1
|
Wu G, Du J, Li M, Xu G, Fu Z, Liu Y, Zhang X, Wu G, Yu C, Wang J. A combination of multiple LC-MS approaches for the comprehensive characterization of cysteine-linked ADCs. J Pharm Biomed Anal 2024; 248:116331. [PMID: 38968868 DOI: 10.1016/j.jpba.2024.116331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/28/2024] [Accepted: 06/30/2024] [Indexed: 07/07/2024]
Abstract
Antibody-drug conjugates (ADCs) represent the forefront of the next generation of biopharmaceuticals. An ADC typically comprises an antibody covalently linked to a cytotoxic drug via a linker, resulting in a highly heterogeneous product. This study focuses on the analysis of a custom-made cysteine-linked ADC. Initially, we developed a LC-MS-based characterization workflow using brentuximab vedotin (Adcetris®), encompassing native intact MS, analysis of reduced chains and subunits under denaturing condition, peptide mapping and online strong cation exchange chromatography coupled with UV and mass spectrometry detection (SCX-UV-MS) applied for brentuximab vedotin first time reported. Subsequently, we applied this in-depth characterization workflow to a custom-made cysteine-linked ADC. The measured drug-to-antibody ratio(DAR) of this ADC is 6.9, further analysis shown that there is a small amount of unexpected over-conjugation. Over-conjugation sites were successfully identified using multiple UHPLC-MS based characterization techniques. Also, one competitively cysteine-conjugated impurity was observed in native intact MS results, by combing native intact MS, reduced chains, subunit analysis and peptide mapping results, the impurity conjugation sites were also identified. Since this molecule is at early development stage, this provides important information for conjugation process improvement and link-drug material purification. SCX-UV-MS approach can separate the custom-made cysteine-linked ADC carrying different payloads and reduce the complexity of the spectra. The integrated approach underscores the significance of combining the SCX-UV-MS online coupling technique with other characterization methods to elucidate the heterogeneity of cysteine-linked ADCs.
Collapse
Affiliation(s)
- Gang Wu
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, No. 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Jialiang Du
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, Daxing District, Beijing 102629, China
| | - Meng Li
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, Daxing District, Beijing 102629, China
| | - Gangling Xu
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, Daxing District, Beijing 102629, China
| | - Zhihao Fu
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, Daxing District, Beijing 102629, China
| | - Yu Liu
- Shanghai SPH Jiaolian Pharmaceutical Technology Co., Ltd., 200000, China
| | - Xiaoxi Zhang
- Thermo Fisher Scientific, Shanghai 200000, China
| | - Guanghao Wu
- Shanghai SPH Jiaolian Pharmaceutical Technology Co., Ltd., 200000, China
| | - Chuanfei Yu
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, Daxing District, Beijing 102629, China
| | - Junzhi Wang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, No. 103 Wenhua Road, Shenyang, Liaoning 110016, China.
| |
Collapse
|
2
|
Malarvannan M, Ravichandiran V, Paul D. Advances in analytical technologies for emerging drug modalities and their separation challenges in LC-MS systems. J Chromatogr A 2024; 1732:465226. [PMID: 39111181 DOI: 10.1016/j.chroma.2024.465226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/23/2024]
Abstract
The last few years have seen a rise in the identification and development of bio-therapeutics through the use of cutting-edge delivery methods or bio-formulations, which has created bio-analytical difficulties. Every year, new bio-pharmaceutical product innovations come out, but the analytical development of these products is challenging. Quantifying the products and components of conjugated molecular structures is essential for preclinical and clinical research in order to guide therapeutic development, given their intrinsic complexity. Furthermore, a significant amount of information is needed for the measurement of these unique modalities by LC-MS techniques. Numerous LC-MS based methods have been developed, including AEX-HPLC-MS, RP-IP-LCMS, HILIC-MS, LCHRMS, Microflow-LC-MS, ASMS, Hybrid LBA/LC-MS, and more. However, these methods continue to face problems, prompting the development of alternative approaches. Therefore, developing bio-molecules that are this complicated and, low in concentration requires a skilled LC-MS based approach and knowledgeable personnel. This review covers general novel modalities classifications, sample preparation techniques, current status and bio-analytical strategies for analyzing various novel modalities, including gene bio-therapeutics, oligonucleotides, antibody-drug conjugates, monoclonal antibodies and PROTACs. It also covers how these strategies have been used in the past and how they are being used now to address challenges in the development of LC-MS based methods, as well as improvement strategies, current advancements and recent developed methods. We additionally covered on the benefits and drawbacks of different LC-MS based techniques for the examination of bio-pharmaceutical products and the future perspectives.
Collapse
Affiliation(s)
- M Malarvannan
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Maniktala, Kolkata, West Bengal 700054, India
| | - V Ravichandiran
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Maniktala, Kolkata, West Bengal 700054, India
| | - David Paul
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Maniktala, Kolkata, West Bengal 700054, India.
| |
Collapse
|
3
|
Benazza R, Koutsopetras I, Vaur V, Chaubet G, Hernandez-Alba O, Cianférani S. SEC-MS in denaturing conditions (dSEC-MS) for in-depth analysis of rebridged monoclonal antibody-based formats. Talanta 2024; 272:125727. [PMID: 38364570 DOI: 10.1016/j.talanta.2024.125727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/04/2023] [Accepted: 01/27/2024] [Indexed: 02/18/2024]
Abstract
Disulfide rebridging methods are emerging recently as new ways to specifically modify antibody-based entities and produce future conjugates. Briefly, the solvent-accessible disulfide bonds of antibodies or antigen-binding fragments (Fab) thereof are reduced under controlled conditions and further covalently attached with a rebridging agent allowing the incorporation of one payload per disulfide bond. There are many examples of successful rebridging cases providing homogeneous conjugates due to the use of symmetrical reagents, such as dibromomaleimides. However, partial rebridging due to the use of unsymmetrical ones, containing functional groups with different reactivity, usually leads to the development of heterogeneous species that cannot be identified by a simple sodium dodecyl sulfate-polyacrylamide gel eletrophoresis (SDS-PAGE) due to its lack of sensitivity, resolution and low mass accuracy. Mass spectrometry coupled to liquid chromatography (LC-MS) approaches have already been demonstrated as highly promising alternatives for the characterization of newly developed antibody-drug-conjugate (ADC) and monoclonal antibody (mAb)-based formats. We report here the in-depth characterization of covalently rebridged antibodies and Fab fragments in-development, using size-exclusion chromatography hyphenated to mass spectrometry in denaturing conditions (denaturing SEC-MS, dSEC-MS). DSEC-MS was used to monitor closely the rebridging reaction of a conjugated trastuzumab, in addition to conjugated Fab fragments, which allowed an unambiguous identification of the covalently rebridged products along with the unbound species. This all-in-one approach allowed a straightforward analysis of the studied samples with precise mass measurement; critical quality attributes (CQAs) assessment along with rebridging efficiency determination.
Collapse
Affiliation(s)
- Rania Benazza
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178, Université de Strasbourg, CNRS, 67087 Strasbourg, France; Infrastructure Nationale de Protéomique ProFI-FR2048, 67087 Strasbourg, France
| | - Ilias Koutsopetras
- Bio-Functional Chemistry (UMR 7199), Institut du Médicament de Strasbourg, University of Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France
| | - Valentine Vaur
- Bio-Functional Chemistry (UMR 7199), Institut du Médicament de Strasbourg, University of Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France
| | - Guilhem Chaubet
- Bio-Functional Chemistry (UMR 7199), Institut du Médicament de Strasbourg, University of Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France
| | - Oscar Hernandez-Alba
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178, Université de Strasbourg, CNRS, 67087 Strasbourg, France; Infrastructure Nationale de Protéomique ProFI-FR2048, 67087 Strasbourg, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178, Université de Strasbourg, CNRS, 67087 Strasbourg, France; Infrastructure Nationale de Protéomique ProFI-FR2048, 67087 Strasbourg, France.
| |
Collapse
|
4
|
Guo K, Song J, Bennington P, Pavon AJ, Bothe JR, Xi H, Gunawan RC. Identification of Surfactant Impact on a Monoclonal Antibody Characterization via HPLC-Separation Based and Biophysical Methods. Pharm Res 2024; 41:779-793. [PMID: 38519813 DOI: 10.1007/s11095-024-03684-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/26/2024] [Indexed: 03/25/2024]
Abstract
PURPOSE OR OBJECTIVE Surfactants, including polysorbates and poloxamers, play a crucial role in the formulation of therapeutic proteins by acting as solubilizing and stabilizing agents. They help prevent protein aggregation and adsorption, thereby enhancing the stability of drug substance and products., However, it is important to note that utilizing high concentrations of surfactants in protein formulations can present significant analytical challenges, which can ultimately affect the product characterization. METHODS In our study, we specifically investigated the impact of elevated surfactant concentrations on the characterization of monoclonal antibodies. We employed various analytical techniques including size-exclusion chromatography (SEC), capillary electrophoresis (CE-SDS), a cell based functional assay, and biophysical characterization. RESULTS The findings of our study indicate that higher levels of Polysorbate 80 (PS-80) have adverse effects on the measured purity, biological activity, and biophysical characterization of biologic samples. Specifically, the elevated levels of PS-80 cause analytical interferences, which can significantly impact the accuracy and reliability of analytical studies. CONCLUSIONS Our study results highlight a significant risk in analytical investigations, especially in studies involving the isolation and characterization of impurities. It is important to be cautious of surfactant concentrations, as they can become more concentrated during common sample manipulations like buffer exchange. Indeed, the research presented in this work emphasizes the necessity to evaluate the impact on analytical assays when there are substantial alternations in the matrix composition. By doing so, valuable insights can be gained regarding potential challenges associated with assay development and characterization of biologics with complex formulations.
