1
|
Zhang H, Li L, Li W, Yin H, Wang H, Ke X. Endosomal pH, Redox Dual-Sensitive Prodrug Micelles Based on Hyaluronic Acid for Intracellular Camptothecin Delivery and Active Tumor Targeting in Cancer Therapy. Pharmaceutics 2024; 16:1327. [PMID: 39458656 PMCID: PMC11511143 DOI: 10.3390/pharmaceutics16101327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/16/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Background: CPT is a pentacyclic monoterpene alkaloid with a wide spectrum of antitumor activity. Its clinical application is restricted due to poor water solubility, instability, and high toxicity. We developed a new kind of multifunctional micelles to improve its solubility, reduce the side effecs, and obtain enhanced antitumor effects. Methods: We constructed HA-CPT nano-self-assembly prodrug micelles, which combined the advantages of pH-sensitivity, redox-sensitivity, and active targeting ability to CD44 receptor-overexpressing cancer cells. To synthesize dual sensitive HA-CPT conjugates, CPT was conjugated with HA by pH-sensitive histidine (His) and redox-sensitive 3,3'-dithiodipropionic acid (DTPA). In vitro, we studied the cellular uptake and antitumor effect for tumor cell lines. In vivo, we explored the bio-distribution and antitumor effects of the micelles in HCT 116 tumor bearing nude mice. Results: The dual-sensitive and active targeting HA-His-ss-CPT micelles was proved to be highly efficient in CPT delivery by the in vitro cellular uptake study. The HA-His-ss-CPT micelles escaped from endosomes of tumor cells within 4 h after cellular uptake due to the proton sponge effect of the conjugating His and then quickly released CPT in the cytosol by glutathione (GSH). In mice, HA-His-ss-CPT micelles displayed efficient tumor accumulation and conspicuous inhibition of tumor growth. Conclusions: The novel, dual-sensitive, active targeting nano-prodrug micelles exhibited high efficiency in drug delivery and cancer therapy. This "all in one" drug delivery system can be realized in an ingenious structure and avoid intricate synthesis. This construction strategy can illume the design of nanocarriers responding to endogenous stimuli in tumors.
Collapse
Affiliation(s)
- Huiping Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China;
- School of Pharmacy, Jining Medical College, Rizhao 276826, China; (W.L.); (H.Y.)
| | - Liang Li
- Modern Tranditional Chinese Medicine Research Institute, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang 222000, China;
| | - Wei Li
- School of Pharmacy, Jining Medical College, Rizhao 276826, China; (W.L.); (H.Y.)
| | - Hongxia Yin
- School of Pharmacy, Jining Medical College, Rizhao 276826, China; (W.L.); (H.Y.)
| | - Huiyun Wang
- School of Pharmacy, Jining Medical College, Rizhao 276826, China; (W.L.); (H.Y.)
| | - Xue Ke
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China;
| |
Collapse
|
2
|
Santin AD, Corr BR, Spira A, Willmott L, Butrynski J, Tse KY, Patel J, Mekan S, Wu T, Lin KW, Kuo P, Dumbrava EE. Efficacy and Safety of Sacituzumab Govitecan in Patients With Advanced Solid Tumors (TROPiCS-03): Analysis in Patients With Advanced Endometrial Cancer. J Clin Oncol 2024; 42:3421-3429. [PMID: 39083724 PMCID: PMC11458108 DOI: 10.1200/jco.23.02767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/22/2024] [Accepted: 05/21/2024] [Indexed: 08/02/2024] Open
Abstract
PURPOSE Patients with advanced endometrial cancer (EC) who progress on or after platinum-based therapy and immunotherapy have poor prognosis. We report efficacy and safety of sacituzumab govitecan (SG), a trophoblast cell-surface antigen 2 (Trop-2)-directed antibody-drug conjugate, in patients with advanced EC. METHODS TROPiCS-03 (ClinicalTrials.gov identifier: NCT03964727) is a multicohort, open-label, phase II basket study in patients with metastatic solid tumors. Eligible patients in the EC cohort received SG 10 mg/kg once on days 1 and 8 every 3 weeks. Primary end point was objective response rate (ORR) by investigator's assessment per RECIST v1.1. Secondary end points included clinical benefit rate (CBR; complete and partial response, and stable disease ≥6 months), duration of response (DOR), and progression-free survival (PFS) per investigator assessment, overall survival, and safety. Trop-2 expression of archival or baseline tumor specimens was analyzed by immunohistochemistry. RESULTS At data extraction date, 41 patients were enrolled. Median follow-up was 5.8 months (range, 0.7-19.3); median previous therapies was three (range, 1-6); and 85% of patients received previous chemotherapy and immunotherapy. ORR was 22% (95% CI, 11 to 38); CBR was 32% (95% CI, 18 to 48). Median DOR was 8.8 months (95% CI, 2.8 to not estimable); median PFS was 4.8 months (95% CI, 2.8 to 9.8). Trop-2 exploratory analysis was conducted retrospectively for 39 patients. Tumor Trop-2 protein was highly expressed in EC, showing limited correlation with efficacy. Grade ≥3 treatment-related adverse events (TRAEs) occurred in 73% of patients. Study drug discontinuation due to TRAEs was 5%. Two deaths occurred, deemed unrelated to SG. CONCLUSION Findings from TROPiCS-03 showed encouraging efficacy of SG with a manageable toxicity profile in a heavily pretreated population with advanced EC. Safety findings were consistent with the known SG safety profile.
Collapse
Affiliation(s)
| | | | | | - Lyndsay Willmott
- HonorHealth Virginia G. Piper Cancer Care Network Biltmore, Phoenix, AZ
| | - James Butrynski
- Willamette Valley Cancer Institute and Research Center, Eugene, OR
| | - Ka Yu Tse
- School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| | | | | | - Tia Wu
- Gilead Sciences, Inc, Foster City, CA
| | | | | | | |
Collapse
|
3
|
Nazli A, Irshad Khan MZ, Rácz Á, Béni S. Acid-sensitive prodrugs; a promising approach for site-specific and targeted drug release. Eur J Med Chem 2024; 276:116699. [PMID: 39089000 DOI: 10.1016/j.ejmech.2024.116699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/02/2024] [Accepted: 07/18/2024] [Indexed: 08/03/2024]
Abstract
Drugs administered through conventional formulations are devoid of targeting and often spread to various undesired sites, leading to sub-lethal concentrations at the site of action and the emergence of undesired effects. Hence, therapeutic agents should be delivered in a controlled manner at target sites. Currently, stimuli-based drug delivery systems have demonstrated a remarkable potential for the site-specific delivery of therapeutic moieties. pH is one of the widely exploited stimuli for drug delivery as several pathogenic conditions such as tumor cells, infectious and inflammatory sites are characterized by a low pH environment. This review article aims to demonstrate various strategies employed in the design of acid-sensitive prodrugs, providing an overview of commercially available acid-sensitive prodrugs. Furthermore, we have compiled the progress made for the development of new acid-sensitive prodrugs currently undergoing clinical trials. These prodrugs include albumin-binding prodrugs (Aldoxorubicin and DK049), polymeric micelle (NC-6300), polymer conjugates (ProLindac™), and an immunoconjugate (IMMU-110). The article encompasses a broad spectrum of studies focused on the development of acid-sensitive prodrugs for anticancer, antibacterial, and anti-inflammatory agents. Finally, the challenges associated with the acid-sensitive prodrug strategy are discussed, along with future directions.
Collapse
Affiliation(s)
- Adila Nazli
- Department of Pharmacognosy, Semmelweis University, 1085, Budapest, Hungary.
| | | | - Ákos Rácz
- Department of Pharmacognosy, Semmelweis University, 1085, Budapest, Hungary.
| | - Szabolcs Béni
- Integrative Health and Environmental Analysis Research Laboratory, Department of Analytical Chemistry, Institute of Chemistry, Eötvös Loránd University, 1117, Budapest, Hungary.
| |
Collapse
|
4
|
Garrigos L, Camacho D, Perez-Garcia JM, Llombart-Cussac A, Cortes J, Antonarelli G. Sacituzumab govitecan for hormone receptor-positive HER2-negative advanced breast cancer. Expert Rev Anticancer Ther 2024; 24:949-958. [PMID: 39210557 DOI: 10.1080/14737140.2024.2392775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION Initial treatment for hormone-receptor positive (HR+)/human epidermal growth factor receptor 2 negative (HER2-) advanced breast cancer (ABC) typically involves endocrine therapy (ET) combined with different targeted agents. When hormonal therapies fail, until recently, the only option available was chemotherapy (ChT), presenting a significant therapeutic challenge. However, the recent introduction of antibody-drug conjugates (ADCs) has provided new treatment alternatives in this context. Sacituzumab govitecan (SG), a novel trophoblast cell-surface antigen 2 (Trop-2)-targeting ADC, has been evaluated following disease progression to ET and ChT in HR+/HER2- ABC. AREAS COVERED This review examines the latest clinical trials, including phase I/II and III studies and evaluates the impact of SG on HR+/HER2- ABC. The literature search focused on clinical outcomes, particularly regarding efficacy and safety, comparing them with traditional ChT. EXPERT OPINION SG has demonstrated to be an effective treatment for patients with HR+/HER2- ABC after progression to ET and cyclin-dependent kinase 4/6 inhibitors (CDKi) in any setting, and at least two ChT-containing regimens in the advanced setting. With a manageable toxicity profile, SG represents a significant advancement in the treatment landscape for this patient population. However, further research is essential to optimize its application and establish long-term benefits.
Collapse
Affiliation(s)
- Laia Garrigos
- International Breast Cancer Center (IBCC), Pangaea Oncology, Quiron Hospital, Barcelona, Spain
| | - Daniela Camacho
- International Breast Cancer Center (IBCC), Pangaea Oncology, Quiron Hospital, Barcelona, Spain
| | - José Manuel Perez-Garcia
- International Breast Cancer Center (IBCC), Pangaea Oncology, Quiron Hospital, Barcelona, Spain
- Medica Scientia Innovation Research (MEDSIR), Oncoclínicas & Co, Sao Paulo, NJ, USA
| | - Antonio Llombart-Cussac
- Medica Scientia Innovation Research (MEDSIR), Oncoclínicas & Co, Sao Paulo, NJ, USA
- Hospital Arnau de Vilanova, Universidad Católica de Valencia, Valencia, Spain
| | - Javier Cortes
- International Breast Cancer Center (IBCC), Pangaea Oncology, Quiron Hospital, Barcelona, Spain
- Medica Scientia Innovation Research (MEDSIR), Oncoclínicas & Co, Sao Paulo, NJ, USA
- Universidad Europea de Madrid, Faculty of Biomedical and Health Sciences, Department of Medicine, Madrid, Spain
- IOB Institute of Oncology Madrid, Hospital Beata María Ana, Madrid, Spain
| | - Gabriele Antonarelli
- Division of Early Drug Development for Innovative Therapies, European Institute of Oncology, Milan, Italy
- Department of Oncology and Hemato-Oncology (DIPO), University of Milan, Milan, Italy
| |
Collapse
|
5
|
Carrión-Madroñal IM, Díaz-Acedo R, Lora-Escobar SJ, Naranjo-Llamas E, Jaramillo-Ruiz D, Artacho-Criado S, Prado-Mel E. Sacituzumab-govitecan in metastatic triple-negative breast cancer: a multicenter effectiveness and safety study. Future Oncol 2024; 20:2565-2572. [PMID: 39263951 DOI: 10.1080/14796694.2024.2394408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 08/16/2024] [Indexed: 09/13/2024] Open
Abstract
Aim: Sacituzumab-govitecan (Sgov) is a new antibody-drug conjugate recently approved for metastatic triple negative breast cancer (mTNBC), so there are still few data published in the real-world setting.Materials & methods: This study was to analyze the effectiveness and safety of Sgov in mTNBC of patients from the three main hospitals of a city and to compare with the pivotal ASCENT-trial. A total of 46 patients were included, all women diagnosed with mTNBC, with a median age of 52 years and Eastern Cooperative Oncology Group performance status 0-1 71.8% of patients.Results: Sgov effectiveness data seem to be slightly inferior than expected. Furthermore, it is observed that patients with an Eastern Cooperative Oncology Group of two or higher benefit significantly less from treatment with the drug. Safety profile of Sgov is acceptable.
Collapse
Affiliation(s)
| | - Rocío Díaz-Acedo
- Servicio de Farmacia, Hospital Universitario Virgen del Rocío, Seville, 41013, SPAIN
| | | | | | | | | | - Elena Prado-Mel
- Servicio de Farmacia, Hospital Universitario Virgen del Rocío, Seville, 41013, SPAIN
| |
Collapse
|
6
|
Tonni E, Oltrecolli M, Pirola M, Tchawa C, Roccabruna S, D'Agostino E, Matranga R, Piombino C, Pipitone S, Baldessari C, Bacchelli F, Dominici M, Sabbatini R, Vitale MG. New Advances in Metastatic Urothelial Cancer: A Narrative Review on Recent Developments and Future Perspectives. Int J Mol Sci 2024; 25:9696. [PMID: 39273642 PMCID: PMC11395814 DOI: 10.3390/ijms25179696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
The standard of care for advanced or metastatic urothelial carcinoma (mUC) was historically identified with platinum-based chemotherapy. Thanks to the advances in biological and genetic knowledge and technologies, new therapeutic agents have emerged in this setting recently: the immune checkpoint inhibitors and the fibroblast growth factor receptor inhibitors as the target therapy for patients harboring alterations in the fibroblast growth factor receptor (FGFR) pathway. However, chasing a tumor's tendency to recur and progress, a new class of agents has more recently entered the scene, with promising results. Antibody-drug conjugates (ADCs) are in fact the latest addition, with enfortumab vedotin being the first to receive accelerated approval by the U.S. Food and Drug Administration in December 2019, followed by sacituzumab govitecan. Many other ADCs are still under investigation. ADCs undoubtedly represent the new frontier, with the potential of transforming the management of mUC treatment in the future. Therefore, we reviewed the landscape of mUC treatment options, giving an insight into the molecular basis and mechanisms, and evaluating new therapeutic strategies in the perspective of more and more personalized treatments.
