutics R&D, Pfizer Inc., Cambridge, Massachusetts, USA
| | - P Jasper
- RES Group, Needham, Massachusetts, USA
| | | | - H M Jones
- Department of Pharmacokinetics, Dynamics, and Metabolism, Pfizer Worldwide R&D, Cambridge, Massachusetts, USA
| | | | | |
Collapse
|