Collapse
Affiliation(s)
- Kaizhu Guo
- Biologics Analytical Research and Development, Merck & Co., Inc., Rahway, NJ, 07065, USA.
| | - Jing Song
- Analytical Enabling Capabilities, Merck & Co., Inc., Rahway, NJ, 07065, USA.
| | - Petra Bennington
- Cell-Based Sciences, Analytical Research and Development, Merck & Co., Inc., Rahway, NJ, 07065, USA
| | - Alexander J Pavon
- Biologics Analytical Research and Development, Merck & Co., Inc., Rahway, NJ, 07065, USA
| | - Jameson R Bothe
- Biologics Analytical Research and Development, Merck & Co., Inc., Rahway, NJ, 07065, USA
| | - Hanmi Xi
- Analytical Enabling Capabilities, Merck & Co., Inc., Rahway, NJ, 07065, USA
| | - Rico C Gunawan
- Biologics Analytical Research and Development, Merck & Co., Inc., Rahway, NJ, 07065, USA
| |
Collapse
|
5
|
Wysor SK, Marcus RK. Quantitative Recoveries of Exosomes and Monoclonal Antibodies from Chinese Hamster Ovary Cell Cultures by Use of a Single, Integrated Two-Dimensional Liquid Chromatography Method. Anal Chem 2023; 95:17886-17893. [PMID: 37995145 PMCID: PMC11095952 DOI: 10.1021/acs.analchem.3c04044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Cultured cell lines are very commonly used for the mass production of therapeutic proteins, such as monoclonal antibodies (mAbs). In particular, Chinese hamster ovary (CHO) cell lines are widely employed due to their high tolerance to variations in experimental conditions and their ability to grow in suspension or serum free media. CHO cell lines are known for their ability to produce high titers of biotherapeutic products such as immunoglobulin G (IgG). An emergent alternative means of treating diseases, such as cancer, is the use of gene therapies, wherein genetic cargo is "packaged" in nanosized vesicular structures, referred to as "vectors". One particularly attractive vector option is extracellular vesicles (EVs), of which exosomes are of greatest interest. While exosomes can be harvested from virtually any human body fluid, bovine milk, or even plants, their production in cell cultures is an attractive commercial approach. In fact, the same CHO cell types employed for mAb production also produce exosomes as a natural byproduct. Here, we describe a single integrated 2D liquid chromatography (2DLC) method for the quantitative recovery of both exosomes and antibodies from a singular sample aliquot. At the heart of the method is the use of polyester capillary-channeled polymer (C-CP) fibers as the first dimension column, wherein exosomes/EVs are captured from the supernatant sample and subsequently determined by multiangle light scattering (MALS), while the mAbs are captured, eluted, and quantified using a protein A-modified C-CP fiber column in the second dimension, all in a 10 min workflow. These efforts demonstrate the versatility of the C-CP fiber phases with the capacity to harvest both forms of therapeutics from a single bioreactor, suggesting an appreciable potential impact in the field of biotherapeutics production.
Collapse
Affiliation(s)
- Sarah K Wysor
- Department of Chemistry, Biosystems Research Complex, Clemson University, Clemson, South Carolina 29634-0973, United States
| | - R Kenneth Marcus
- Department of Chemistry, Biosystems Research Complex, Clemson University, Clemson, South Carolina 29634-0973, United States
| |
Collapse
|
6
|
Po A, Eyers CE. Top-Down Proteomics and the Challenges of True Proteoform Characterization. J Proteome Res 2023; 22:3663-3675. [PMID: 37937372 PMCID: PMC10696603 DOI: 10.1021/acs.jproteome.3c00416] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/09/2023] [Accepted: 10/20/2023] [Indexed: 11/09/2023]
Abstract
Top-down proteomics (TDP) aims to identify and profile intact protein forms (proteoforms) extracted from biological samples. True proteoform characterization requires that both the base protein sequence be defined and any mass shifts identified, ideally localizing their positions within the protein sequence. Being able to fully elucidate proteoform profiles lends insight into characterizing proteoform-unique roles, and is a crucial aspect of defining protein structure-function relationships and the specific roles of different (combinations of) protein modifications. However, defining and pinpointing protein post-translational modifications (PTMs) on intact proteins remains a challenge. Characterization of (heavily) modified proteins (>∼30 kDa) remains problematic, especially when they exist in a population of similarly modified, or kindred, proteoforms. This issue is compounded as the number of modifications increases, and thus the number of theoretical combinations. Here, we present our perspective on the challenges of analyzing kindred proteoform populations, focusing on annotation of protein modifications on an "average" protein. Furthermore, we discuss the technical requirements to obtain high quality fragmentation spectral data to robustly define site-specific PTMs, and the fact that this is tempered by the time requirements necessary to separate proteoforms in advance of mass spectrometry analysis.
Collapse
Affiliation(s)
- Allen Po
- Centre
for Proteome Research, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K.
- Department
of Biochemistry, Cell & Systems Biology, Institute of Systems,
Molecular & Integrative Biology, Faculty of Health & Life
Sciences, University of Liverpool, Liverpool L69 7ZB, U.K.
| | - Claire E. Eyers
- Centre
for Proteome Research, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K.
- Department
of Biochemistry, Cell & Systems Biology, Institute of Systems,
Molecular & Integrative Biology, Faculty of Health & Life
Sciences, University of Liverpool, Liverpool L69 7ZB, U.K.
| |
Collapse
|
7
|
Duivelshof BL, Bouvarel T, Pirner S, Larraillet V, Knaupp A, Koll H, D’Atri V, Guillarme D. Enhancing Selectivity of Protein Biopharmaceuticals in Ion Exchange Chromatography through Addition of Organic Modifiers. Int J Mol Sci 2023; 24:16623. [PMID: 38068945 PMCID: PMC10706461 DOI: 10.3390/ijms242316623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Charge heterogeneity among therapeutic monoclonal antibodies (mAbs) is considered an important critical quality attribute and requires careful characterization to ensure safe and efficacious drug products. The charge heterogeneity among mAbs is the result of chemical and enzymatic post-translational modifications and leads to the formation of acidic and basic variants that can be characterized using cation exchange chromatography (CEX). Recently, the use of mass spectrometry-compatible salt-mediated pH gradients has gained increased attention to elute the proteins from the charged stationary phase material. However, with the increasing antibody product complexity, more and more selectivity is required. Therefore, in this study, we set out to improve the selectivity by using a solvent-enriched mobile phase composition for the analysis of a variety of mAbs and bispecific antibody products. It was found that the addition of the solvents to the mobile phase appeared to modify the hydrate shell surrounding the protein and alter the retention behavior of the studied proteins. Therefore, this work demonstrates that the use of solvent-enriched mobile phase composition could be an attractive additional method parameter during method development in CEX.