Collapse
Affiliation(s)
- Elena Tonni
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy
| | - Marco Oltrecolli
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy
| | - Marta Pirola
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy
| | - Cyrielle Tchawa
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy
| | - Sara Roccabruna
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy
| | - Elisa D'Agostino
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy
| | - Rossana Matranga
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy
| | - Claudia Piombino
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy
| | - Stefania Pipitone
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy
| | - Cinzia Baldessari
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy
| | - Francesca Bacchelli
- Clinical Trials Office, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Massimo Dominici
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Roberto Sabbatini
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy
| | - Maria Giuseppa Vitale
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy
| |
Collapse
|
7
|
Li C, Shi K, Zhao S, Liu J, Zhai Q, Hou X, Xu J, Wang X, Liu J, Wu X, Fan W. Natural-source payloads used in the conjugated drugs architecture for cancer therapy: Recent advances and future directions. Pharmacol Res 2024; 207:107341. [PMID: 39134188 DOI: 10.1016/j.phrs.2024.107341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/15/2024]
Abstract
Drug conjugates are obtained from tumor-located vectors connected to cytotoxic agents via linkers, which are designed to deliver hyper-toxic payloads directly to targeted cancer cells. These drug conjugates include antibody-drug conjugates (ADCs), peptide-drug conjugates (PDCs), small molecule-drug conjugates (SMDCs), nucleic acid aptamer-drug conjugates (ApDCs), and virus-like drug conjugate (VDCs), which show great therapeutic value in the clinic. Drug conjugates consist of a targeting carrier, a linker, and a payload. Payloads are key therapy components. Cytotoxic molecules and their derivatives derived from natural products are commonly used in the payload portion of conjugates. The ideal payload should have sufficient toxicity, stability, coupling sites, and the ability to be released under specific conditions to kill tumor cells. Microtubule protein inhibitors, DNA damage agents, and RNA inhibitors are common cytotoxic molecules. Among these conjugates, cytotoxic molecules of natural origin are summarized based on their mechanism of action, conformational relationships, and the discovery of new derivatives. This paper also mentions some cytotoxic molecules that have the potential to be payloads. It also summarizes the latest technologies and novel conjugates developed in recent years to overcome the shortcomings of ADCs, PDCs, SMDCs, ApDCs, and VDCs. In addition, this paper summarizes the clinical trials conducted on conjugates of these cytotoxic molecules over the last five years. It provides a reference for designing and developing safer and more efficient conjugates.
Collapse
Affiliation(s)
- Cuiping Li
- Department of Pharmacy, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China.
| | - Kourong Shi
- Department of Pharmacy, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China.
| | - Siyuan Zhao
- Department of Pharmacy, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China.
| | - Juan Liu
- Department of Pharmacy, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China.
| | - Qiaoli Zhai
- Department of Pharmacy, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China.
| | - Xiaoli Hou
- Department of Pharmacy, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China.
| | - Jie Xu
- Department of Pharmacy, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China.
| | - Xinyu Wang
- Shanghai Wei Er Lab, Shanghai 201707, China.
| | - Jiahui Liu
- Fujian University of Traditional Chinese Medicine, Fuzhou 350108, China.
| | - Xin Wu
- Fujian University of Traditional Chinese Medicine, Fuzhou 350108, China; Shanghai Wei Er Lab, Shanghai 201707, China.
| | - Wei Fan
- Department of Pharmacy, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China.
| |
Collapse
|
8
|
Theocharopoulos C, Ziogas IA, Douligeris CC, Efstathiou A, Kolorizos E, Ziogas DC, Kontis E. Antibody-drug conjugates for hepato-pancreato-biliary malignancies: "Magic bullets" to the rescue? Cancer Treat Rev 2024; 129:102806. [PMID: 39094332 DOI: 10.1016/j.ctrv.2024.102806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/17/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024]
Abstract
Hepato-Pancreato-Biliary (HPB) malignancies constitute a highly aggressive group of cancers that have a dismal prognosis. Patients not amenable to curative intent surgical resection are managed with systemic chemotherapy which, however, confers little survival benefit. Antibody-Drug Conjugates (ADCs) are tripartite compounds that merge the intricate selectivity and specificity of monoclonal antibodies with the cytodestructive potency of attached supertoxic payloads. In view of the unmet need for drugs that will enhance the survival rates of HPB cancer patients, the assessment of ADCs for treating HPB malignancies has become the focus of extensive clinical and preclinical investigation, showing encouraging preliminary results. In the current review, we offer a comprehensive overview of the growing body of evidence on ADC approaches tested for HPB malignancies. Starting from a concise discussion of the functional principles of ADCs, we summarize here all available data from preclinical and clinical studies evaluating ADCs in HPB cancers.
Collapse
Affiliation(s)
| | - Ioannis A Ziogas
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | | | | | | | - Dimitrios C Ziogas
- First Department of Internal Medicine, Laikon General Hospital, School of Medicine, National Kapodistrian University of Athens, Athens 11527, Greece
| | - Elissaios Kontis
- Department of Surgery, Metaxa Cancer Hospital, Piraeus 18537, Greece
| |
Collapse
|
9
|
Pérol M. TROP2-Directed Antibody-Drug Conjugates in Advanced Non-Small Cell Lung Cancer: A Fading Hope? J Clin Oncol 2024; 42:2839-2842. [PMID: 38986037 DOI: 10.1200/jco.24.01043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 07/12/2024] Open
Affiliation(s)
- Maurice Pérol
- Department of Medical Oncology, Léon Bérard Cancer Center, Lyon, France
| |
Collapse
|
10
|
Yaringaño J, Roca-Herrera M, Eremiev S, Mascaró-Baselga P, Benito P, Núñez F, Benavente S, Pimentel I. Sacituzumab govitecan response in extensive leptomeningeal carcinomatosis from triple-negative breast cancer: a case report. Front Oncol 2024; 14:1378248. [PMID: 39188688 PMCID: PMC11345153 DOI: 10.3389/fonc.2024.1378248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/24/2024] [Indexed: 08/28/2024] Open
Abstract
Sacituzumab govitecan (SG), a Trop-2-directed antibody-drug conjugate (ADC), was the first ADC approved for patients with metastatic triple-negative breast cancer (mTNBC) who had received at least two prior lines of therapy for advanced disease. Although SG has shown promising clinical activity in treating brain metastases in both ASCENT randomized trials and real-world analysis, its utility in leptomeningeal carcinomatosis (LC) remains underexplored. We report the diagnostic and therapeutic process of a patient who develops extensive LC from TNBC treated with SG. She presented a clinical response after the first cycle of SG with a PFS of 6 months. This case report highlights the need for further inquiry into the use of SG in LC.
Collapse
Affiliation(s)
- Jesús Yaringaño
- Medical Oncology Department, Vall d’Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d’Hebron, Barcelona, Spain
| | - María Roca-Herrera
- Medical Oncology Department, Vall d’Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d’Hebron, Barcelona, Spain
| | - Simeón Eremiev
- Medical Oncology Department, Vall d’Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d’Hebron, Barcelona, Spain
| | - Pau Mascaró-Baselga
- Medical Oncology Department, Vall d’Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d’Hebron, Barcelona, Spain
| | - Pau Benito
- Medical Oncology Department, Vall d’Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d’Hebron, Barcelona, Spain
| | - Fidel Núñez
- Radiology Department, Hospital Universitari Vall d’Hebron, Barcelona, Spain
| | - Sergi Benavente
- Radiation Oncology Department, Vall d’Hebron Institute of Oncology, Hospital Universitari Vall d’Hebron, Barcelona, Spain
| | - Isabel Pimentel
- Medical Oncology Department, Vall d’Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d’Hebron, Barcelona, Spain
- Breast Cancer and Melanoma Group, Vall d’Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d’Hebron, Barcelona, Spain
| |
Collapse
|
11
|
Bratti M, Stubbs E, Kolodych S, Souchet H, Kelly L, Merlin J, Marchal M, Castellano R, Josselin E, Pasquer H, Benajiba L, Puissant A, Koniev O, Collette Y, Belanger C, Hermine O, Monteiro RC, Launay P. INA03: A Potent Transferrin-Competitive Antibody-Drug Conjugate against CD71 for Safer Acute Leukemia Treatment. Mol Cancer Ther 2024; 23:1159-1175. [PMID: 38641421 DOI: 10.1158/1535-7163.mct-23-0548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/19/2023] [Accepted: 04/05/2024] [Indexed: 04/21/2024]
Abstract
Innovative strategies for enhancing efficacy and overcoming drug resistance in hematologic cancers, such as using antibody-drug conjugates (ADC), have shifted the paradigm of conventional care by delivering promising outcomes in cancer therapies with a significant reduction in the risk of relapse. Transferrin receptor (TfR1), cluster of differentiation 71 (CD71), is known to be overexpressed in malignant cells and considered a potent antitumor target. Therefore, we developed an anti-CD71 ADC, INA03, a humanized antibody conjugated to monomethyl auristatin E through a 3-arylpropiolonitrile-valine-citrulline linker. In this study, we investigated the potency and safety of INA03, in competition with Transferrin (Tf), the CD71's natural ligand, as a novel strategy to specifically target highly proliferative cells. The high expression of CD71 was confirmed on different leukemic cell lines, allowing INA03 to bind efficiently. Subsequently, INA03 rapidly internalizes into lysosomal compartments, in which its cytotoxic drug is released following cathepsin B cleavage. Downregulation of CD71 expression using shRNA highlighted that INA03-induced cell death was dependent on CD71 density at the cell surface. INA03 intravenous treatment in acute leukemia mouse models significantly reduced tumor burden, increased mouse survival, and showed no residual disease compared with conventional chemotherapies. Because INA03 competes with human Tf, a double knock-in (human CD71/human Tf) competent mouse model was generated to mimic human pharmacokinetics and pharmacodynamics. INA03 administration in human CD71/hTf mice did not reveal any improper toxicities, even at high doses. Hence, these data demonstrate the promising preclinical efficacy and safety of INA03 and support its development as a novel acute leukemia treatment. Significance: The Tf receptor is believed to be undruggable because of its ubiquitous expression. By entering into competition with its cognate ligand, the Tf and INA03 ADC can safely achieve potency.
Collapse
Affiliation(s)
| | | | | | | | - Lois Kelly
- Institut de Recherche Saint-Louis (IRSL), INSERM U944, Paris, France
| | | | - Michelle Marchal
- INATHERYS, Evry, France
- Institut Imagine, INSERM U1163, CNRS ERL8654, Paris, France
| | - Remy Castellano
- Centre de Recherche en Cancérologie de Marseille (CRCM), CNRS, INSERM, Aix-Marseille Univ, Institut Paoli-Calmettes, Marseille, France
| | - Emmanuelle Josselin
- Centre de Recherche en Cancérologie de Marseille (CRCM), CNRS, INSERM, Aix-Marseille Univ, Institut Paoli-Calmettes, Marseille, France
| | - Hélène Pasquer
- Institut de Recherche Saint-Louis (IRSL), INSERM U944, Paris, France
- Université Paris Cité, APHP, Hôpital Saint-Louis, Paris, France
| | - Lina Benajiba
- Institut de Recherche Saint-Louis (IRSL), INSERM U944, Paris, France
- Université Paris Cité, APHP, Hôpital Saint-Louis, Paris, France
| | | | | | - Yves Collette
- Centre de Recherche en Cancérologie de Marseille (CRCM), CNRS, INSERM, Aix-Marseille Univ, Institut Paoli-Calmettes, Marseille, France
| | | | - Olivier Hermine
- INATHERYS, Evry, France
- Institut Imagine, INSERM U1163, CNRS ERL8654, Paris, France
| | - Renato C Monteiro
- INATHERYS, Evry, France
- Université Paris Cité, Centre de Recherche sur l'Inflammation (CRI), INSERM U1149, CNRS ERL8252, Inflamex Laboratory of Excellence, Paris, France
| | - Pierre Launay
- INATHERYS, Evry, France
- Université Paris Cité, Centre de Recherche sur l'Inflammation (CRI), INSERM U1149, CNRS ERL8252, Inflamex Laboratory of Excellence, Paris, France
| |
Collapse
|
12
|
Pang S, Duong A, Siu C, Indorf A. Antibody drug conjugates: Design implications for clinicians. J Oncol Pharm Pract 2024; 30:907-918. [PMID: 38651308 DOI: 10.1177/10781552241228827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
OBJECTIVE There are currently 11 antibody-drug conjugates (ADC) that are FDA approved for use in oncologic disease states, with many more in the pipeline. The authors aim to review the pharmacokinetic profiles of the components of ADCs to engage pharmacist practitioners in practical considerations in the care of patients. This article provides an overview on the use of ADCs in the setting of organ dysfunction, drug-drug interactions, and management of on- and off-target adverse effects. DATA SOURCES A systematic search of the literature on ADCs through September 2023 was conducted. Clinical trials as well as articles on ADC design and functional components, adverse effects, and pharmacokinetics were reviewed. Reviewed literature included prescribing information as well as tertiary sources and primary literature. DATA SUMMARY A total of 11 ADCs were reviewed for the purpose of this article. A description of the mechanism of action and structure of ADCs is outlined, and a table containing description of each currently FDA-approved ADC is included. Various mechanisms of ADC toxicity are reviewed, including how ADC structure may be implicated. CONCLUSION It is imperative that pharmacist clinicians understand the design and function of each component of an ADC to continue to assess new approvals for use in oncology patients. Understanding the design of the ADC can help a pharmacy practitioner compare and contrast adverse effect profiles to support their multidisciplinary teams and to engage patients in education and management of their care.