Collapse
Affiliation(s)
- Bastiaan Laurens Duivelshof
- School of Pharmaceutical Sciences, University of Geneva, CMU—Rue Michel Servet 1, 1211 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU—Rue Michel Servet 1, 1211 Geneva, Switzerland
| | - Thomas Bouvarel
- School of Pharmaceutical Sciences, University of Geneva, CMU—Rue Michel Servet 1, 1211 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU—Rue Michel Servet 1, 1211 Geneva, Switzerland
| | | | | | | | - Hans Koll
- Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| | - Valentina D’Atri
- School of Pharmaceutical Sciences, University of Geneva, CMU—Rue Michel Servet 1, 1211 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU—Rue Michel Servet 1, 1211 Geneva, Switzerland
| | - Davy Guillarme
- School of Pharmaceutical Sciences, University of Geneva, CMU—Rue Michel Servet 1, 1211 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU—Rue Michel Servet 1, 1211 Geneva, Switzerland
| |
Collapse
|
8
|
Füssl F, Millán-Martín S, Bones J, Carillo S. Cation exchange chromatography on a monodisperse 3 µm particle enables extensive analytical similarity assessment of biosimilars. J Pharm Biomed Anal 2023; 234:115534. [PMID: 37343453 DOI: 10.1016/j.jpba.2023.115534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 06/23/2023]
Abstract
Biosimilarity assessment requires extensive characterization and comparability exercises to investigate product quality attributes of an originator product and its potential biosimilar(s) and to highlight any differences between them. Performing a thorough comparison allows a shortened approval path, which also eliminates lengthy and expensive clinical trials, ensuring comparable product quality and efficacy but at lower drug prices. The wide variety of analytical methods available for biosimilar assessment ranges from biological to analytical assays, each providing orthogonal information to fully characterize biosimilar candidates. Intact native mass spectrometry (MS) has been shown to be an excellent tool for detection and monitoring of important quality attributes such as N-glycosylation, deamidation, sequence truncation and higher order structures. When combined with efficient upfront separation methods, simplification of the proteoform heterogeneity and associated complexity prior to MS analysis can be achieved. Native mass spectrometry can provide robust and accurate results within short analysis times and requires minimal sample preparation. In this study we report the use of a monodisperse strong cation exchange chromatography phase hyphenated with Orbitrap mass spectrometry (SCX-MS) to compare the best-selling biopharmaceutical product Humira® with 7 commercially approved biosimilar products. SCX-MS analysis allowed for the identification of previously described as well as so far unreported proteoforms and their relative quantitation across all samples, revealing differences in N-glycosylation and lysine truncation, as well as unique features for some products such as sialylation and N-terminal clipping. SCX-MS analysis, powered by a highly efficient separation column, enabled deep and efficient analytical comparison of biosimilar products.
Collapse
Affiliation(s)
- Florian Füssl
- National Institute for Bioprocessing Research & Training, Fosters Avenue, Mount Merrion, Blackrock, A94 X099 Co. Dublin, Ireland
| | - Silvia Millán-Martín
- National Institute for Bioprocessing Research & Training, Fosters Avenue, Mount Merrion, Blackrock, A94 X099 Co. Dublin, Ireland
| | - Jonathan Bones
- National Institute for Bioprocessing Research & Training, Fosters Avenue, Mount Merrion, Blackrock, A94 X099 Co. Dublin, Ireland; School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4 D04 V1W8, Ireland
| | - Sara Carillo
- National Institute for Bioprocessing Research & Training, Fosters Avenue, Mount Merrion, Blackrock, A94 X099 Co. Dublin, Ireland.
| |
Collapse
|
9
|
Di Marco F, Blöchl C, Esser-Skala W, Schäpertöns V, Zhang T, Wuhrer M, Sandra K, Wohlschlager T, Huber CG. Glycoproteomics of a Single Protein: Revealing Tens of Thousands of Myozyme Glycoforms by Hybrid HPLC-MS Approaches. Mol Cell Proteomics 2023; 22:100622. [PMID: 37478974 PMCID: PMC10470421 DOI: 10.1016/j.mcpro.2023.100622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/27/2023] [Accepted: 07/17/2023] [Indexed: 07/23/2023] Open
Abstract
Characterization of highly glycosylated biopharma-ceuticals by mass spectrometry is challenging because of the huge chemical space of coexistent glycoforms present. Here, we report the use of an array of HPLC-mass spectrometry-based approaches at different structural levels of released glycan, glycopeptide, and hitherto unexplored intact glycoforms to scrutinize the biopharmaceutical Myozyme, containing the highly complex lysosomal enzyme recombinant acid α-glucosidase. The intrinsic heterogeneity of recombinant acid α-glucosidase glycoforms was unraveled using a novel strong anion exchange HPLC-mass spectrometry approach involving a pH-gradient of volatile buffers to facilitate chromatographic separation of glycoforms based on their degree of sialylation, followed by the acquisition of native mass spectra in an Orbitrap mass spectrometer. Upon considering the structures of 60 different glycans attached to seven glycosylation sites in the intact protein, the large set of interdependent data acquired at different structural levels was integrated using a set of bioinformatic tools and allowed the annotation of intact glycoforms unraveling more than 1,000,000 putative intact glycoforms. Detectable isoforms also included several mannose-6-phosphate variants, which are essential for directing the drug toward its target, the lysosomes. Finally, for the first time, we sought to validate the intact glycoform annotations by integrating experimental data on the enzymatically dissected proteoforms, which reduced the number of glycoforms supported by experimental evidence to 42,104. The latter verification clearly revealed the strengths but also intrinsic limitations of this approach for fully characterizing such highly complex glycoproteins by mass spectrometry.
Collapse
Affiliation(s)
- Fiammetta Di Marco
- Department of Biosciences and Medical Biology, Bioanalytical Research Labs, University of Salzburg, Salzburg, Austria; Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Salzburg, Austria
| | - Constantin Blöchl
- Department of Biosciences and Medical Biology, Bioanalytical Research Labs, University of Salzburg, Salzburg, Austria; Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Wolfgang Esser-Skala
- Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Salzburg, Austria; Department of Biosciences and Medical Biology, Computational Systems Biology Group, University of Salzburg, Salzburg, Austria
| | - Veronika Schäpertöns
- Department of Biosciences and Medical Biology, Bioanalytical Research Labs, University of Salzburg, Salzburg, Austria; Department of Biosciences and Medical Biology, Computational Systems Biology Group, University of Salzburg, Salzburg, Austria
| | - Tao Zhang
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Koen Sandra
- Research Institute for Chromatography (RIC), Kortrijk, Belgium
| | - Therese Wohlschlager
- Department of Biosciences and Medical Biology, Bioanalytical Research Labs, University of Salzburg, Salzburg, Austria; Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Salzburg, Austria
| | - Christian G Huber
- Department of Biosciences and Medical Biology, Bioanalytical Research Labs, University of Salzburg, Salzburg, Austria; Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Salzburg, Austria.
| |
Collapse
|
10
|
Waldenmaier HE, Gorre E, Poltash ML, Gunawardena HP, Zhai XA, Li J, Zhai B, Beil EJ, Terzo JC, Lawler R, English AM, Bern M, Mahan AD, Carlson E, Nanda H. "Lab of the Future"─Today: Fully Automated System for High-Throughput Mass Spectrometry Analysis of Biotherapeutics. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023. [PMID: 37186948 DOI: 10.1021/jasms.3c00036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Here we describe a state-of-the-art, integrated, multi-instrument automated system designed to execute methods involved in mass spectrometry characterization of biotherapeutics. The system includes liquid and microplate handling robotics and utilities, integrated LC-MS, along with data analysis software, to perform sample purification, preparation, and analysis as a seamless integrated unit. The automated process begins with tip-based purification of target proteins from expression cell-line supernatants, which is initiated once the samples are loaded onto the automated system and the metadata are retrieved from our corporate data aggregation system. Subsequently, the purified protein samples are prepared for MS, including deglycosylation and reduction steps for intact and reduced mass analysis, and proteolytic digestions, desalting, and buffer exchange via centrifugation for peptide map analysis. The prepared samples are then loaded into the LC-MS instrumentation for data acquisition. The acquired raw data are initially stored on a local area network storage system that is monitored by watcher scripts that then upload the raw MS data to a network of cloud-based servers. The raw MS data are processed with the appropriately configured analysis workflows such as database search for peptide mapping or charge deconvolution for undigested proteins. The results are verified and formatted for expert curation directly in the cloud. Finally, the curated results are appended to sample metadata in the corporate data aggregation system to accompany the biotherapeutic cell lines in subsequent processes.
Collapse
Affiliation(s)
- Hans E Waldenmaier
- Janssen Research & Development, The Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania 19477, United States
| | - Elsa Gorre
- Janssen Research & Development, The Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania 19477, United States
| | - Michael L Poltash
- Janssen Research & Development, The Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania 19477, United States
| | - Harsha P Gunawardena
- Janssen Research & Development, The Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania 19477, United States
| | | | - Jing Li
- Protein Metrics LLC., Cupertino, California 95014, United States
| | - Bo Zhai
- Janssen Research & Development, The Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania 19477, United States
| | - Eric J Beil
- Janssen Research & Development, The Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania 19477, United States
| | - Joseph C Terzo
- Janssen Research & Development, The Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania 19477, United States
| | - Rose Lawler
- Protein Metrics LLC., Cupertino, California 95014, United States
| | | | - Marshall Bern
- Protein Metrics LLC., Cupertino, California 95014, United States
| | - Andrew D Mahan
- Janssen Research & Development, The Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania 19477, United States
| | - Eric Carlson
- Protein Metrics LLC., Cupertino, California 95014, United States
| | - Hirsh Nanda
- Janssen Research & Development, The Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania 19477, United States
| |
Collapse
|
11
|
Bhattacharya S, Joshi S, Rathore AS. A native multi-dimensional monitoring workflow for at-line characterization of mAb titer, size, charge, and glycoform heterogeneities in cell culture supernatant. J Chromatogr A 2023; 1696:463983. [PMID: 37054641 DOI: 10.1016/j.chroma.2023.463983] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/26/2023] [Accepted: 04/07/2023] [Indexed: 04/15/2023]
Abstract
With growing maturity of the biopharmaceutical industry, new modalities entering the therapeutic design space and increasing complexity of formulations such as combination therapy, the demands and requirements on analytical workflows have also increased. A recent evolution in newer analytical workflows is that of multi-attribute monitoring workflows designed on chromatography-mass spectrometry (LC-MS) platform. In comparison to traditional one attribute per workflow paradigm, multi-attribute workflows are designed to monitor multiple critical quality attributes through a single workflow, thus reducing the overall time to information and increasing efficiency and throughput. While the 1st generation multi-attribute workflows focused on bottom-up characterization following peptide digestion, the more recent workflows have been focussing on characterization of intact biologics, preferably in native state. So far intact multi-attribute monitoring workflows suitable for comparability, utilizing single dimension chromatography coupled with MS have been published. In this study, we describe a native multi-dimensional multi-attribute monitoring workflow for at-line characterization of monoclonal antibody (mAb) titer, size, charge, and glycoform heterogeneities directly in cell culture supernatant. This has been achieved through coupling ProA in series with size exclusion chromatography in 1st dimension followed by cation exchange chromatography in the 2nd dimension. Intact paired glycoform characterization has been achieved through coupling 2D-LC with q-ToF-MS. The workflow with a single heart cut can be completed in 25 mins and utilizes 2D-liquid chromatography (2D-LC) to maximize separation and monitoring of titer, size as well as charge variants.
Collapse
Affiliation(s)
- Sanghati Bhattacharya
- Department of Chemical Engineering, Indian Institute of Technology, Hauz Khas, New Delhi, 110016, India
| | - Srishti Joshi
- Department of Chemical Engineering, Indian Institute of Technology, Hauz Khas, New Delhi, 110016, India
| | - Anurag S Rathore
- Department of Chemical Engineering, Indian Institute of Technology, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
12
|
Nickerson JL, Baghalabadi V, Rajendran SRCK, Jakubec PJ, Said H, McMillen TS, Dang Z, Doucette AA. Recent advances in top-down proteome sample processing ahead of MS analysis. MASS SPECTROMETRY REVIEWS 2023; 42:457-495. [PMID: 34047392 DOI: 10.1002/mas.21706] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/21/2021] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
Top-down proteomics is emerging as a preferred approach to investigate biological systems, with objectives ranging from the detailed assessment of a single protein therapeutic, to the complete characterization of every possible protein including their modifications, which define the human proteoform. Given the controlling influence of protein modifications on their biological function, understanding how gene products manifest or respond to disease is most precisely achieved by characterization at the intact protein level. Top-down mass spectrometry (MS) analysis of proteins entails unique challenges associated with processing whole proteins while maintaining their integrity throughout the processes of extraction, enrichment, purification, and fractionation. Recent advances in each of these critical front-end preparation processes, including minimalistic workflows, have greatly expanded the capacity of MS for top-down proteome analysis. Acknowledging the many contributions in MS technology and sample processing, the present review aims to highlight the diverse strategies that have forged a pathway for top-down proteomics. We comprehensively discuss the evolution of front-end workflows that today facilitate optimal characterization of proteoform-driven biology, including a brief description of the clinical applications that have motivated these impactful contributions.
Collapse
Affiliation(s)
| | - Venus Baghalabadi
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Subin R C K Rajendran
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada
- Verschuren Centre for Sustainability in Energy and the Environment, Sydney, Nova Scotia, Canada
| | - Philip J Jakubec
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Hammam Said
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Teresa S McMillen
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Ziheng Dang
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Alan A Doucette
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
13
|
Liang Y, Zhang L, Zhang Y. Chromatographic separation of peptides and proteins for characterization of proteomes. Chem Commun (Camb) 2023; 59:270-281. [PMID: 36504223 DOI: 10.1039/d2cc05568f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Characterization of proteomes aims to comprehensively characterize proteins in cells or tissues via two main strategies: (1) bottom-up strategy based on the separation and identification of enzymatic peptides; (2) top-down strategy based on the separation and identification of intact proteins. However, it is challenged by the high complexity of proteomes. Consequently, the improvements in peptide and protein separation technologies for simplifying the sample should be critical. In this feature article, separation columns for peptide and protein separation were introduced, and peptide separation technologies for bottom-up proteomic analysis as well as protein separation technologies for top-down proteomic analysis were summarized. The achievement, recent development, limitation and future trends are discussed. Besides, the outlook on challenges and future directions of chromatographic separation in the field of proteomics was also presented.
Collapse
Affiliation(s)
- Yu Liang
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Lihua Zhang
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Yukui Zhang
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| |
Collapse
|
14
|
Joshi S, Upadhyay K, S. Rathore A. Ion exchange chromatography hyphenated with fluorescence detector as a sensitive alternative to UV detector: Applications in biopharmaceutical analysis. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1212:123511. [DOI: 10.1016/j.jchromb.2022.123511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/06/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022]
|
15
|
Liu YD, Cadang L, Bol K, Pan X, Tschudi K, Jazayri M, Camperi J, Michels D, Stults J, Harris RJ, Yang F. Challenges and Strategies for a Thorough Characterization of Antibody Acidic Charge Variants. Bioengineering (Basel) 2022; 9:641. [PMID: 36354552 PMCID: PMC9687119 DOI: 10.3390/bioengineering9110641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/24/2022] [Accepted: 10/29/2022] [Indexed: 09/02/2023] Open
Abstract
Heterogeneity of therapeutic Monoclonal antibody (mAb) drugs are due to protein variants generated during the manufacturing process. These protein variants can be critical quality attributes (CQAs) depending on their potential impact on drug safety and/or efficacy. To identify CQAs and ensure the drug product qualities, a thorough characterization is required but challenging due to the complex structure of biotherapeutics. Past characterization studies for basic and acidic variants revealed that full characterizations were limited to the basic charge variants, while the quantitative measurements of acidic variants left gaps. Consequently, the characterization and quantitation of acidic variants are more challenging. A case study of a therapeutic mAb1 accounted for two-thirds of the enriched acidic variants in the initial characterization study. This led to additional investigations, closing the quantification gaps of mAb1 acidic variants. This work demonstrates that a well-designed study with the right choices of analytical methods can play a key role in characterization studies. Thus, the updated strategies for more complete antibody charge variant characterization are recommended.
Collapse
Affiliation(s)
- Y. Diana Liu
- Pharma Technical Development, Genentech/Roche, South San Francisco, CA 94080, USA
| | | | | | | | | | | | | | | | | | | | - Feng Yang
- Pharma Technical Development, Genentech/Roche, South San Francisco, CA 94080, USA
| |
Collapse
|
16
|
Sarin D, Kumar S, Rathore AS. Multiattribute Monitoring of Charge-Based Heterogeneity of Recombinant Monoclonal Antibodies Using 2D HIC-WCX-MS. Anal Chem 2022; 94:15018-15026. [PMID: 36260865 DOI: 10.1021/acs.analchem.2c02931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Charged heterogeneity of monoclonal antibody (mAb) products is regarded as a critical quality attribute (CQA) depending on its impact on the safety and efficacy profile of the product. Hence, manufacturers are expected to perform a comprehensive characterization of the charge heterogeneity to ensure that the manufactured product meets its specifications. Further, monitoring is also expected during the product lifecycle to demonstrate consistency in product quality. However, conventional analytical methods for characterization of hydrophobic and charge variants are nonvolatile salt-based and require manual fraction collection and desalting steps before analysis through mass spectrometry can be performed. In the present study, a workflow of a two-dimensional liquid chromatography method using mass spectrometry (MS)-compatible buffers coupled with native mass spectrometry was performed to characterize hydrophobic variants in the first dimension and charge variants in the second dimension without any need for manual fractionation. This novel two-dimensional (2D) hydrophobic interaction chromatography (HIC)-weak cation-exchange chromatography (WCX)-MS workflow identified 10 variants in mAb A, out of which 2 variants are exclusive to the 2D orthogonal method. Similarly, for mAb B, a total of 11 variants are identified, including 5 variants exclusive to the 2D orthogonal workflow. When compared to stand-alone, HIC resolved only 4 variants for both mAbs and WCX resolved 7 variants for mAb A and 6 variants for mAb B. In addition, the proposed method allows direct characterization of hydrophobic/charge variant peaks through native mass spectrometry in a single-run workflow.