Collapse
Affiliation(s)
- Stephanie Pang
- Department of Pharmacy, University of Washington, Seattle, WA, USA
| | - Arianne Duong
- Department of Pharmacy, University of Washington, Seattle, WA, USA
| | - Chloe Siu
- Department of Pharmacy, University of Washington, Seattle, WA, USA
| | - Amy Indorf
- Department of Pharmacy, University of Washington, Seattle, WA, USA
| |
Collapse
|
13
|
Zhang Y, Yun X, Ouyang L, Zhang X, Gong L, Qin Q. Development of an ELISA with acidification treatment for an antibody conjugate incorporating Exatecans. Anal Biochem 2024; 690:115530. [PMID: 38570023 DOI: 10.1016/j.ab.2024.115530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/17/2024] [Accepted: 03/31/2024] [Indexed: 04/05/2024]
Abstract
The successful development of Sacituzumab Govitecan and Trastuzumab Deruxtecan has made camptothecin derivatives one of the most popular payloads for antibody-drug conjugates (ADCs). Camptothecin and its derivatives all exist in a pH-dependent equilibrium between the carboxylate and lactone forms. Such transformation may lead to differences in the ratio of the two molecular forms in calibration standards and biological matrix (bio-matrix) samples, thereby leading to inaccurate conjugated antibody results. In this study, we reported an enzyme-linked immunosorbent assay (ELISA) free of the aforementioned influence for the detection of the Exatecans-conjugated antibody (conjugated SM001) in cynomolgus monkey serum. The assay was developed by first acidifying all samples with glacial acetic acid (HAc), then performing neutralization and thereafter capturing conjugated SM001 with anti-Exatecan monoclonal antibody (mAb) and detecting it with biotinylated Nectin4 (hNectin4-Bio) and horseradish peroxidase-labeled streptavidin (SA-HRP). Results showed that all tested performance parameters met the acceptance criteria. The conjugated SM001 concentrations obtained were in parallel to but slightly lower than total antibody (TAb) throughout the pharmacokinetic (PK) study, revealing that the assay strategy implemented for conjugated SM001 measurement worked well for the elimination of interference triggered by the heterogeneous existence of the lactone and carboxylate forms of Exatecan (lactone-Exatecan and carboxylate-Exatecan).
Collapse
Affiliation(s)
- Yingying Zhang
- Department of Immunoassay and Immunochemistry, Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Pudong, Shanghai, 201203, China; Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210023, China
| | - Xi Yun
- Department of Immunoassay and Immunochemistry, Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Pudong, Shanghai, 201203, China
| | - Lu Ouyang
- Department of Immunoassay and Immunochemistry, Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Pudong, Shanghai, 201203, China
| | - Xianjing Zhang
- Department of Immunoassay and Immunochemistry, Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Pudong, Shanghai, 201203, China
| | - Likun Gong
- Department of Immunoassay and Immunochemistry, Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Pudong, Shanghai, 201203, China; Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210023, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 101408, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China.
| | - Qiuping Qin
- Department of Immunoassay and Immunochemistry, Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Pudong, Shanghai, 201203, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| |
Collapse
|
14
|
Tolaney SM, DeMichele A, Takano T, Rugo HS, Perou C, Lynce F, Parsons HA, Santa-Maria CA, Rocque GB, Yao W, Sun SW, Mocci S, Partridge AH, Carey LA. OptimICE-RD: sacituzumab govitecan + pembrolizumab vs pembrolizumab (± capecitabine) for residual triple-negative breast cancer. Future Oncol 2024; 20:2343-2355. [PMID: 38922307 PMCID: PMC11520537 DOI: 10.1080/14796694.2024.2357534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 05/16/2024] [Indexed: 06/27/2024] Open
Abstract
Patients with early-stage triple-negative breast cancer (TNBC) with residual invasive disease after neoadjuvant therapy have a high risk of recurrence even with neoadjuvant and adjuvant treatment with pembrolizumab. Sacituzumab govitecan, a Trop-2-directed antibody-drug conjugate with a topoisomerase I inhibitor payload, improved progression-free survival (PFS) and overall survival (OS) versus chemotherapy in patients with pre-treated metastatic TNBC. Moreover, preclinical data suggest that topoisomerase I inhibitors may enhance the effects of immune checkpoint inhibitors through activation of the cGAS-STING pathway. Here we describe the international randomized phase III AFT-65/ASCENT-05/OptimICE-RD trial, which evaluates the efficacy and safety of sacituzumab govitecan plus pembrolizumab versus treatment of physician's choice (pembrolizumab ± capecitabine) among patients with early-stage TNBC with residual invasive disease after neoadjuvant therapy.Clinical Trial Registration: NCT05633654 (ClinicalTrials.gov)Other Study ID Number(s): Gilead Study ID: GS-US-595-6184Registration date: 1 December 2022Study start date: 12 December 2022Recruitment status: Recruiting.
Collapse
Affiliation(s)
- Sara M Tolaney
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215,USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Angela DeMichele
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Toshimi Takano
- The Cancer Institute Hospital of JFCR, Koto City, Tokyo, 135-8550, Japan
| | - Hope S Rugo
- University of California Comprehensive Cancer Center, San Francisco, CA 94143, USA
| | - Charles Perou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Filipa Lynce
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215,USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Heather Anne Parsons
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215,USA
- Harvard Medical School, Boston, MA 02115, USA
| | | | | | - Wenliang Yao
- Gilead Sciences, Inc., Foster City, CA 94404, USA
| | - Shawn W Sun
- Gilead Sciences, Inc., Foster City, CA 94404, USA
| | | | - Ann H Partridge
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215,USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Lisa A Carey
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
15
|
Kuznetsova AV, Glukhova XA, Popova OP, Beletsky IP, Ivanov AA. Contemporary Approaches to Immunotherapy of Solid Tumors. Cancers (Basel) 2024; 16:2270. [PMID: 38927974 PMCID: PMC11201544 DOI: 10.3390/cancers16122270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/11/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
In recent years, the arrival of the immunotherapy industry has introduced the possibility of providing transformative, durable, and potentially curative outcomes for various forms of malignancies. However, further research has shown that there are a number of issues that significantly reduce the effectiveness of immunotherapy, especially in solid tumors. First of all, these problems are related to the protective mechanisms of the tumor and its microenvironment. Currently, major efforts are focused on overcoming protective mechanisms by using different adoptive cell therapy variants and modifications of genetically engineered constructs. In addition, a complex workforce is required to develop and implement these treatments. To overcome these significant challenges, innovative strategies and approaches are necessary to engineer more powerful variations of immunotherapy with improved antitumor activity and decreased toxicity. In this review, we discuss recent innovations in immunotherapy aimed at improving clinical efficacy in solid tumors, as well as strategies to overcome the limitations of various immunotherapies.
Collapse
Affiliation(s)
- Alla V. Kuznetsova
- Laboratory of Molecular and Cellular Pathology, Russian University of Medicine (Formerly A.I. Evdokimov Moscow State University of Medicine and Dentistry), Ministry of Health of the Russian Federation, Bld 4, Dolgorukovskaya Str, 1127006 Moscow, Russia; (A.V.K.); (O.P.P.)
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia
| | - Xenia A. Glukhova
- Onni Biotechnologies Ltd., Aalto University Campus, Metallimiehenkuja 10, 02150 Espoo, Finland; (X.A.G.); (I.P.B.)
| | - Olga P. Popova
- Laboratory of Molecular and Cellular Pathology, Russian University of Medicine (Formerly A.I. Evdokimov Moscow State University of Medicine and Dentistry), Ministry of Health of the Russian Federation, Bld 4, Dolgorukovskaya Str, 1127006 Moscow, Russia; (A.V.K.); (O.P.P.)
| | - Igor P. Beletsky
- Onni Biotechnologies Ltd., Aalto University Campus, Metallimiehenkuja 10, 02150 Espoo, Finland; (X.A.G.); (I.P.B.)
| | - Alexey A. Ivanov
- Laboratory of Molecular and Cellular Pathology, Russian University of Medicine (Formerly A.I. Evdokimov Moscow State University of Medicine and Dentistry), Ministry of Health of the Russian Federation, Bld 4, Dolgorukovskaya Str, 1127006 Moscow, Russia; (A.V.K.); (O.P.P.)
| |
Collapse
|
16
|
Dang MN, Suri S, Li K, Casas CG, Stigliano G, Riley RS, Scully MA, Hoover EC, Aboeleneen SB, Kramarenko GC, Day ES. Antibody and siRNA Nanocarriers to Suppress Wnt Signaling, Tumor Growth, and Lung Metastasis in Triple-Negative Breast Cancer. ADVANCED THERAPEUTICS 2024; 7:2300426. [PMID: 39006318 PMCID: PMC11238604 DOI: 10.1002/adtp.202300426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Indexed: 07/16/2024]
Abstract
The paucity of targeted therapies for triple-negative breast cancer (TNBC) causes patients with this aggressive disease to suffer a poor clinical prognosis. A promising target for therapeutic intervention is the Wnt signaling pathway, which is activated in TNBC cells when extracellular Wnt ligands bind overexpressed Frizzled7 (FZD7) transmembrane receptors. This stabilizes intracellular β-catenin proteins that in turn promote transcription of oncogenes that drive tumor growth and metastasis. To suppress Wnt signaling in TNBC cells, we developed therapeutic nanoparticles (NPs) functionalized with FZD7 antibodies and β-catenin small interfering RNAs (siRNAs). The antibodies enable TNBC cell-specific binding and inhibit Wnt signaling by locking FZD7 receptors in a ligand unresponsive state, while the siRNAs suppress β-catenin through RNA interference. Compared to NPs coated with antibodies or siRNAs individually, NPs coated with both agents more potently reduce the expression of several Wnt related genes in TNBC cells, leading to greater inhibition of cell proliferation, migration, and spheroid formation. In two murine models of metastatic TNBC, the dual antibody/siRNA nanocarriers outperformed controls in terms of inhibiting tumor growth, metastasis, and recurrence. These findings demonstrate suppressing Wnt signaling at both the receptor and mRNA levels via antibody/siRNA nanocarriers is a promising approach to combat TNBC.
Collapse
Affiliation(s)
- Megan N. Dang
- Department of Biomedical Engineering, University of Delaware, Newark, DE, 19713, USA
| | - Sejal Suri
- Department of Biomedical Engineering, University of Delaware, Newark, DE, 19713, USA
| | - Kejian Li
- Department of Biomedical Engineering, University of Delaware, Newark, DE, 19713, USA
| | - Carolina Gomez Casas
- Department of Biomedical Engineering, University of Delaware, Newark, DE, 19713, USA
| | - Gianna Stigliano
- Department of Animal & Food Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Rachel S. Riley
- Department of Biomedical Engineering, University of Delaware, Newark, DE, 19713, USA
| | - Mackenzie A. Scully
- Department of Biomedical Engineering, University of Delaware, Newark, DE, 19713, USA
| | - Elise C. Hoover
- Department of Biomedical Engineering, University of Delaware, Newark, DE, 19713, USA
| | - Sara B. Aboeleneen
- Department of Biomedical Engineering, University of Delaware, Newark, DE, 19713, USA
| | - George C. Kramarenko
- Department of Biomedical Engineering, University of Delaware, Newark, DE, 19713, USA
| | - Emily S. Day
- Department of Biomedical Engineering, University of Delaware, Newark, DE, 19713, USA
- Department of Materials Science & Engineering, University of Delaware, Newark, DE 19716, USA
- Center for Translational Cancer Research, Helen F. Graham Cancer Center & Research Institute, Newark, DE, 19713, USA
| |
Collapse
|
17
|
Cheng CN, Liao HW, Lin CH, Chang WC, Chen IC, Lu YS, Kuo CH. Quantifying payloads of antibody‒drug conjugates using a postcolumn infused-internal standard strategy with LC‒MS. Anal Chim Acta 2024; 1303:342537. [PMID: 38609272 DOI: 10.1016/j.aca.2024.342537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/19/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024]
Abstract
BACKGROUND Antibody‒drug conjugates (ADCs) are innovative biopharmaceutics consisting of a monoclonal antibody, linkers, and cytotoxic payloads. Monitoring circulating payload concentrations has the potential to identify ADC toxicity; however, accurate quantification faces challenges, including low plasma concentrations, severe matrix effects, and the absence of stable isotope-labeled internal standards (SIL-IS) for payloads and their derivatives. Previous studies used structural analogs as internal standards, but different retention times between structural analogs and target analytes may hinder effective matrix correction. Therefore, a more flexible approach is required for precise payload quantification. RESULTS We developed an LC‒MS/MS method incorporating a postcolumn-infused internal standard (PCI-IS) strategy for quantifying payloads and their derivatives of trastuzumab emtansine, trastuzumab deruxtecan, and sacituzumab govitecan, including DM1, MCC-DM1, DXd, SN-38, and SN-38G. Structural analogs (maytansine, Lys-MCC-DM1, and exatecan) were selected as PCI-IS candidates, and their accuracy performance was evaluated based on the percentage of samples within 80%-120% quantification accuracy. Compared to the approach without PCI-IS correction, exatecan enhanced the accuracy performance from 30-40%-100% for SN-38 and DXd, while maytansine and Lys-MCC-DM1 showed comparable accuracy for DM1 and MCC-DM1. This validated PCI-IS analytical method showed superior normalization of matrix effect in all analytes compared to the conventional internal standard approach. The clinical application of this approach showed pronounced differences in DXd and SN-38 concentrations before and after PCI-IS correction. Moreover, only DXd concentrations after PCI-IS correction were significantly higher in patients with thrombocytopenia (p = 0.037). SIGNIFICANCE This approach effectively addressed the issue of unavailability of SIL-IS for novel ADC payloads and provided more accurate quantification, potentially yielding more robust statistical outcomes for understanding the exposure-toxicity relationship in ADCs. It is anticipated that this PCI-IS strategy may be extrapolated to quantify payloads and derivatives in diverse ADCs, thereby providing invaluable insights into drug toxicity and fortifying patient safety in ADC usage.
Collapse
Affiliation(s)
- Chih-Ning Cheng
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsiao-Wei Liao
- Department of Pharmacy, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ching-Hung Lin
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan; Department of Medical Oncology, National Taiwan University Hospital, Cancer Center Branch, Taipei, Taiwan
| | - Wen-Chi Chang
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - I-Chun Chen
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan; Department of Medical Oncology, National Taiwan University Hospital, Cancer Center Branch, Taipei, Taiwan
| | - Yen-Shen Lu
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Ching-Hua Kuo
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan; The Metabolomics Core Laboratory, Centers of Genomic and Precision Medicine, National Taiwan University, Taiwan; Department of Pharmacy, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
18
|
Mak SY, Chen S, Fong WJ, Choo A, Ho YS. A simple and highly sensitive LC-MS workflow for characterization and quantification of ADC cleavable payloads. Sci Rep 2024; 14:11018. [PMID: 38744902 PMCID: PMC11094190 DOI: 10.1038/s41598-024-61522-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/07/2024] [Indexed: 05/16/2024] Open
Abstract
Antibody-drug conjugates (ADC) payloads are cleavable drugs that act as the warhead to exert an ADC's cytotoxic effects on cancer cells intracellularly. A simple and highly sensitive workflow is developed and validated for the simultaneous quantification of six ADC payloads, namely SN-38, MTX, DXd, MMAE, MMAF and Calicheamicin (CM). The workflow consists of a short and simple sample extraction using a methanol-ethanol mixture, followed by a fast liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis. The results showed that well-validated linear response ranges of 0.4-100 nM for SN38, MTX and DXd, 0.04-100 nM for MMAE and MMAF, 0.4-1000 nM for CM were achieved in mouse serum. Recoveries for all six payloads at three different concentrations (low, medium and high) were more than 85%. An ultra-low sample volume of only 5 µL of serum is required due to the high sensitivity of the method. This validated method was successfully applied to a pharmacokinetic study to quantify MMAE in mouse serum samples.
Collapse
Affiliation(s)
- Shi Ya Mak
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Centros, Singapore, 138668, Singapore
| | - Shuwen Chen
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Centros, Singapore, 138668, Singapore
| | - Wey Jia Fong
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Centros, Singapore, 138668, Singapore
| | - Andre Choo
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Centros, Singapore, 138668, Singapore
| | - Ying Swan Ho
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Centros, Singapore, 138668, Singapore.
| |
Collapse
|
19
|
Nathan P, Rajeh A, Noor M, Boldt G, Fernandes R. Antibody-Drug Conjugates in the Treatment of Genitourinary Cancers: An Updated Review of Data. Curr Oncol 2024; 31:2316-2327. [PMID: 38668075 PMCID: PMC11049516 DOI: 10.3390/curroncol31040172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/14/2024] [Accepted: 04/14/2024] [Indexed: 04/28/2024] Open
Abstract
The treatment landscape of genitourinary cancers has significantly evolved over the past few years. Renal cell carcinoma, bladder cancer, and prostate cancer are the most common genitourinary malignancies. Recent advancements have produced new targeted therapies, particularly antibody-drug conjugates (ADCs), due to a better understanding of the underlying oncogenic factors and molecular mechanisms involved. ADCs function as a 'drug delivery into the tumor' system. They are composed of an antigen-directed antibody linked to a cytotoxic drug that releases cytotoxic components after binding to the tumor cell's surface antigen. ADCs have been proven to be extremely promising in the treatment of several cancer types. For GU cancers, this novel treatment has only benefited patients with metastatic urothelial cancer (mUC). The rest of the GU cancer paradigm does not have any FDA-approved ADC treatment options available yet. In this study, we have thoroughly completed a narrative review of the current literature and summarized preclinical studies and clinical trials that evaluated the utility, activity, and toxicity of ADCs in GU cancers, the prospects of ADC development, and the ongoing clinical trials. Prospective clinical trials, retrospective studies, case reports, and scoping reviews were included.
Collapse
Affiliation(s)
- Prathana Nathan
- Department of Internal Medicine, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5C1, Canada
| | - Adnan Rajeh
- Division of Medical Oncology, Department of Oncology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5C1, Canada;
| | - Meh Noor
- Department of Internal Medicine, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5C1, Canada
| | - Gabriel Boldt
- London Regional Cancer Program, Victoria Hospital, London Health Sciences Centre, London, ON N6A 5W9, Canada;
| | - Ricardo Fernandes
- Division of Medical Oncology, Department of Oncology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5C1, Canada;
- Cancer Research Laboratory Program, Lawson Health Research Institute, London, ON N6C 2R5, Canada
| |
Collapse
|
20
|
Shih CH, Lin YH, Luo HL, Sung WW. Antibody-drug conjugates targeting HER2 for the treatment of urothelial carcinoma: potential therapies for HER2-positive urothelial carcinoma. Front Pharmacol 2024; 15:1326296. [PMID: 38572425 PMCID: PMC10987710 DOI: 10.3389/fphar.2024.1326296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/07/2024] [Indexed: 04/05/2024] Open
Abstract
Urothelial carcinoma (UC) is a common cancer characterized by high morbidity and mortality rates. Despite advancements in treatment, challenges such as recurrence and low response rates persist. Antibody-drug conjugates (ADCs) have emerged as a promising therapeutic approach for various cancers, although their application in UC is currently limited. This review focuses on recent research regarding ADCs designed to treat UC by targeting human epidermal growth factor receptor 2 (HER2), a surface antigen expressed on tumor cells. ADCs comprise three main components: an antibody, a linker, and a cytotoxic payload. The antibody selectively binds to tumor cell surface antigens, facilitating targeted delivery of the cytotoxic drug, while linkers play a crucial role in ensuring stability and controlled release of the payload. Cleavable linkers release the drug within tumor cells, while non-cleavable linkers ensure stability during circulation. The cytotoxic payload exerts its antitumor effect by disrupting cellular pathways. HER2 is commonly overexpressed in UCs, making it a potential therapeutic target. Several ADCs targeting HER2 have been approved for cancer treatment, but their use in UC is still being tested. Numerous HER2 ADCs have demonstrated significant growth inhibition and induction of apoptosis in translational models of HER2-overexpressing bladder cancer. Ongoing clinical trials are assessing the efficacy and safety of ADCs targeting HER2 in UC, with the aim of determining tumor response and the potential of ADCs as a treatment option for UC patients. The development of effective therapies with improved response rates and long-term effectiveness is crucial for advanced and metastatic UC. ADCs targeting HER2 show promise in this regard and merit further investigation for UC treatment.
Collapse
Affiliation(s)
- Chia-Hsien Shih
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Hua Lin
- Division of Urology, Department of Surgery, Cardinal Tien Hospital, New Taipei City, Taiwan
- Department of Chemistry, Fu Jen Catholic University, New Taipei City, Taiwan
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Hao-Lun Luo
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Wen-Wei Sung
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Urology, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
21
|
Zhang M, Zuo Y, Chen S, Li Y, Xing Y, Yang L, Wang H, Guo R. Antibody-drug conjugates in urothelial carcinoma: scientometric analysis and clinical trials analysis. Front Oncol 2024; 14:1323366. [PMID: 38665947 PMCID: PMC11044263 DOI: 10.3389/fonc.2024.1323366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/12/2024] [Indexed: 04/28/2024] Open
Abstract
In 2020, bladder cancer, which commonly presents as urothelial carcinoma, became the 10th most common malignancy. For patients with metastatic urothelial carcinoma, the standard first-line treatment remains platinum-based chemotherapy, with immunotherapy serving as an alternative in cases of programmed death ligand 1 expression. However, treatment options become limited upon resistance to platinum and programmed death 1 or programmed death ligand 1 agents. Since the FDA's approval of Enfortumab Vedotin and Sacituzumab Govitecan, the therapeutic landscape has expanded, heralding a shift towards antibody-drug conjugates as potential first-line therapies. Our review employed a robust scientometric approach to assess 475 publications on antibody-drug conjugates in urothelial carcinoma, revealing a surge in related studies since 2018, predominantly led by U.S. institutions. Moreover, 89 clinical trials were examined, with 36 in Phase II and 13 in Phase III, exploring antibody-drug conjugates as both monotherapies and in combination with other agents. Promisingly, novel targets like HER-2 and EpCAM exhibit substantial therapeutic potential. These findings affirm the increasing significance of antibody-drug conjugates in urothelial carcinoma treatment, transitioning them from posterior-line to frontline therapies. Future research is poised to focus on new therapeutic targets, combination therapy optimization, treatment personalization, exploration of double antibody-coupled drugs, and strategies to overcome drug resistance.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Clinical Laboratory, First Affiliated Hospital of Jilin University, Changchun, China
| | - Yuanye Zuo
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Siyi Chen
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Yaonan Li
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Yang Xing
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Lei Yang
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Hong Wang
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Rui Guo
- Department of Clinical Laboratory, First Affiliated Hospital of Jilin University, Changchun, China
| |
Collapse
|
22
|
Yelamali AR, Chendamarai E, Ritchey JK, Rettig MP, DiPersio JF, Persaud SP. Streptavidin-drug conjugates streamline optimization of antibody-based conditioning for hematopoietic stem cell transplantation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.12.579199. [PMID: 38405731 PMCID: PMC10888937 DOI: 10.1101/2024.02.12.579199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Hematopoietic stem cell transplantation (HSCT) conditioning using antibody-drug conjugates (ADC) is a promising alternative to conventional chemotherapy- and irradiation-based conditioning regimens. The drug payload bound to an ADC is a key contributor to its efficacy and potential toxicities; however, a comparison of HSCT conditioning ADCs produced with different toxic payloads has not been performed. Indeed, ADC optimization studies in general are hampered by the inability to produce and screen multiple combinations of antibody and drug payload in a rapid, cost-effective manner. Herein, we used Click chemistry to covalently conjugate four different small molecule payloads to streptavidin; these streptavidin-drug conjugates can then be joined to any biotinylated antibody to produce stable, indirectly conjugated ADCs. Evaluating CD45-targeted ADCs produced with this system, we found the pyrrolobenzodiazepine (PBD) dimer SGD-1882 was the most effective payload for targeting mouse and human hematopoietic stem cells (HSCs) and acute myeloid leukemia cells. In murine syngeneic HSCT studies, a single dose of CD45-PBD enabled near-complete conversion to donor hematopoiesis. Finally, human CD45-PBD provided significant antitumor benefit in a patient-derived xenograft model of acute myeloid leukemia. As our streptavidin-drug conjugates were generated in-house with readily accessible equipment, reagents, and routine molecular biology techniques, we anticipate this flexible platform will facilitate the evaluation and optimization of ADCs for myriad targeting applications.
Collapse
Affiliation(s)
- Aditya R Yelamali
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110 USA
| | - Ezhilarasi Chendamarai
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110 USA
| | - Julie K Ritchey
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110 USA
| | - Michael P Rettig
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110 USA
| | - John F DiPersio
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110 USA
| | - Stephen P Persaud
- Division of Laboratory and Genomic Medicine, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110 USA
| |
Collapse
|
23
|
Hoffman-Censits J, Grivas P, Powles T, Hawley J, Tyroller K, Seeberger S, Guenther S, Jacob N, Mehr KT, Hahn NM. The JAVELIN Bladder Medley trial: avelumab-based combinations as first-line maintenance in advanced urothelial carcinoma. Future Oncol 2024; 20:179-190. [PMID: 37671748 DOI: 10.2217/fon-2023-0492] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023] Open
Abstract
Results from JAVELIN Bladder 100 established avelumab (anti-PD-L1) first-line maintenance as the standard-of-care treatment for patients with advanced urothelial carcinoma (UC) that has not progressed with first-line platinum-based chemotherapy. We describe the design of JAVELIN Bladder Medley (NCT05327530), an ongoing phase II, multicenter, randomized, open-label, parallel-arm, umbrella trial. Overall, 252 patients with advanced UC who are progression-free following first-line platinum-based chemotherapy will be randomized 1:2:2:2 to receive maintenance therapy with avelumab alone (control group) or combined with sacituzumab govitecan (anti-Trop-2/topoisomerase inhibitor conjugate), M6223 (anti-TIGIT) or NKTR-255 (recombinant human IL-15). Primary end points are progression-free survival per investigator and safety/tolerability of the combination regimens. Secondary end points include overall survival, objective response and duration of response per investigator, and pharmacokinetics.