Collapse
Affiliation(s)
- Deepika Sarin
- Department of Chemical Engineering, IIT Delhi, Hauz Khas, New Delhi, Delhi 110016, India
| | - Sunil Kumar
- Department of Chemical Engineering, IIT Delhi, Hauz Khas, New Delhi, Delhi 110016, India
| | - Anurag S Rathore
- Department of Chemical Engineering, IIT Delhi, Hauz Khas, New Delhi, Delhi 110016, India
| |
Collapse
|
17
|
Blevins MS, Juetten KJ, James VK, Butalewicz JP, Escobar EE, Lanzillotti MB, Sanders JD, Fort KL, Brodbelt JS. Nanohydrophobic Interaction Chromatography Coupled to Ultraviolet Photodissociation Mass Spectrometry for the Analysis of Intact Proteins in Low Charge States. J Proteome Res 2022; 21:2493-2503. [PMID: 36043517 DOI: 10.1021/acs.jproteome.2c00450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The direct correlation between proteoforms and biological phenotype necessitates the exploration of mass spectrometry (MS)-based methods more suitable for proteoform detection and characterization. Here, we couple nano-hydrophobic interaction chromatography (nano-HIC) to ultraviolet photodissociation MS (UVPD-MS) for separation and characterization of intact proteins and proteoforms. High linearity, sensitivity, and sequence coverage are obtained with this method for a variety of proteins. Investigation of collisional cross sections of intact proteins during nano-HIC indicates semifolded conformations in low charge states, enabling a different dimension of separation in comparison to traditional, fully denaturing reversed-phase separations. This method is demonstrated for a mixture of intact proteins from Escherichia coli ribosomes; high sequence coverage is obtained for a variety of modified and unmodified proteoforms.
Collapse
Affiliation(s)
- Molly S Blevins
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Kyle J Juetten
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Virginia K James
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Jamie P Butalewicz
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Edwin E Escobar
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Michael B Lanzillotti
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - James D Sanders
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Kyle L Fort
- Thermo Fisher Scientific, Bremen 28199, Germany
| | - Jennifer S Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
18
|
Martínez-Ortega A, Herrera A, Salmerón-García A, Cabeza J, Perez-Robles R, Navas N. Degradation and in-use stability study of five marketed therapeutic monoclonal antibodies by generic weak cation exchange liquid chromatographic method ((WCX)HPLC/DAD). J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1203:123295. [DOI: 10.1016/j.jchromb.2022.123295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 11/16/2022]
|
19
|
Bhatt M, Alok A, Kulkarni BB. Method Development and Qualification of pH-Based CEX UPLC Method for Monoclonal Antibodies. BIOTECH 2022; 11:biotech11020019. [PMID: 35822792 PMCID: PMC9264391 DOI: 10.3390/biotech11020019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/26/2022] [Accepted: 06/01/2022] [Indexed: 11/16/2022] Open
Abstract
Post-translational modifications (“PTMs”) in monoclonal antibodies (mAbs) contribute to charge variant distribution, which will affect biological efficacy and safety. For the characterization of mAbs, charge variants are used as a critical quality attributes for product quality, stability consistency and effectiveness. Charge variants in mAbs are characterized by a time-consuming and a multistep process starting from cation/anion exchange chromatography, acidic/basic fractions collection and subsequent reverse phase (RP) liquid chromatography, coupled with mass spectrometry (MS) analysis. Hence, an alternative characterization approach that would be highly selective for ion exchange chromatography-based charge variant analysis, which is compatible with on-line MS detection, is needed in the biopharma industry. Against this backdrop, multiple studies are being conducted to develop a simple straight on-line charge variant analysis method. In this regard, we apply the current study, which aims to develop a charge variant analytical method, based on volatile buffers with low ionic strength that can be used for on-line MS detection of charge variants of mAbs. This would enable the detection on “PTMs” using low ionic strength mobile phase compatible with MS. Hence, fruitful data can be obtained with a single chromatography run without any test sample preparation, eliminating the need for multiple steps of analysis, time-consuming process and multiple sample preparation steps. Thus, Charge Variant Analysis-MS technique will allow the characterization of charge-related PTMs on the intact protein stage. In this regard, this study is about development of a method having combination of chromatography and volatile mobile phase for mass spectrometry detection of mAbs being analyzed in native form. The method is qualified considering pharmacopeia guidelines because the ultimate aim is to transfer this method for Quality Control (QC) release testing of a monoclonal antibody, which is critical for batch release and the regulatory point of view. Acidic and basic variants have been separated with high resolution peak profile. Furthermore, there was no matrix interference and good separation selectivity in terms of specificity was obtained using this method. The experimental data suggested for the linearity of the method are 2.4 mg/mL to 3.6 mg/mL with % RSD below 2.0%. Additionally, Limit of Quantitation is found to be 0.15 mg/mL, which is 5% of loading amount. Consistently, the data show that the method is precise under the same operating conditions with a short time interval. Overall a simple, accurate, robust and precise pH gradient cation exchange chromatography method was developed and qualified for the characterization of a therapeutic native mAb. Additionally, this method can be used to claim a biosimilar product profile of an in-house product compare to an innovator.
Collapse
Affiliation(s)
- Mithun Bhatt
- Mehsana Urban Institute of Sciences, Faculty of Science, Ganpat University, Mehsana 384012, India;
| | - Anshu Alok
- Department of Biotechnology, UIET, Panjab University, Chandigarh 160014, India;
| | - Bhushan B. Kulkarni
- Mehsana Urban Institute of Sciences, Faculty of Science, Ganpat University, Mehsana 384012, India;
- Dr. Prabhakar Kore Basic Science Research Centre, K.L.E. Academy of Higher Education and Research, Belagavi 590010, India
- Correspondence:
| |
Collapse
|
20
|
Wilson J, Bilbao A, Wang J, Liao YC, Velickovic D, Wojcik R, Passamonti M, Zhao R, Gargano AFG, Gerbasi VR, Pas̆a-Tolić L, Baker SE, Zhou M. Online Hydrophilic Interaction Chromatography (HILIC) Enhanced Top-Down Mass Spectrometry Characterization of the SARS-CoV-2 Spike Receptor-Binding Domain. Anal Chem 2022; 94:5909-5917. [PMID: 35380435 PMCID: PMC9003935 DOI: 10.1021/acs.analchem.2c00139] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/25/2022] [Indexed: 12/13/2022]
Abstract
SARS-CoV-2 cellular infection is mediated by the heavily glycosylated spike protein. Recombinant versions of the spike protein and the receptor-binding domain (RBD) are necessary for seropositivity assays and can potentially serve as vaccines against viral infection. RBD plays key roles in the spike protein's structure and function, and thus, comprehensive characterization of recombinant RBD is critically important for biopharmaceutical applications. Liquid chromatography coupled to mass spectrometry has been widely used to characterize post-translational modifications in proteins, including glycosylation. Most studies of RBDs were performed at the proteolytic peptide (bottom-up proteomics) or released glycan level because of the technical challenges in resolving highly heterogeneous glycans at the intact protein level. Herein, we evaluated several online separation techniques: (1) C2 reverse-phase liquid chromatography (RPLC), (2) capillary zone electrophoresis (CZE), and (3) acrylamide-based monolithic hydrophilic interaction chromatography (HILIC) to separate intact recombinant RBDs with varying combinations of glycosylations (glycoforms) for top-down mass spectrometry (MS). Within the conditions we explored, the HILIC method was superior to RPLC and CZE at separating RBD glycoforms, which differ significantly in neutral glycan groups. In addition, our top-down analysis readily captured unexpected modifications (e.g., cysteinylation and N-terminal sequence variation) and low abundance, heavily glycosylated proteoforms that may be missed by using glycopeptide data alone. The HILIC top-down MS platform holds great potential in resolving heterogeneous glycoproteins for facile comparison of biosimilars in quality control applications.