Collapse
Affiliation(s)
- Jean Hoffman-Censits
- Departments of Medical Oncology & Urology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Petros Grivas
- University of Washington, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Thomas Powles
- Department of Genitourinary Oncology, Barts Cancer Institute, Experimental Cancer Medicine Centre, Queen Mary University of London, St Bartholomew's Hospital, London, UK
| | - Jessica Hawley
- University of Washington, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Karin Tyroller
- EMD Serono Research & Development Institute, Inc., Billerica, MA, USA, an affiliate of Merck KGaA
| | | | | | | | | | - Noah M Hahn
- Departments of Medical Oncology & Urology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| |
Collapse
|
24
|
Bataille Backer P, Adekiya TA, Kim Y, Reid TER, Thomas M, Adesina SK. Development of a Targeted SN-38-Conjugate for the Treatment of Glioblastoma. ACS OMEGA 2024; 9:2615-2628. [PMID: 38250376 PMCID: PMC10795035 DOI: 10.1021/acsomega.3c07486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 01/23/2024]
Abstract
Glioblastoma (GBM) is the most aggressive and fatal brain tumor, with approximately 10,000 people diagnosed every year in the United States alone. The typical survival period for individuals with glioblastoma ranges from 12 to 18 months, with significant recurrence rates. Common therapeutic modalities for brain tumors are chemotherapy and radiotherapy. The main challenges with chemotherapy for the treatment of glioblastoma are high toxicity, poor selectivity, and limited accumulation of therapeutic anticancer agents in brain tumors as a result of the presence of the blood-brain barrier. To overcome these challenges, researchers have explored strategies involving the combination of targeting peptides possessing a specific affinity for overexpressed cell-surface receptors with conventional chemotherapy agents via the prodrug approach. This approach results in the creation of peptide drug conjugates (PDCs), which facilitate traversal across the blood-brain barrier (BBB), enable preferential accumulation of chemotherapy within the neoplastic microenvironment, and selectively target cancerous cells. This approach increases accumulation in tumors, thereby improving therapeutic efficiency and minimizing toxicity. Leveraging the affinity of the HAIYPRH (T7) peptide for the transferrin receptor (TfR) overexpressed on the blood-brain barrier and glioma cells, a novel T7-SN-38 peptide drug conjugate was developed. The T7-SN-38 peptide drug conjugate demonstrates about a 2-fold reduction in glide score (binding affinity) compared to T7 while maintaining a comparable orientation within the TfR target site using Schrödinger-2022-3 Maestro 13.3 for ligand preparation and Glide SP-Peptide docking. Additionally, SN-38 extends into a solvent-accessible region, enhancing its susceptibility to protease hydrolysis at the cathepsin B (Cat B) cleavable site. The SN-38-ether-peptide drug conjugate displayed high stability in buffer at physiological pH, and cleavage of the conjugate to release free cytotoxic SN-38 was observed in the presence of exogenous cathepsin B. The synthesized peptide drug conjugate exhibited potent cytotoxic activities in cellular models of glioblastoma in vitro. In addition, blocking transferrin receptors using the free T7 peptide resulted in a notable inhibition of cytotoxicity of the conjugate, which was reversed when exogenous cathepsin B was added to cells. This work demonstrates the potential for targeted drug delivery to the brain in the treatment of glioblastoma using the transferrin receptor-targeted T7-SN-38 conjugate.
Collapse
Affiliation(s)
| | - Tayo Alex Adekiya
- Department
of Pharmaceutical Sciences, Howard University, Washington D.C. 20059, United States
| | - Yushin Kim
- Department
of Pharmaceutical Sciences, Concordia University
of Wisconsin, Mequon, Wisconsin 53097-2402, United States
| | - Terry-Elinor R. Reid
- Department
of Pharmaceutical Sciences, Concordia University
of Wisconsin, Mequon, Wisconsin 53097-2402, United States
| | - Michael Thomas
- Department
of Biology, Howard University, Washington D.C. 20059, United States
| | - Simeon K. Adesina
- Department
of Pharmaceutical Sciences, Howard University, Washington D.C. 20059, United States
| |
Collapse
|
25
|
Cardenas KCA, Enos CW, Spear MR, Austin DE, Almofeez R, Kortchak S, Pincus L, Guo HB, Dolezal S, Pierce JM, Furth E, Gineste C, Kwon Y, Gelber C. CT109-SN-38, a Novel Antibody-drug Conjugate with Dual Specificity for CEACAM5 and 6, Elicits Potent Killing of Pancreatic Cancer Cells. Curr Cancer Drug Targets 2024; 24:720-732. [PMID: 38178674 DOI: 10.2174/0115680096260614231115192343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/18/2023] [Accepted: 10/03/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND CEACAM5 and CEACAM6 are glycosylphosphatidylinositol (GPI)- linked members of the carcinoembryonic antigen-related cell adhesion molecule (CEACAM) family, which are frequently upregulated in epithelial cancers where they contribute to invasion, metastasis, immune evasion, and resistance to anoikis. CT109 is a novel antibody with dual specificity to both CEACAM5 and 6. OBJECTIVES In this study, we aimed to perform the preclinical characterization of CT109 and antibody- drug conjugate (ADCs) derivatives of CT109, focusing on CT109-SN-38. METHODS CT109's cognate epitope was characterized by scanning mutagenesis. CT109 specificity and internalization kinetics were assessed by immunoblot and flow cytometry, respectively. Cognate antigen expression prevalence in colorectal cancer and normal tissue arrays was determined by immunohistochemistry. CT109 conjugations were generated by the reaction of reduced CT109 cysteines with maleimide-functionalized payload linkers. In vitro cytotoxic activity of CT109 ADCs was characterized on antigen-positive and negative pancreatic ductal adenocarcinoma cell (PDAC) lines using a luminometric viability assay. In vivo efficacy of CT109-SN-38 was assessed on a PDAC tumor xenograft model at 10 and 25 mg/kg concentrations. RESULTS CT109 was shown to bind a glycoepitope centered on N309. CT109 is internalized in the CEACAM5+/CEACAM6+ double-positive PDAC line, BxPC-3, with a t1/2 of 2.3 hours. CT109 ADCs elicit a dose and antigen-dependent cytotoxic effect, with CT109-SN-38 exhibiting an IC50 value of 21 nM in BxPC-3 cells. In a BxPC-3 tumor xenograft model, CT109-SN-38 reduced tumor growth and induced regression in 3/10 mice at a concentration 25 mg/kg. CONCLUSION These data suggest that further preclinical and clinical development of CT109-SN-38 is warranted.
Collapse
Affiliation(s)
| | | | - Mark R Spear
- Stromatis Pharma, 9501 Discovery Blvd Manassas, VA 20109, USA
| | - Dana E Austin
- Stromatis Pharma, 9501 Discovery Blvd Manassas, VA 20109, USA
| | - Raghad Almofeez
- Stromatis Pharma, 9501 Discovery Blvd Manassas, VA 20109, USA
| | | | - Lauren Pincus
- Stromatis Pharma, 9501 Discovery Blvd Manassas, VA 20109, USA
| | - Hua-Bei Guo
- University of Georgia Cancer Center, Department of Biochemistry and Molecular Biology and the Complex Carbohydrate Research Center (CCRC), USA
| | - Samuel Dolezal
- University of Georgia Cancer Center, Department of Biochemistry and Molecular Biology and the Complex Carbohydrate Research Center (CCRC), USA
| | - J Michael Pierce
- University of Georgia Cancer Center, Department of Biochemistry and Molecular Biology and the Complex Carbohydrate Research Center (CCRC), USA
| | - Emma Furth
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
| | | | - Yongjun Kwon
- Institute: Food and Drug Administration, CDER, MD, USA
| | - Cohava Gelber
- Stromatis Pharma, 9501 Discovery Blvd Manassas, VA 20109, USA
| |
Collapse
|
26
|
Klee M, Roesch MC, Eggers H, Ivanyi P, Merseburger AS, Kramer M. Enfortumab vedotin as a salvage option as 5th line therapy for metastatic urothelial bladder cancer. Aktuelle Urol 2023. [PMID: 37963579 DOI: 10.1055/a-2148-5799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
A 67-year-old female patient with a muscle-invasive, non-metastatic urothelial bladder cancer (UC) (pT2 G3 cN0 cM0) developed metachronous metastases within 6 months after radical cystectomy with ileal conduit urinary diversion. After a good primary response to platinum-based chemotherapy, treatment was switched to the immune checkpoint inhibitor (ICI) pembrolizumab due to progressive disease. Subsequently the patient underwent selective internal radiotherapy (SIRT) of the liver and received vinflunine as well as a re-challenge with pembrolizumab. Two years after the initial diagnosis, rapid disease progression ultimately led to a switch to 5th line therapy with enfortumab vedotin (EV), which had only been approved in the United States at that time. The antibody-drug conjugate was well tolerated by the patient after dose reduction to 1.0 mg/ kg body weight. Simultaneous irradiation of newly occurring precardiac, hepatic and cerebral metastases were necessary. After 10 months of therapy with EV, tumour regression was observed accompanied with good symptom control. The presented case illustrates the efficacy and tolerability of EV in a heavily pre-treated patient with metastatic UC (mUC).
Collapse
Affiliation(s)
- Melanie Klee
- Department of Urology, Universitätsklinikum Schleswig-Holstein - Campus Lübeck, Lubeck, Germany
| | - Marie Christine Roesch
- Department of Urology, Universitätsklinikum Schleswig-Holstein - Campus Lübeck, Lubeck, Germany
| | - Hendrik Eggers
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Medizinische Hochschule Hannover, Hannover, Germany
| | | | - Axel S Merseburger
- Department of Urology, Universitätsklinikum Schleswig-Holstein - Campus Lübeck, Lubeck, Germany
| | - Mario Kramer
- Department of Urology, Universitätsklinikum Schleswig-Holstein - Campus Lübeck, Lubeck, Germany
| |
Collapse
|
27
|
Song CH, Jeong M, In H, Kim JH, Lin CW, Han KH. Trends in the Development of Antibody-Drug Conjugates for Cancer Therapy. Antibodies (Basel) 2023; 12:72. [PMID: 37987250 PMCID: PMC10660735 DOI: 10.3390/antib12040072] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/22/2023] Open
Abstract
In cancer treatment, the first-generation, cytotoxic drugs, though effective against cancer cells, also harmed healthy ones. The second-generation targeted cancer cells precisely to inhibit their growth. Enter the third-generation, consisting of immuno-oncology drugs, designed to combat drug resistance and bolster the immune system's defenses. These advanced therapies operate by obstructing the uncontrolled growth and spread of cancer cells through the body, ultimately eliminating them effectively. Within the arsenal of cancer treatment, monoclonal antibodies offer several advantages, including inducing cancer cell apoptosis, precise targeting, prolonged presence in the body, and minimal side effects. A recent development in cancer therapy is Antibody-Drug Conjugates (ADCs), initially developed in the mid-20th century. The second generation of ADCs addressed this issue through innovative antibody modification techniques, such as DAR regulation, amino acid substitutions, incorporation of non-natural amino acids, and enzymatic drug attachment. Currently, a third generation of ADCs is in development. This study presents an overview of 12 available ADCs, reviews 71 recent research papers, and analyzes 128 clinical trial reports. The overarching objective is to gain insights into the prevailing trends in ADC research and development, with a particular focus on emerging frontiers like potential targets, linkers, and drug payloads within the realm of cancer treatment.
Collapse
Affiliation(s)
- Chi Hun Song
- Department of Biological Sciences and Biotechnology, Hannam University, Daejeon 34054, Republic of Korea; (C.H.S.); (M.J.); (H.I.); (J.H.K.)
| | - Minchan Jeong
- Department of Biological Sciences and Biotechnology, Hannam University, Daejeon 34054, Republic of Korea; (C.H.S.); (M.J.); (H.I.); (J.H.K.)
| | - Hyukmin In
- Department of Biological Sciences and Biotechnology, Hannam University, Daejeon 34054, Republic of Korea; (C.H.S.); (M.J.); (H.I.); (J.H.K.)
| | - Ji Hoe Kim
- Department of Biological Sciences and Biotechnology, Hannam University, Daejeon 34054, Republic of Korea; (C.H.S.); (M.J.); (H.I.); (J.H.K.)
| | - Chih-Wei Lin
- Institute of Biochemistry and Molecular Biology, China Medical University, Taichung 406, Taiwan;
| | - Kyung Ho Han
- Department of Biological Sciences and Biotechnology, Hannam University, Daejeon 34054, Republic of Korea; (C.H.S.); (M.J.); (H.I.); (J.H.K.)
| |
Collapse
|
28
|
Guidotti IL, Neis A, Martinez DP, Seixas FK, Machado K, Kremer FS. Bambu and its applications in the discovery of active molecules against melanoma. J Mol Graph Model 2023; 124:108564. [PMID: 37453311 DOI: 10.1016/j.jmgm.2023.108564] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/14/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
PURPOSE OR OBJECTIVE Melanoma is one of the most dangerous forms of skin cancer and the discovery of novel drugs is an ongoing effort. Quantitative Structure Activity Relationship (QSAR) is a computational method that allows the estimation of the properties of a molecule, including its biological activity. QSAR models have been widely employed in the search for potential drug candidates, but also for agrochemicals and other molecules with applications in different branches of the industry. Here we present Bambu, a simple command line tool to generate QSAR models from high-throughput screening bioassays datasets. METHODS The tool was developed using the Python programming language and relies mainly on RDKit for molecule data manipulation, FLAML for automated machine learning and the PubChem REST API for data retrieval. As a proof-of-concept we have employed the tool to generate QSAR models for melanoma cell growth inhibition based on HTS data and used them to screen libraries of FDA-approved drugs and natural compounds. Additionally, Bambu was compared to QSAR-Co, another automated tool for QSAR model generation. RESULTS based on the developed tool we were able to produce QSAR models and identify a wide variety of molecules with potential melanoma cell growth inhibitors, many of which with anti-tumoral activity already described. The QSAR models are available through the URL http://caramel.ufpel.edu.br, and all data and code used to generate its models are available at Zenodo (https://doi.org/10.5281/zenodo.7495214). Bambu source code is available at GitHub (https://github.com/omixlab/bambu-v2). In the benchmark, Bambu was able to produce models with higher accuracy, recall, F1 and ROC AUC when compared to QSAR-Co for the selected datasets. CONCLUSIONS Bambu is an free and open source tool which facilitates the creation of QSAR models and can be futurely applied in a wide variety of drug discovery projects.
Collapse
Affiliation(s)
- Isadora Leitzke Guidotti
- Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Alessandra Neis
- Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Daniela Peres Martinez
- Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Fabiana Kömmling Seixas
- Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Karina Machado
- Centro de Ciências Computacionais, Universidade Federal do Rio Grande, Rio Grande, Rio Grande do Sul, Brazil
| | - Frederico Schmitt Kremer
- Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil.
| |
Collapse
|
29
|
Rodak A, Stadlbauer K, Bobbili MR, Smrzka O, Rüker F, Wozniak Knopp G. Development of a Cytotoxic Antibody-Drug Conjugate Targeting Membrane Immunoglobulin E-Positive Cells. Int J Mol Sci 2023; 24:14997. [PMID: 37834445 PMCID: PMC10573690 DOI: 10.3390/ijms241914997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/05/2023] [Accepted: 10/07/2023] [Indexed: 10/15/2023] Open
Abstract
High numbers of membrane immunoglobulin E (IgE)-positive cells are characteristic of allergic conditions, atopic dermatitis, or IgE myeloma. Antibodies targeting the extracellular membrane-proximal domain of the membranous IgE-B-cell receptor (BCR) fragment can be used for specific depletion of IgE-BCR-positive cells. In this study, we derivatized such an antibody with a toxin and developed an antibody-drug conjugate (ADC) that showed strong cytotoxicity for an IgE-positive target cell line. Site-specific conjugation with maleimidocaproyl-valine-citrulline-p-aminobenzoyloxycarbonyl-monomethyl-auristatin E via a newly introduced single cysteine residue was used to prepare a compound with a drug-antibody ratio of 2 and favorable biophysical properties. The antibody was rapidly taken up by the target cells, showing almost complete internalization after 4 h of treatment. Its cytotoxic effect was potentiated upon cross-linking mediated by an anti-human IgG F(ab')2 fragment. Because of its fast internalization and strict target specificity, this antibody-drug conjugate presents a valuable starting point for the further development of an anti-IgE cell-depleting agent, operating by the combined action of receptor cross-linking and toxin-mediated cytotoxicity.
Collapse
Affiliation(s)
- Aleksandra Rodak
- Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190 Vienna, Austria; (A.R.); (K.S.); (M.R.B.); (F.R.)
| | - Katharina Stadlbauer
- Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190 Vienna, Austria; (A.R.); (K.S.); (M.R.B.); (F.R.)
| | - Madhusudhan Reddy Bobbili
- Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190 Vienna, Austria; (A.R.); (K.S.); (M.R.B.); (F.R.)
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, Donaueschingenstraße 13, 1200 Vienna, Austria
| | - Oskar Smrzka
- Ablevia Biotech GmbH, Maria Jacobi Gasse 1, 1030 Vienna, Austria;
| | - Florian Rüker
- Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190 Vienna, Austria; (A.R.); (K.S.); (M.R.B.); (F.R.)
| | - Gordana Wozniak Knopp
- Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190 Vienna, Austria; (A.R.); (K.S.); (M.R.B.); (F.R.)
| |
Collapse
|
30
|
Gogia P, Ashraf H, Bhasin S, Xu Y. Antibody-Drug Conjugates: A Review of Approved Drugs and Their Clinical Level of Evidence. Cancers (Basel) 2023; 15:3886. [PMID: 37568702 PMCID: PMC10417123 DOI: 10.3390/cancers15153886] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/17/2023] [Accepted: 07/13/2023] [Indexed: 08/13/2023] Open
Abstract
Antibody-drug conjugates (ADCs) are an innovative family of agents assembled through linking cytotoxic drugs (payloads) covalently to monoclonal antibodies (mAbs) to be delivered to tumor tissue that express their particular antigen, with the theoretical advantage of an augmented therapeutic ratio. As of June 2023, eleven ADCs have been approved by the Food and Drug Administration (FDA) and are on the market. These drugs have been added to the therapeutic armamentarium of acute myeloblastic and lymphoblastic leukemias, various types of lymphoma, breast, gastric or gastroesophageal junction, lung, urothelial, cervical, and ovarian cancers. They have proven to deliver more potent and effective anti-tumor activities than standard practice in a wide variety of indications. In addition to targeting antigen-expressing tumor cells, bystander effects have been engineered to extend cytotoxic killing to low-antigen-expressing or negative tumor cells in the heterogenous tumor milieu. Inevitably, myelosuppression is a common side effect with most of the ADCs due to the effects of the cytotoxic payload. Also, other unique side effects are specific to the tissue antigen that is targeted for, such as the cardiac toxicity with Her-2 targeting ADCs, and the hemorrhagic side effects with the tissue factor (TF) targeting Tisotumab vedotin. Further exciting developments are centered in the strategies to improve the tolerability and efficacy of the ADCs to improve the therapeutic window; as well as the development of novel payloads including (1) peptide-drug conjugates (PDCs), with the peptide replacing the monoclonal antibody, rendering greater tumor penetration; (2) immune-stimulating antibody conjugates (ISACs), which upon conjugation of the antigen, cause an influx of pro-inflammatory cytokines to activate dendritic cells and harness an anti-tumor T-cell response; and (3) the use of radioactive isotopes as a payload to enhance cytotoxic activity.
Collapse
Affiliation(s)
- Pooja Gogia
- Department of Hematology/Oncology, Maimonides Medical Center, Brooklyn, NY 11219, USA;
| | - Hamza Ashraf
- Department of Internal Medicine, Overlook Medical Center, Summit, NJ 07901, USA;
| | - Sidharth Bhasin
- Department of Pulmonary Medicine, Saint Peter’s University Hospital, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA;
| | - Yiqing Xu
- Department of Hematology/Oncology, Maimonides Medical Center, Brooklyn, NY 11219, USA;
| |
Collapse
|
31
|
Brown TJ, Reiss KA, O'Hara MH. Advancements in Systemic Therapy for Pancreatic Cancer. Am Soc Clin Oncol Educ Book 2023; 43:e397082. [PMID: 37192430 DOI: 10.1200/edbk_397082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Outcomes for patients with advanced pancreatic cancer have improved in the past 12 years, mainly because of progress made in systemic therapies. New treatment strategies for advanced pancreatic cancer include switch maintenance with cytotoxic therapies, induction maintenance, and the utilization of targeted agents for patients with actionable variants, as well as ongoing development of cytotoxic regimens, such as NALIRIFOX. The activity of immunotherapy has been disappointing to date, but novel combinations and identifying appropriate patient populations may further unlock its potential.
Collapse
Affiliation(s)
- Timothy J Brown
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
- Penn Center for Cancer Care Innovation, University of Pennsylvania, Philadelphia, PA
| | - Kim A Reiss
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
- Penn Center for Cancer Care Innovation, University of Pennsylvania, Philadelphia, PA
| | - Mark H O'Hara
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
- Penn Center for Cancer Care Innovation, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
32
|
Maiti R, Patel B, Patel N, Patel M, Patel A, Dhanesha N. Antibody drug conjugates as targeted cancer therapy: past development, present challenges and future opportunities. Arch Pharm Res 2023; 46:361-388. [PMID: 37071273 PMCID: PMC11345756 DOI: 10.1007/s12272-023-01447-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/26/2023] [Indexed: 04/19/2023]
Abstract
Antibody drug conjugates (ADCs) are promising cancer therapeutics with minimal toxicity as compared to small cytotoxic molecules alone and have shown the evidence to overcome resistance against tumor and prevent relapse of cancer. The ADC has a potential to change the paradigm of cancer chemotherapeutic treatment. At present, 13 ADCs have been approved by USFDA for the treatment of various types of solid tumor and haematological malignancies. This review covers the three structural components of an ADC-antibody, linker, and cytotoxic payload-along with their respective structure, chemistry, mechanism of action, and influence on the activity of ADCs. It covers comprehensive insight on structural role of linker towards efficacy, stability & toxicity of ADCs, different types of linkers & various conjugation techniques. A brief overview of various analytical techniques used for the qualitative and quantitative analysis of ADC is summarized. The current challenges of ADCs, such as heterogeneity, bystander effect, protein aggregation, inefficient internalization or poor penetration into tumor cells, narrow therapeutic index, emergence of resistance, etc., are outlined along with recent advances and future opportunities for the development of more promising next-generation ADCs.
Collapse
Affiliation(s)
- Ritwik Maiti
- Institute of Pharmacy, Nirma University, Ahmedabad, 382481, Gujarat, India
| | - Bhumika Patel
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, 382481, Gujarat, India.
| | - Nrupesh Patel
- Department of Pharmaceutical Analysis, Institute of Pharmacy, Nirma University, Ahmedabad, 382481, Gujarat, India
| | - Mehul Patel
- Department of Pharmaceutical Chemistry and Analysis, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa, 388421, Gujarat, India
| | - Alkesh Patel
- Department of Pharmacology, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa, 388421, Gujarat, India
| | - Nirav Dhanesha
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA.
| |
Collapse
|
33
|
Jia L, Fu Y, Zhang N, Liu Y, Su L, Wang H, Zhao W. Directional conjugation of Trop2 antibody to black phosphorus nanosheets for phototherapy in orthotopic gastric carcinoma. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 51:102687. [PMID: 37121458 DOI: 10.1016/j.nano.2023.102687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 03/29/2023] [Accepted: 04/24/2023] [Indexed: 05/02/2023]
Abstract
Tumor-associated calcium signal transducer 2 (Trop2) highly specific expression in gastric carcinoma (GC). The combination of Trop2 antibody and phototherapy agents could exhibit synergetic antitumor activity. Black phosphorus nanosheets (BP) are covalently modified with Trop2 IgG antibodies via heterobifunctional linker of polyethylene glycol (PEG). Then the Trop2 antibody was directionally conjugated to BP via Schiff base reaction between aldehyde group from oxidized Trop2 antibody and amino group of PEG. The Trop2-funcationalzied BP can significantly increase the endocytosis of BP in Trop2-positive GC cells exhibiting a reinforced antitumor activity under near infrared (NIR) irradiation. More importantly, a murine orthotopic GC model demonstrates that Trop2 antibody modification can significantly promote the accumulation of BP at tumor tissues and strengthen antitumoral activity of phototherapy. Directional conjugation of Trop2 antibody to BP facilitates the BP with superior stability, tumor targeting ability and excellent anti-tumor activity under NIR irradiation without systemic toxicity.
Collapse
Affiliation(s)
- Lizhou Jia
- Central Laboratory, Bayannur Hospital, Bayannur 015000, China
| | - Yuhao Fu
- Central Laboratory, Bayannur Hospital, Bayannur 015000, China; Basic Medical Sciences College, Inner Mongolia Medical University, Hohhot 010050, China
| | - Ning Zhang
- Central Laboratory, Bayannur Hospital, Bayannur 015000, China
| | - Yang Liu
- Central Laboratory, Bayannur Hospital, Bayannur 015000, China
| | - Lin Su
- Otolaryngology Head and Neck Surgery, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| | - Haisheng Wang
- Basic Medical Sciences College, Inner Mongolia Medical University, Hohhot 010050, China.
| | - Wei Zhao
- Department of Pathology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210012, China.
| |
Collapse
|
34
|
Kobzev D, Prasad C, Walunj D, Gotman H, Semenova O, Bazylevich A, Patsenker L, Gellerman G. Synthesis and biological evaluation of theranostic Trastuzumab–SN38 conjugate for Near-IR fluorescence imaging and targeted therapy of HER2+ breast cancer. Eur J Med Chem 2023; 252:115298. [PMID: 36966651 DOI: 10.1016/j.ejmech.2023.115298] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 04/03/2023]
Abstract
Here, we report on the design, synthesis, and biological evaluation of a new theranostic antibody drug conjugate (ADC), Cy5-Ab-SS-SN38, that consists of the HER2-specific antibody trastuzumab (Ab) connected to the near infrared (NIR) pentamethine cyanine dye Cy5 and SN38, which is a bioactive metabolite of the anticancer drug irinotecan. SN38 is bound to an antibody through a glutathione-responsive self-immolative disulfide carbamate linker. For the first time, we explored this linker in ADC and found that it to reduce the drug release rate, which is important for safe drug delivery. The developed ADC exhibited specific accumulation and nanomolar anti-breast cancer activity on HER2-positive (HER2+) cell lines but no effect on HER2-. Animals treated with this ADC exhibited good tolerance. In vivo studies have shown that the ADC had good targeting ability for HER2+ tumors with much higher anticancer potency than trastuzumab itself or a mixture of trastuzumab with SN38. Side-by-side HER2+/HER2-xenograft at the 10 mg/kg dose exhibited specific accumulation and reduction of HER2+ tumor but not accumulation or growth inhibition of HER2-counterpart. The self-immolative disulfide linker implemented in this study was proven to be successful, broadening its utilization with other antibodies for targeted anticancer therapy in general. We believe that the theranostic ADCs comprising the glutathione-responsive self-immolative disulfide carbamate linker are applicable for the treatment and fluorescent monitoring of malignancies and anticancer drug delivery.
Collapse
|
35
|
Bailly C, Vergoten G. Interaction of Camptothecin Anticancer Drugs with Ribosomal Proteins L15 and L11: A Molecular Docking Study. Molecules 2023; 28:molecules28041828. [PMID: 36838813 PMCID: PMC9967338 DOI: 10.3390/molecules28041828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 01/31/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
The antitumor drug topotecan (TPT) is a potent inhibitor of topoisomerase I, triggering DNA breaks lethal for proliferating cancer cells. The mechanism is common to camptothecins SN38 (the active metabolite of irinotecan) and belotecan (BLT). Recently, TPT was shown to bind the ribosomal protein L15, inducing an antitumor immune activation independent of topoisomerase I. We have modeled the interaction of four camptothecins with RPL15 derived from the 80S human ribosome. Two potential drug-binding sites were identified at Ile135 and Phe129. SN38 can form robust RPL15 complexes at both sites, whereas BLT essentially gave stable complexes with site Ile135. The empirical energy of interaction (ΔE) for SN38 binding to RPL15 is similar to that determined for TPT binding to the topoisomerase I-DNA complex. Molecular models with the ribosomal protein L11 sensitive to topoisomerase inhibitors show that SN38 can form a robust complex at a single site (Cys25), much more stable than those with TPT and BLT. The main camptothecin structural elements implicated in the ribosomal protein interaction are the lactone moiety, the aromatic system and the 10-hydroxyl group. The study provides guidance to the design of modulators of ribosomal proteins L11 and L15, both considered anticancer targets.