Collapse
Affiliation(s)
- Jesse
W. Wilson
- Environmental
Molecular Sciences Laboratory, Pacific Northwest
National Laboratory, 3335 Innovation Boulevard, Richland, Washington 99354, United States
| | - Aivett Bilbao
- Environmental
Molecular Sciences Laboratory, Pacific Northwest
National Laboratory, 3335 Innovation Boulevard, Richland, Washington 99354, United States
| | - Juan Wang
- Biological
Sciences Division, Pacific Northwest National
Laboratories, 902 Battelle
Boulevard, Richland, Washington 99354, United States
| | - Yen-Chen Liao
- Environmental
Molecular Sciences Laboratory, Pacific Northwest
National Laboratory, 3335 Innovation Boulevard, Richland, Washington 99354, United States
| | - Dusan Velickovic
- Environmental
Molecular Sciences Laboratory, Pacific Northwest
National Laboratory, 3335 Innovation Boulevard, Richland, Washington 99354, United States
| | - Roza Wojcik
- National
Security Directorate, Pacific Northwest
National Laboratories, 902 Battelle Boulevard, Richland, Washington 99354, United States
| | - Marta Passamonti
- Centre
for Analytical Sciences Amsterdam, Amsterdam 1098 XH, The
Netherlands
- Van’t
Hoff Institute for Molecular Sciences, University
of Amsterdam, Amsterdam 1098 XH, The Netherlands
| | - Rui Zhao
- Environmental
Molecular Sciences Laboratory, Pacific Northwest
National Laboratory, 3335 Innovation Boulevard, Richland, Washington 99354, United States
| | - Andrea F. G. Gargano
- Centre
for Analytical Sciences Amsterdam, Amsterdam 1098 XH, The
Netherlands
- Van’t
Hoff Institute for Molecular Sciences, University
of Amsterdam, Amsterdam 1098 XH, The Netherlands
| | - Vincent R. Gerbasi
- Biological
Sciences Division, Pacific Northwest National
Laboratories, 902 Battelle
Boulevard, Richland, Washington 99354, United States
| | - Ljiljana Pas̆a-Tolić
- Environmental
Molecular Sciences Laboratory, Pacific Northwest
National Laboratory, 3335 Innovation Boulevard, Richland, Washington 99354, United States
| | - Scott E. Baker
- Environmental
Molecular Sciences Laboratory, Pacific Northwest
National Laboratory, 3335 Innovation Boulevard, Richland, Washington 99354, United States
| | - Mowei Zhou
- Environmental
Molecular Sciences Laboratory, Pacific Northwest
National Laboratory, 3335 Innovation Boulevard, Richland, Washington 99354, United States
| |
Collapse
|
21
|
Bigard A, Cardinael P, Agasse V. Anion Exchange Chromatography Coupled to Electrospray-Mass Spectrometry: An Efficient Tool for Food, Environment, and Biological Analysis. Crit Rev Anal Chem 2022; 53:1591-1603. [PMID: 35147465 DOI: 10.1080/10408347.2022.2036942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
For over 50 years, ion chromatography has been demonstrated to be a successful technique used to quantify a wide range of ions and ionizable compounds, either organic or inorganic, in various matrices using conductimetric or electrochemical detection. It was only since 1996 that ion chromatography was coupled to electrospray-mass spectrometry, opening the field to new applications in complex matrices and the detection of compounds at trace levels. This review covers the recent developments of ion exchange chromatography and mass spectrometry. It focuses on the choice of mobile phases, column geometry, suppressors, make-up solvents and type of ionization sources reported in the literature. A brief overview of a large range of applications in food analysis, environmental analysis and bioanalysis is presented, and performances are discussed.
Collapse
Affiliation(s)
- Adeline Bigard
- Normandie Univ, Laboratoire SMS-EA3233, FR3038 INC3M, UNIROUEN, Mont-Saint-Aignan, France
| | - Pascal Cardinael
- Normandie Univ, Laboratoire SMS-EA3233, FR3038 INC3M, UNIROUEN, Mont-Saint-Aignan, France
| | - Valérie Agasse
- Normandie Univ, Laboratoire SMS-EA3233, FR3038 INC3M, UNIROUEN, Mont-Saint-Aignan, France
| |
Collapse
|
22
|
Carvalho SB, Gomes RA, Pfenninger A, Fischer M, Strotbek M, Isidro IA, Tugçu N, Gomes-Alves P. Multi attribute method implementation using a High Resolution Mass Spectrometry platform: From sample preparation to batch analysis. PLoS One 2022; 17:e0262711. [PMID: 35085302 PMCID: PMC8794205 DOI: 10.1371/journal.pone.0262711] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 01/01/2022] [Indexed: 11/18/2022] Open
Abstract
Quality control of biopharmaceuticals such as monoclonal antibodies (mAbs) has been evolving and becoming more challenging as the requirements of the regulatory agencies increase due to the demanding complexity of products under evaluation. Mass Spectrometry (MS)-based methods such as the multi-attribute method (MAM) are being explored to achieve a deeper understanding of the attributes critical for the safety, efficacy, and quality of these products. MAM uses high mass accuracy/high-resolution MS data that enables the direct and simultaneous monitoring of relevant product quality attributes (PQAs, in particular, chemical modifications) in a single workflow, replacing several orthogonal methods, reducing time and costs associated with these assays. Here we describe a MAM implementation process using a QTOF high resolution platform. Method implementation was accomplished using NIST (National Institute for Standards and Technology) mAb reference material and an in-process mAb sample. PQAs as glycosylation profiles, methionine oxidation, tryptophan dioxidation, asparagine deamidation, pyro-Glu at N-terminal and glycation were monitored. Focusing on applications that require batch analysis and high-throughput, sample preparation and LC-MS parameters troubleshooting are discussed. This MAM workflow was successfully explored as reference analytical tool for comprehensive characterization of a downstream processing (DSP) polishing platform and for a comparability study following technology transfer between different laboratories.
Collapse
Affiliation(s)
- Sofia B. Carvalho
- iBET, Instituto de Biologia Experimental e Tecnologica, Oeiras, Portugal
- ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ricardo A. Gomes
- iBET, Instituto de Biologia Experimental e Tecnologica, Oeiras, Portugal
- ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Anja Pfenninger
- Sanofi R&D, Biologics Development, Industriepark Höchst, Frankfurt am Main, Germany
| | - Martina Fischer
- Sanofi R&D, Biologics Development, Industriepark Höchst, Frankfurt am Main, Germany
| | - Michaela Strotbek
- Sanofi R&D, Biologics Development, Industriepark Höchst, Frankfurt am Main, Germany
| | - Inês A. Isidro
- iBET, Instituto de Biologia Experimental e Tecnologica, Oeiras, Portugal
- ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Nihal Tugçu
- Mammalian Platform, Global CMC Development, Sanofi, Framingham, MA, United States of America
| | - Patrícia Gomes-Alves
- iBET, Instituto de Biologia Experimental e Tecnologica, Oeiras, Portugal
- ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
23
|
Jakes C, Füssl F, Zaborowska I, Bones J. Rapid Analysis of Biotherapeutics Using Protein A Chromatography Coupled to Orbitrap Mass Spectrometry. Anal Chem 2021; 93:13505-13512. [PMID: 34585915 PMCID: PMC8515350 DOI: 10.1021/acs.analchem.1c02365] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Monoclonal antibodies
(mAbs) and related products undergo a wide
range of modifications, many of which can often be directly associated
to culture conditions during upstream processing. Ideally, such conditions
should be monitored and fine-tuned based on real-time or close to
real-time information obtained by the assessment of the product quality
attribute (PQA) profile of the biopharmaceutical produced, which is
the fundamental idea of process analytical technology. Therefore,
methods that are simple, quick and robust, but sufficiently powerful,
to allow for the generation of a comprehensive picture of the PQA
profile of the protein of interest are required. A major obstacle
for the analysis of proteins directly from cultures is the presence
of impurities such as cell debris, host cell DNA, proteins and small-molecule
compounds, which usually requires a series of capture and polishing
steps using affinity and ion-exchange chromatography before characterization
can be attempted. In the current study, we demonstrate direct coupling
of protein A affinity chromatography with native mass spectrometry
(ProA-MS) for development of a robust method that can be used to generate
information on the PQA profile of mAbs and related products in as
little as 5 min. The developed method was applied to several samples
ranging in complexity and stability, such as simple and more complex
monoclonal antibodies, as well as cysteine-conjugated antibody–drug
conjugate mimics. Moreover, the method demonstrated suitability for
the analysis of protein amounts of <1 μg, which suggests
applicability during early-stage development activities.