Collapse
Affiliation(s)
- Christian Bailly
- Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL), Faculté de Pharmacie, University of Lille, 3 rue du Professeur Laguesse, BP-83, F-59006 Lille, France
- CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, University of Lille, F-59000 Lille, France
- OncoWitan, Consulting Scientific Office, Wasquehal, F-59290 Lille, France
- Correspondence:
| | - Gérard Vergoten
- Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL), Faculté de Pharmacie, University of Lille, 3 rue du Professeur Laguesse, BP-83, F-59006 Lille, France
| |
Collapse
|
36
|
Banerjee M, Devi Rajeswari V. Inhibition of WNT signaling by conjugated microRNA nano-carriers: A new therapeutic approach for treating triple-negative breast cancer a perspective review. Crit Rev Oncol Hematol 2023; 182:103901. [PMID: 36584723 DOI: 10.1016/j.critrevonc.2022.103901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022] Open
Abstract
Triple-Negative Breast Cancer is the most aggressive form and accounts the 15%-25% of all breast cancer. Receptors are absent in triple-negative breast cancer, which makes them unresponsive to the current hormonal therapies. The patients with TNBC are left with the option of cytotoxic chemotherapy. The Wnt pathways are connected to cancer, and when activated, they result in mammary hyperplasia and tumors. The tumor suppressor microRNAs can block tumor cell proliferation, invasion, and migration, lead to cancer cell death, and are also known to down-regulate the WNT signaling. Nanoparticles with microRNA have been seen to be more effective when compared with their single release. In this review, we have tried to understand how Wnt signaling plays a crucial role in TNBC, EMT, metastasis, anti-drug resistance, and regulation of Wnt by microRNA. The role of nano-carriers in delivering micro-RNA. The clinical biomarkers, including the present state-of-the-art, involve novel pathways of Wnt.
Collapse
Affiliation(s)
- Manosi Banerjee
- Department of Biomedical Sciences, School of Bioscience and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - V Devi Rajeswari
- Department of Biomedical Sciences, School of Bioscience and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
37
|
Nicolaides NC, Kline JB, Grasso L. NAV-001, a high-efficacy antibody-drug conjugate targeting mesothelin with improved delivery of a potent payload by counteracting MUC16/CA125 inhibitory effects. PLoS One 2023; 18:e0285161. [PMID: 37195923 DOI: 10.1371/journal.pone.0285161] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/14/2023] [Indexed: 05/19/2023] Open
Abstract
Subsets of tumor-produced cell surface and secreted proteins can bind to IgG1 type antibodies and suppress their immune-effector activities. As they affect antibody and complement-mediated immunity, we call these proteins humoral immuno-oncology (HIO) factors. Antibody-drug conjugates (ADCs) use antibody targeting to bind cell surface antigens, internalize into the cell, then kill target cells upon liberation of the cytotoxic payload. Binding of the ADC antibody component by a HIO factor may potentially hamper ADC efficacy due to reduced internalization. To determine the potential effects of HIO factor ADC suppression, we evaluated the efficacy of a HIO-refractory, mesothelin-directed ADC (NAV-001) and a HIO-bound, mesothelin-directed ADC (SS1). The HIO factor MUC16/CA125 binding to SS1 ADC was shown to have a negative effect on internalization and tumor cell killing. The MUC16/CA125 refractory NAV-001 ADC was shown to have robust killing of MUC16/CA125 expressing and non-expressing tumor cells in vitro and in vivo at single, sub-mg/kg dosing. Moreover, NAV-001-PNU, which contains the PNU-159682 topoisomerase II inhibitor, demonstrated good stability in vitro and in vivo as well as robust bystander activity of resident cells while maintaining a tolerable safety profile in vivo. Single-dose NAV-001-PNU demonstrated robust tumor regression of a number of patient-derived xenografts from different tumor types regardless of MUC16/CA125 expression. These findings suggest that identification of HIO-refractory antibodies to be used in ADC format may improve therapeutic efficacy as observed by NAV-001 and warrants NAV-001-PNU's advancement to human clinical trials as a monotherapy to treat mesothelin-positive cancers.
Collapse
Affiliation(s)
| | | | - Luigi Grasso
- Navrogen Inc., Cheyney, PA, United States of America
| |
Collapse
|
38
|
Ho ECH, Qiu R, Miller E, Bilotta MT, FitzGerald D, Antignani A. Antibody drug conjugates, targeting cancer-expressed EGFR, exhibit potent and specific antitumor activity. Biomed Pharmacother 2023; 157:114047. [PMID: 36459711 PMCID: PMC9840435 DOI: 10.1016/j.biopha.2022.114047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/18/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022] Open
Abstract
The monoclonal antibody '40H3' binds to EGFRvIII and to full-length EGFR when it is overexpressed on cancer cells. To generate candidate cytotoxic antibody-drug conjugates (ADCs), 40H3 was modified by the addition of small molecular weight payloads that included two tubulin-modifying agents, two topoisomerase inhibitors and a pyrrolobenzodiazepine (PBD) dimer. Conjugates retained antigen binding activity comparable to the unmodified 40H3 antibody. The cytotoxicity of five distinct ADCs was evaluated on a variety of EGFR-expressing cells including three triple negative breast cancer (TNBC) lines. Generally, the 40H3 conjugate with the PBD dimer (40H3-Tesirine) was the most active killing agent. The killing of EGFR-positive cells by 40H3-Tesirine correlated with the number of surface binding sites for 40H3. However, bystander killing was also evident in experiments with antigen-negative cells. In vivo tumor xenograft experiments were conducted on two TNBC tumor lines. Three treatments with the 40H3-Tesirine ADC at 1 mg/kg were sufficient to achieve complete remissions without evidence of mouse toxicity. Data support the development of ADCs derived from the 40H3 antibody for the treatment of cancers that express EGFRvIII or high levels of EGFR.
Collapse
Affiliation(s)
- Eric Chun Hei Ho
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4264, United States
| | - Rong Qiu
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4264, United States
| | - Ellis Miller
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4264, United States
| | - Maria Teresa Bilotta
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4264, United States
| | - David FitzGerald
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4264, United States.
| | - Antonella Antignani
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4264, United States.
| |
Collapse
|
39
|
Maecker H, Jonnalagadda V, Bhakta S, Jammalamadaka V, Junutula JR. Exploration of the antibody-drug conjugate clinical landscape. MAbs 2023; 15:2229101. [PMID: 37639687 PMCID: PMC10464553 DOI: 10.1080/19420862.2023.2229101] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 08/31/2023] Open
Abstract
The antibody-drug conjugate (ADC) field has undergone a renaissance, with substantial recent developmental investment and subsequent drug approvals over the past 6 y. In November 2022, ElahereTM became the latest ADC to be approved by the US Food and Drug Administration (FDA). To date, over 260 ADCs have been tested in the clinic against various oncology indications. Here, we review the clinical landscape of ADCs that are currently FDA approved (11), agents currently in clinical trials but not yet approved (164), and candidates discontinued following clinical testing (92). These clinically tested ADCs are further analyzed by their targeting tumor antigen(s), linker, payload choices, and highest clinical stage achieved, highlighting limitations associated with the discontinued drug candidates. Lastly, we discuss biologic engineering modifications preclinically demonstrated to improve the therapeutic index that if incorporated may increase the proportion of molecules that successfully transition to regulatory approval.
Collapse
|
40
|
Fontes MS, Vargas Pivato de Almeida D, Cavalin C, Tagawa ST. Targeted Therapy for Locally Advanced or Metastatic Urothelial Cancer (mUC): Therapeutic Potential of Sacituzumab Govitecan. Onco Targets Ther 2022; 15:1531-1542. [PMID: 36575731 PMCID: PMC9790156 DOI: 10.2147/ott.s339348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Urothelial carcinoma is the second most frequent genitourinary malignancy. Despite the poor prognosis, new treatment options have emerged and have expanded the therapeutic landscape for the disease. Although major improvements have been achieved, many patients experience rapid disease progression and low responses in subsequent lines of therapy. Sacituzumab govitecan is an ADC that targets Trop-2, which is highly expressed in urothelial cancers. Promising results in early clinical trials have led to further drug development which confirmed encouraging efficacy. Sacituzumab govitecan has been given accelerated approval in 2021 for patients with locally advanced and metastatic urothelial cancer who previously received a platinum containing chemotherapy and either a programmed death receptor-1 or programmed death ligand inhibitor. The results are promising, with encouraging efficacy and safety, however responses are not universal. There is a growing comprehension of mechanisms of resistance and predictive biomarkers that are crucial to improving outcomes. In this review, we summarize the current knowledge on antibody-drug conjugates and the clinical findings that led to the approval of Sacituzumab govitecan and discuss the therapeutic potential of new combinations, mechanisms of resistance and predictive biomarkers.
Collapse
Affiliation(s)
- Mariane S Fontes
- Oncology Department, Oncoclinicas Group, Rio de Janeiro, Brazil
- LACOG, Latin American Cooperative Oncology Group, Brazil
| | | | | | | |
Collapse
|
41
|
Tashima T. Delivery of Drugs into Cancer Cells Using Antibody-Drug Conjugates Based on Receptor-Mediated Endocytosis and the Enhanced Permeability and Retention Effect. Antibodies (Basel) 2022; 11:antib11040078. [PMID: 36546903 PMCID: PMC9774242 DOI: 10.3390/antib11040078] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Innumerable people worldwide die of cancer every year, although pharmaceutical therapy has actualized many benefits in human health. For background, anti-cancer drug development is difficult due to the multifactorial pathogenesis and complicated pathology of cancers. Cancer cells excrete hydrophobic low-molecular anti-cancer drugs by overexpressed efflux transporters such as multiple drug resistance 1 (MDR1) at the apical membrane. Mutation-driven drug resistance is also developed in cancer. Moreover, the poor distribution of drug to cancer cells is a serious problem, because patients suffer from off-target side effects. Thus, highly selective and effective drug delivery into solid cancer cells across the membrane should be established. It is known that substances (10-100 nm in diameter) such as monoclonal antibodies (mAbs) (approximately 14.2 nm in diameter) or nanoparticles spontaneously gather in solid tumor stroma or parenchyma through the capillary endothelial fenestration, ranging from 200-2000 nm, in neovasculatures due to the enhanced permeability and retention (EPR) effect. Furthermore, cancer antigens, such as HER2, Nectin-4, or TROP2, highly selectively expressed on the surface of cancer cells act as a receptor for receptor-mediated endocytosis (RME) using mAbs against such antigens. Thus, antibody-drug conjugates (ADCs) are promising anti-cancer pharmaceutical agents that fulfill accurate distribution due to the EPR effect and due to antibody-antigen binding and membrane permeability owing to RME. In this review, I introduce the implementation and possibility of highly selective anti-cancer drug delivery into solid cancer cells based on the EPR effect and RME using anti-cancer antigens ADCs with payloads through suitable linkers.
Collapse
Affiliation(s)
- Toshihiko Tashima
- Tashima Laboratories of Arts and Sciences, 1239-5 Toriyama-cho, Kohoku-ku, Yokohama 222-0035, Japan
| |
Collapse
|
42
|
Qian X, Zhao Y, Zhang T, Fan P. Downregulation of MACC1 facilitates the reversal effect of verapamil on the chemoresistance to active metabolite of irinotecan in human colon cancer cells. Heliyon 2022; 8:e11294. [PMID: 36345514 PMCID: PMC9636468 DOI: 10.1016/j.heliyon.2022.e11294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/13/2022] [Accepted: 10/24/2022] [Indexed: 11/09/2022] Open
Abstract
The aim of this study is to investigate the reversal effect of verapamil (VER) on chemoresistance to irinotecan (CPT-11) in human colon cancer cells and relevant mechanisms. Cell counting kit-8 (CCK-8) test and colony-forming unit (CFU) experiment results show that VER strengthens the sensitivity of human colon cancer cell line HT29 to CPT-11 but has a small effect on SW480 cells. High-throughput transcriptome sequencing, RT-PCR, and Western blot results show that the inhibition of metastasis-associated in colon cancer-1 (MACC1) expression by VER is the key factor for reversal effect on chemoresistance to CPT-11. Transfection experiments further show that VER can reverse the resistance of human colon cancer cells to SN-38, the active metabolite of CPT-11, when MACC1 is overexpressed. The nude mouse transplantation tumor experiment provides an in vivo proof that VER can strengthen sensitivity to CPT-11 in drug-resistant human colon cancer cells, and the effect might be related to the inhibited expression of MACC1. In summary, VER might strengthen the reversal effect of VER on chemoresistance to CPT-11 in human colon cancer cells and facilitate the apoptosis of human colon cancer cells by downregulating MACC1 expression.
Collapse
Affiliation(s)
- Xiaotao Qian
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China,The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China,Department of Oncology, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
| | - Yongxin Zhao
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Tengyue Zhang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Pingsheng Fan
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China,The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China,Corresponding author.
| |
Collapse
|
43
|
Swinney DC. Why medicines work. Pharmacol Ther 2022; 238:108175. [DOI: 10.1016/j.pharmthera.2022.108175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/20/2022] [Accepted: 03/22/2022] [Indexed: 11/27/2022]
|
44
|
Abstract
OBJECTIVE To evaluate the antibody-drug conjugate- sacituzumab govitecan, its pharmacological properties, toxicity, data supporting efficacy against a wide variety of solid tumors beyond breast cancer, and potential future uses. DATA SOURCES Articles in MEDLINE/PubMed databases and the National Institutes of Health Clinical Trials Registry (http://www. clinicaltrials.gov) between January 1, 2015, and July 1, 2021 using MeSH terms sacituzumab govitecan(- hziy) and solid tumors were reviewed. DATA SUMMARY Antibody-drug conjugates (ADC's) are a subclass of emerging cancer therapeutics which combines chemotherapy with targeted antibodies. Sacituzumab govitecan (SG) is a novel antibody drug conjugate that has recently been approved by the Food and Drug Administration (FDA) in adult patients for the treatment of unresectable locally advanced or metastatic triple-negative breast cancer (mTNBC) who have received two or more prior systemic therapies, at least one of them for metastatic disease. The approval of sacituzumab govitecan provides a new option for solid tumors that need to be further explored. In this review article, we discussed the pharmacokinetics, pharmacodynamics, safety profile of sacituzumab govitecan and various ongoing clinical trials on sacituzumab govitecan. CONCLUSION Sacituzumab is a significant advancement made in cancer therapy. SG has showed significantly improved Health-related quality of life (HRQoL) in addition to prolonged progression free survival and Over all survival in addition to maintaining a good safety profile. Multiple clinical trials on SG are ongoing to evaluate the potential use of SG as neoadjuvant therapy in triple negative breast cancer, as an Adjuvant therapy, in combination with immunotherapy, and also for various solid tumors.
Collapse
Affiliation(s)
- Sindhusha Veeraballi
- Department of Medical Education, 22423Saint Michael's Medical Center, New York Medical College, New Jersey, United States
| | - Zaineb Khawar
- Medical student, 136414Saint Gorge's University school of medicine, St George's, Grenada
| | - Hafiz Muhammad Aslam
- Department of Hematology/Oncology, 3627East carolina university, Greenville, North Carolina, United States
| | - Mahvish Muzaffar
- Department of Hematology/Oncology, 3627East carolina university, Greenville, North Carolina, United States
| |
Collapse
|
45
|
Hoppe S, Meder L, Gebauer F, Ullrich RT, Zander T, Hillmer AM, Buettner R, Plum P, Puppe J, Malter W, Quaas A. Trophoblast Cell Surface Antigen 2 (TROP2) as a Predictive Bio-Marker for the Therapeutic Efficacy of Sacituzumab Govitecan in Adenocarcinoma of the Esophagus. Cancers (Basel) 2022; 14:cancers14194789. [PMID: 36230712 PMCID: PMC9562858 DOI: 10.3390/cancers14194789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/18/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
INTRODUCTION The Trophoblast cell surface antigen 2 (TROP2) is expressed in many carcinomas and may represent a target for treatment. Sacituzumab govitecan (SG) is a TROP2-directed antibody-drug conjugate (ADC). Nearly nothing is known about the biological effectiveness of SG in esophageal adenocarcinoma (EAC). MATERIAL AND METHODS We determined the TROP2 expression in nearly 600 human EAC. In addition, we used the EAC cell lines (ESO-26, OACM5.1C, and FLO-1) and a xenograft mouse model to investigate this relationship. RESULTS Of 598 human EACs analyzed, 88% showed varying degrees of TROP2 positivity. High TROP2 positive ESO-26 and low TROP2 positive OACM5.1C showed high sensitivity to SG in contrast to negative FLO-1. In vivo, the ESO-26 tumor shows a significantly better response to SG than the TROP2-negative FLO-1 tumor. ESO-26 vital tumor cells show similar TROP2 expression on all carcinoma cells as before therapy initiation, FLO-1 is persistently negative. DISCUSSION Our data suggest that sacituzumab govitecan is a new therapy option in esophageal adenocarcinoma and the TROP2 expression in irinotecan-naïve EAC correlates with the extent of treatment response by sacituzumab govitecan. TROP2 is emerging as a predictive biomarker in completely TROP2-negative tumors. This should be considered in future clinical trials.
Collapse
Affiliation(s)
- Sascha Hoppe
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Köln, Germany
| | - Lydia Meder
- Internal Medicine, Oncology Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Köln, Germany
- Mildred Scheel School of Oncology Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Köln, Germany
| | - Florian Gebauer
- Department of Gynecology and Obstetrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Köln, Germany
| | - Roland T. Ullrich
- Internal Medicine, Oncology Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Köln, Germany
- Mildred Scheel School of Oncology Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Köln, Germany
| | - Thomas Zander
- Internal Medicine, Oncology Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Köln, Germany
| | - Axel M. Hillmer
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Köln, Germany
| | - Reinhard Buettner
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Köln, Germany
| | - Patrick Plum
- Department of General, Visceral, Cancer and Transplantation Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Köln, Germany
| | - Julian Puppe
- Department of Gynecology and Obstetrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Köln, Germany
| | - Wolfram Malter
- Department of Gynecology and Obstetrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Köln, Germany
| | - Alexander Quaas
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Köln, Germany
- Correspondence: ; Tel.: +49-0221-478-5257; Fax: +49-0221-478-6360
| |
Collapse
|
46
|
Qin Q, Gong L. Current Analytical Strategies for Antibody-Drug Conjugates in Biomatrices. Molecules 2022; 27:6299. [PMID: 36234836 PMCID: PMC9572530 DOI: 10.3390/molecules27196299] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/27/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022] Open
Abstract
Antibody-drug conjugates (ADCs) are a new class of biotherapeutics, consisting of a cytotoxic payload covalently bound to an antibody by a linker. Ligand-binding assay (LBA) and liquid chromatography-mass spectrometry (LC-MS) are the favored techniques for the analysis of ADCs in biomatrices. The goal of our review is to provide current strategies related to a series of bioanalytical assays for pharmacokinetics (PK) and anti-drug antibody (ADA) assessments. Furthermore, the strengths and limitations of LBA and LC-MS platforms are compared. Finally, potential factors that affect the performance of the developed assays are also provided. It is hoped that the review can provide valuable insights to bioanalytical scientists on the use of an integrated analytical strategy involving LBA and LC-MS for the bioanalysis of ADCs and related immunogenicity evaluation.
Collapse
Affiliation(s)
- Qiuping Qin
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Department of Immunoassay and Immunochemistry, Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Likun Gong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Department of Immunoassay and Immunochemistry, Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 101408, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| |
Collapse
|
47
|
Triple negative breast cancer: approved treatment options and their mechanisms of action. J Cancer Res Clin Oncol 2022:10.1007/s00432-022-04189-6. [PMID: 35976445 DOI: 10.1007/s00432-022-04189-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/06/2022] [Indexed: 12/24/2022]
Abstract
PURPOSE Breast cancer, the most prevalent cancer worldwide, consists of 4 main subtypes, namely, Luminal A, Luminal B, HER2-positive, and Triple-negative breast cancer (TNBC). Triple-negative breast tumors, which do not express estrogen, progesterone, and HER2 receptors, account for approximately 15-20% of breast cancer cases. The lack of traditional receptor targets contributes to the heterogenous, aggressive, and refractory nature of these tumors, resulting in limited therapeutic strategies. METHODS Chemotherapeutics such as taxanes and anthracyclines have been the traditional go to treatment regimens for TNBC patients. Paclitaxel, docetaxel, doxorubicin, and epirubicin have been longstanding, Food and Drug Administration (FDA)-approved therapies against TNBC. Additionally, the FDA approved PARP inhibitors such as olaparib and atezolizumab to be used in combination with chemotherapies, primarily to improve their efficiency and reduce adverse patient outcomes. The immunotherapeutic Keytruda was the latest addition to the FDA-approved list of drugs used to treat TNBC. RESULTS The following review aims to elucidate current FDA-approved therapeutics and their mechanisms of action, shedding a light on the various strategies currently used to circumvent the treatment-resistant nature of TNBC cases. CONCLUSION The recent approval and use of therapies such as Trodelvy, olaparib and Keytruda has its roots in the development of an understanding of signaling pathways that drive tumour growth. In the future, the emergence of novel drug delivery methods may help increase the efficiency of these therapies whiel also reducing adverse side effects.
Collapse
|
48
|
Han S, Lim KS, Blackburn BJ, Yun J, Putnam CW, Bull DA, Won YW. The Potential of Topoisomerase Inhibitor-Based Antibody–Drug Conjugates. Pharmaceutics 2022; 14:pharmaceutics14081707. [PMID: 36015333 PMCID: PMC9413092 DOI: 10.3390/pharmaceutics14081707] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 12/17/2022] Open
Abstract
DNA topoisomerases are essential enzymes that stabilize DNA supercoiling and resolve entanglements. Topoisomerase inhibitors have been widely used as anti-cancer drugs for the past 20 years. Due to their selectivity as topoisomerase I (TOP1) inhibitors that trap TOP1 cleavage complexes, camptothecin and its derivatives are promising anti-cancer drugs. To increase accumulation of TOP1 inhibitors in cancer cells through the targeting of tumors, TOP1 inhibitor antibody–drug conjugates (TOP1-ADC) have been developed and marketed. Some TOP1-ADCs have shown enhanced therapeutic efficacy compared to prototypical anti-cancer ADCs, such as T-DM1. Here, we review various types of camptothecin-based TOP1 inhibitors and recent developments in TOP1-ADCs. We then propose key points for the design and construction of TOP1-ADCs. Finally, we discuss promising combinatorial strategies, including newly developed approaches to maximizing the therapeutic potential of TOP1-ADCs.
Collapse
Affiliation(s)
- Seungmin Han
- Division of Cardiothoracic Surgery, Department of Surgery, University of Arizona College of Medicine—Tucson, Tucson, AZ 85724, USA
| | - Kwang Suk Lim
- Department of Biotechnology and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon 24341, Korea
- Department of Smart Health Science and Technology, College of Art, Culture and Engineering, Kangwon National University, Chuncheon 24341, Korea
| | - Brody J. Blackburn
- Department of Medical Pharmacology, University of Arizona College of Medicine—Tucson, Tucson, AZ 85724, USA
| | - Jina Yun
- Division of Hematology-Oncology, Department of Medicine, Soonchunhyang University Bucheon Hospital, Bucheon 14584, Korea
| | - Charles W. Putnam
- Division of Cardiothoracic Surgery, Department of Surgery, University of Arizona College of Medicine—Tucson, Tucson, AZ 85724, USA
| | - David A. Bull
- Division of Cardiothoracic Surgery, Department of Surgery, University of Arizona College of Medicine—Tucson, Tucson, AZ 85724, USA
| | - Young-Wook Won
- Division of Cardiothoracic Surgery, Department of Surgery, University of Arizona College of Medicine—Tucson, Tucson, AZ 85724, USA
- Correspondence:
| |
Collapse
|
49
|
Jiang MP, Huang X, Yin YM, Tang JH. The pathological and clinical landscape of refractory metastatic triple negative breast cancer: a narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:907. [PMID: 36111045 PMCID: PMC9469164 DOI: 10.21037/atm-22-3434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/29/2022] [Indexed: 11/30/2022]
Abstract
Background and Objective Triple negative breast cancer (TNBC) refers to a special subtype of breast cancer that is negative for the estrogen receptor, the progesterone receptors, and human epidermal growth factor receptor 2. As a group of diseases, it has strong heterogeneity. Refractory metastatic triple negative breast cancer (mTNBC) has even greater heterogeneity, more susceptibility to drug resistance, and faster progression, which makes it more difficult to treat effectively and significantly reduces a patient's overall survival. Therefore, in order to overcome this difficulty in clinical practice, we need to deeply understand the special subgroup by analyzing definition and prognostic factors of refractory mTNBC and describing the therapeutic status and future treatment directions. Methods Recent domestic and foreign guidelines, as well as clinical studies related to refractory mTNBC on PubMed and the China National Knowledge Infrastructure (CNKI) databases were retrospectively analyzed. The six keywords we selected were used for literature search. Two authors performed database searches independently, and disagreements over the results were mediated by a third reviewer. Key Content and Findings According to the guidelines, refractory mTNBC has not been clearly defined. Related studies indicated that tumor heterogeneity may be one of the main mechanisms of early relapse or drug resistance in refractory mTNBC. The clinical treatment options for refractory mTNBC are very limited. Although chemotherapy is the standard treatment, it is limited by poor efficacy and intolerance in the clinical stage. Therefore, in recent years, many studies have explored novel treatment options. Both immunotherapy and poly(ADP-ribose) polymerase (PARP) inhibitors have been selected as first-line treatment in clinical studies, but gained limited benefits. Indeed, clinical studies have shown good efficacy with novel ADCs, which may be promising in the clinical treatment of refractory mTNBC. Conclusions Currently, improving the survival time and quality of life of refractory mTNBC are major challenges for clinicians. Novel therapies including immunosuppressive agents, PARP inhibitors, and ADCs rather than chemotherapy alone have achieved good results in the exploration of first-line treatment for refractory TNBC patients, but this warrants further research and investigation.
Collapse
Affiliation(s)
- Meng-Ping Jiang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- The First Clinical College of Nanjing Medical University, Nanjing, China
| | - Xiang Huang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yong-Mei Yin
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Jin-Hai Tang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
50
|
Designing antibodies as therapeutics. Cell 2022; 185:2789-2805. [PMID: 35868279 DOI: 10.1016/j.cell.2022.05.029] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/18/2022] [Accepted: 05/31/2022] [Indexed: 12/25/2022]
Abstract
Antibody therapeutics are a large and rapidly expanding drug class providing major health benefits. We provide a snapshot of current antibody therapeutics including their formats, common targets, therapeutic areas, and routes of administration. Our focus is on selected emerging directions in antibody design where progress may provide a broad benefit. These topics include enhancing antibodies for cancer, antibody delivery to organs such as the brain, gastrointestinal tract, and lungs, plus antibody developability challenges including immunogenicity risk assessment and mitigation and subcutaneous delivery. Machine learning has the potential, albeit as yet largely unrealized, for a transformative future impact on antibody discovery and engineering.
Collapse
|