Collapse
Affiliation(s)
- Craig Jakes
- Characterisation and Comparability Laboratory, The National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, County Dublin A94 X099, Ireland.,School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, D04 V1W8, Ireland
| | - Florian Füssl
- Characterisation and Comparability Laboratory, The National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, County Dublin A94 X099, Ireland
| | - Izabela Zaborowska
- Characterisation and Comparability Laboratory, The National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, County Dublin A94 X099, Ireland
| | - Jonathan Bones
- Characterisation and Comparability Laboratory, The National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, County Dublin A94 X099, Ireland.,School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, D04 V1W8, Ireland
| |
Collapse
|
24
|
Murisier A, Duivelshof BL, Fekete S, Bourquin J, Schmudlach A, Lauber MA, Nguyen JM, Beck A, Guillarme D, D'Atri V. Towards a simple on-line coupling of ion exchange chromatography and native mass spectrometry for the detailed characterization of monoclonal antibodies. J Chromatogr A 2021; 1655:462499. [PMID: 34487883 DOI: 10.1016/j.chroma.2021.462499] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/20/2021] [Accepted: 08/22/2021] [Indexed: 10/20/2022]
Abstract
This work describes the direct hyphenation of cation exchange chromatography (CEX) with a compact, easy-to-use benchtop Time of Flight mass spectrometer (ToF/MS) for the analytical characterization of monoclonal antibodies (mAbs). For this purpose, a wide range of commercial mAb products (including expired samples and mAb biosimilars) were selected to draw reliable conclusions. From a chromatographic point of view, various buffers and column dimensions were tested. When considering pH response, buffer stability over time and MS compatibility, the best compromise is represented by the following recipe: 50 mM ammonium acetate, titrated to pH 5.0 (mobile phase A) and 160 mM ammonium acetate, titrated to pH 8.5 (mobile phase B). Despite the broader peaks observed with the 2.1 mm i.d. CEX column, this was preferentially selected for CEX-MS operation, since the efficiency loss (caused by extra-column dispersion) was still acceptable while MS compatibility was strongly enhanced (thanks to low flow rate). In terms of MS, it was important to avoid the use of glass-bottled mobile phases, laboratory glassware and glass vials to minimize loss of MS resolution, sensitivity, and mass accuracy due to metal contaminants. With this new CEX-MS setup, straightforward and rapid analysis (in less than 10 min) of charge variants was possible, allowing the separation and identification of several charge variants.
Collapse
Affiliation(s)
- Amarande Murisier
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, CMU-Rue Michel Servet 1, 1211 Geneva 4, Switzerland; School of Pharmaceutical Sciences, University of Geneva, CMU-Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Bastiaan L Duivelshof
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, CMU-Rue Michel Servet 1, 1211 Geneva 4, Switzerland; School of Pharmaceutical Sciences, University of Geneva, CMU-Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Szabolcs Fekete
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, CMU-Rue Michel Servet 1, 1211 Geneva 4, Switzerland; School of Pharmaceutical Sciences, University of Geneva, CMU-Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Julien Bourquin
- Waters Corporation, 34 Maple Street, Milford, Massachusetts 01757-3696, United States
| | - Andrew Schmudlach
- Waters Corporation, 34 Maple Street, Milford, Massachusetts 01757-3696, United States
| | - Matthew A Lauber
- Waters Corporation, 34 Maple Street, Milford, Massachusetts 01757-3696, United States
| | - Jennifer M Nguyen
- Waters Corporation, 34 Maple Street, Milford, Massachusetts 01757-3696, United States
| | - Alain Beck
- IRPF - Centre d'Immunologie Pierre-Fabre (CIPF), 5 Avenue Napoléon III, BP 60497 Saint-Julien-en-Genevois, France
| | - Davy Guillarme
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, CMU-Rue Michel Servet 1, 1211 Geneva 4, Switzerland; School of Pharmaceutical Sciences, University of Geneva, CMU-Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Valentina D'Atri
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, CMU-Rue Michel Servet 1, 1211 Geneva 4, Switzerland; School of Pharmaceutical Sciences, University of Geneva, CMU-Rue Michel Servet 1, 1211 Geneva 4, Switzerland.
| |
Collapse
|
25
|
Koudelka T, Winkels K, Kaleja P, Tholey A. Shedding light on both ends: An update on analytical approaches for N- and C-terminomics. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1869:119137. [PMID: 34626679 DOI: 10.1016/j.bbamcr.2021.119137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/27/2021] [Accepted: 09/06/2021] [Indexed: 02/04/2023]
Abstract
Though proteases were long regarded as nonspecific degradative enzymes, over time, it was recognized that they also hydrolyze peptide bonds very specifically with a limited substrate pool. This irreversible posttranslational modification modulates the fate and activity of many proteins, making proteolytic processing a master switch in the regulation of e.g., the immune system, apoptosis and cancer progression. N- and C-terminomics, the identification of protein termini, has become indispensable in elucidating protease substrates and therefore protease function. Further, terminomics has the potential to identify yet unknown proteoforms, e.g. formed by alternative splicing or the recently discovered alternative ORFs. Different strategies and workflows have been developed that achieve higher sensitivity, a greater depth of coverage or higher throughput. In this review, we summarize recent developments in both N- and C-terminomics and include the potential of top-down proteomics which inherently delivers information on both ends of analytes in a single analysis.
Collapse
Affiliation(s)
- Tomas Koudelka
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Konrad Winkels
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Patrick Kaleja
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Andreas Tholey
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany.
| |
Collapse
|
26
|
Matsuda Y, Mendelsohn BA. Recent Advances in Drug-Antibody Ratio Determination of Antibody-Drug Conjugates. Chem Pharm Bull (Tokyo) 2021; 69:976-983. [PMID: 34602579 DOI: 10.1248/cpb.c21-00258] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Antibody-drug conjugates (ADCs) are biopharmaceuticals produced by chemically linking small molecules (payloads) to antibodies that possess specific affinity for the target cell. The ADCs currently on the commercially market are the result of a stochastic conjugation of highly-potent payloads to multiple sites on the monoclonal antibody, resulting in a heterogeneous drug-antibody ratio (DAR) and drug distribution. The heterogeneity inherent to ADCs not produced site-specifically may not only be detrimental to the quality of the drug but also is less-desirable from the perspective of regulatory science. An ideal method or unified approach used to measure the DAR for ADCs, a critical aspect of their analysis and characterization, has not yet been established in the ADC field and remains an often-challenging issue for bioanalytical chemists. In this review we describe, compare, and evaluate the characteristics of various DAR determination methods for ADCs featuring recently reported technologies. The future landscape of bioconjugate DAR analysis is also discussed.
Collapse
|
27
|
Di Marco F, Berger T, Esser-Skala W, Rapp E, Regl C, Huber CG. Simultaneous Monitoring of Monoclonal Antibody Variants by Strong Cation-Exchange Chromatography Hyphenated to Mass Spectrometry to Assess Quality Attributes of Rituximab-Based Biotherapeutics. Int J Mol Sci 2021; 22:9072. [PMID: 34445776 PMCID: PMC8396523 DOI: 10.3390/ijms22169072] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/15/2021] [Accepted: 08/17/2021] [Indexed: 11/16/2022] Open
Abstract
Different manufacturing processes and storage conditions of biotherapeutics can lead to a significant variability in drug products arising from chemical and enzymatic post-translational modifications (PTMs), resulting in the co-existence of a plethora of proteoforms with different physicochemical properties. To unravel the heterogeneity of these proteoforms, novel approaches employing strong cation-exchange (SCX) high-performance liquid chromatography (HPLC) hyphenated to mass spectrometry (MS) using a pH gradient of volatile salts have been developed in recent years. Here, we apply an established SCX-HPLC-MS method to characterize and compare two rituximab-based biotherapeutics, the originator MabThera® and its Indian copy product Reditux™. The study assessed molecular differences between the two drug products in terms of C-terminal lysine variants, glycosylation patterns, and other basic and acidic variants. Overall, MabThera® and Reditux™ displayed differences at the molecular level. MabThera® showed a higher degree of galactosylated and sialylated glycoforms, while Reditux™ showed increased levels of oligomannose and afucosylated glycoforms. Moreover, the two drug products showed differences in terms of basic variants such as C-terminal lysine and N-terminal truncation, present in Reditux™ but not in MabThera®. This study demonstrates the capability of this fast SCX-HPLC-MS approach to compare different drug products and simultaneously assess some of their quality attributes.
Collapse
Affiliation(s)
- Fiammetta Di Marco
- Department of Biosciences, Bioanalytical Research Labs, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria; (F.D.M.); (T.B.); (W.E.-S.); (C.R.)
- Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
| | - Thomas Berger
- Department of Biosciences, Bioanalytical Research Labs, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria; (F.D.M.); (T.B.); (W.E.-S.); (C.R.)
- Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
| | - Wolfgang Esser-Skala
- Department of Biosciences, Bioanalytical Research Labs, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria; (F.D.M.); (T.B.); (W.E.-S.); (C.R.)
- Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
- Department of Biosciences, Computational Systems Biology Group, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
| | - Erdmann Rapp
- glyXera GmbH, Brenneckestraße 20—ZENIT, 39120 Magdeburg, Germany;
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106 Magdeburg, Germany
| | - Christof Regl
- Department of Biosciences, Bioanalytical Research Labs, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria; (F.D.M.); (T.B.); (W.E.-S.); (C.R.)
- Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
| | - Christian G. Huber
- Department of Biosciences, Bioanalytical Research Labs, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria; (F.D.M.); (T.B.); (W.E.-S.); (C.R.)
- Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
| |
Collapse
|
28
|
Campuzano IDG, Sandoval W. Denaturing and Native Mass Spectrometric Analytics for Biotherapeutic Drug Discovery Research: Historical, Current, and Future Personal Perspectives. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1861-1885. [PMID: 33886297 DOI: 10.1021/jasms.1c00036] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Mass spectrometry (MS) plays a key role throughout all stages of drug development and is now as ubiquitous as other analytical techniques such as surface plasmon resonance, nuclear magnetic resonance, and supercritical fluid chromatography, among others. Herein, we aim to discuss the history of MS, both electrospray and matrix-assisted laser desorption ionization, specifically for the analysis of antibodies, evolving through to denaturing and native-MS analysis of newer biologic moieties such as antibody-drug conjugates, multispecific antibodies, and interfering nucleic acid-based therapies. We discuss challenging therapeutic target characterization such as membrane protein receptors. Importantly, we compare and contrast the MS and hyphenated analytical chromatographic methods used to characterize these therapeutic modalities and targets within biopharmaceutical research and highlight the importance of appropriate MS deconvolution software and its essential contribution to project progression. Finally, we describe emerging applications and MS technologies that are still predominantly within either a development or academic stage of use but are poised to have significant impact on future drug development within the biopharmaceutic industry once matured. The views reflected herein are personal and are not meant to be an exhaustive list of all relevant MS performed within biopharmaceutical research but are what we feel have been historically, are currently, and will be in the future the most impactful for the drug development process.
Collapse
MESH Headings
- Antibodies, Monoclonal/analysis
- Automation, Laboratory
- Biopharmaceutics/methods
- Chromatography, Liquid
- Drug Discovery/methods
- Drug Industry/history
- History, 20th Century
- History, 21st Century
- Humans
- Immunoconjugates/analysis
- Immunoconjugates/chemistry
- Protein Denaturation
- Protein Processing, Post-Translational
- Proteins/analysis
- Spectrometry, Mass, Electrospray Ionization/history
- Spectrometry, Mass, Electrospray Ionization/instrumentation
- Spectrometry, Mass, Electrospray Ionization/methods
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/history
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/instrumentation
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
Collapse
Affiliation(s)
- Iain D G Campuzano
- Discovery Attribute Sciences, Amgen Research, 1 Amgen Center Drive, Thousand Oaks, California 92130, United States
| | - Wendy Sandoval
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
29
|
Verscheure L, Cerdobbel A, Sandra P, Lynen F, Sandra K. Monoclonal antibody charge variant characterization by fully automated four-dimensional liquid chromatography-mass spectrometry. J Chromatogr A 2021; 1653:462409. [PMID: 34325295 DOI: 10.1016/j.chroma.2021.462409] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/09/2021] [Accepted: 07/09/2021] [Indexed: 10/20/2022]
Abstract
Fully automated characterization of monoclonal antibody (mAb) charge variants using four-dimensional liquid chromatography-mass spectrometry (4D-LC-MS) is reported and illustrated. Charge variants resolved by cation-exchange chromatography (CEX) using a salt- or pH-gradient are collected in loops installed on a multiple heart-cutting valve and consequently subjected to online desalting, denaturation, reduction and trypsin digestion prior to LC-MS based peptide mapping. This innovation which substantially reduces turnaround time, sample manipulation, loss and artefacts and increases information gathering, is described in great technical detail, and applied to characterize the charge heterogeneity associated with three therapeutic mAbs. Sequence coverages > 95% are obtained for major and minor charge variants (> 1.0%). Post-translational modifications (PTMs) and modification sites are readily revealed in a repeatable manner including unstable succinimide intermediates which are not maintained when performing classical in-solution overnight digestion of offline collected CEX peaks.
Collapse
Affiliation(s)
- Liesa Verscheure
- RIC group, President Kennedypark 26, Kortrijk 8500, Belgium; Separation Science Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, Ghent B-9000, Belgium
| | - An Cerdobbel
- RIC group, President Kennedypark 26, Kortrijk 8500, Belgium
| | - Pat Sandra
- RIC group, President Kennedypark 26, Kortrijk 8500, Belgium; Separation Science Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, Ghent B-9000, Belgium
| | - Frederic Lynen
- Separation Science Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, Ghent B-9000, Belgium
| | - Koen Sandra
- RIC group, President Kennedypark 26, Kortrijk 8500, Belgium; Separation Science Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, Ghent B-9000, Belgium.
| |
Collapse
|
30
|
Füssl F, Strasser L, Cari S, Bones J. Native LC-MS for capturing quality attributes of biopharmaceuticals on the intact protein level. Curr Opin Biotechnol 2021; 71:32-40. [PMID: 34157600 DOI: 10.1016/j.copbio.2021.05.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/12/2021] [Accepted: 05/24/2021] [Indexed: 11/16/2022]
Abstract
Intact protein analysis by means of mass spectrometry has become a well-established method for the characterization of biotherapeutics. However, due to the highly complex nature of recombinant proteins, prior chromatographic separation is inevitable for a comprehensive analysis. In recent years, progress in coupling a variety of liquid chromatography-based native separation modes such as size exclusion, ion exchange and hydrophobic interaction chromatography to mass spectrometry (native LC-MS) has been reported, therefore allowing for rapid assessment of molecular mass and deep characterization of the heterogeneity of complex, recombinantly produced therapeutic proteins. Here we provide a comprehensive overview of recent advances in the development and application of native LC-MS for biopharmaceutical characterization.
Collapse
Affiliation(s)
- Florian Füssl
- NIBRT - The National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Blackrock, Co. Dublin, A94 X099, Ireland
| | - Lisa Strasser
- NIBRT - The National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Blackrock, Co. Dublin, A94 X099, Ireland
| | - Sara Cari
- NIBRT - The National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Blackrock, Co. Dublin, A94 X099, Ireland
| | - Jonathan Bones
- NIBRT - The National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Blackrock, Co. Dublin, A94 X099, Ireland; School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, D04 V1W8, Ireland.
| |
Collapse
|
31
|
Shi RL, Xiao G, Dillon TM, McAuley A, Ricci MS, Bondarenko PV. Identification of critical chemical modifications by size exclusion chromatography of stressed antibody-target complexes with competitive binding. MAbs 2021; 13:1887612. [PMID: 33616001 PMCID: PMC7899689 DOI: 10.1080/19420862.2021.1887612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Chemical modifications (attributes) in the binding regions of stressed therapeutic proteins may affect binding to target and efficacy of therapeutic proteins. The method presented here describes the criticality assessment of therapeutic antibody modifications by size-exclusion chromatography (SEC) of competitive binding between a stressed antibody and its target, human epidermal growth factor receptor-2 (HER2), followed by SEC fractionation and peptide mapping characterization of bound and unbound antibodies. When stressed antibody and its target were mixed at a stoichiometric molar ratio of 1:2, only antibody-receptor complex eluted from SEC, indicating that binding was not decreased to break the complex. When a smaller amount of the receptor was provided (1:1), the antibody species with modifications reducing binding eluted as unbound from SEC, while the antibody-receptor complex eluted as the bound fraction. Peptide mapping revealed ratios of modifications between unbound and bound fractions. Statistical analysis after triplicate measurements (n = 3) indicated that heavy chain (HC) D102 isomerization and light chain (LC) N30 deamidation were four-fold higher in unbound fraction with high statistical significance. Although HC N55 deamidation and M107 oxidation were also abundant, they were not statistically different between unbound and bound. Our findings agree with previously published potency measurements of collected CEX fractions and the crystal structure of antibody and HER2. Overall, competitive SEC of stressed antibody-receptor mixture followed by peptide mapping is a useful tool in revealing critical residues and modifications involved in the antibody-target binding, even if they elute as a complex from SEC when mixed at 1:2 stoichiometric ratio.
Collapse
Affiliation(s)
- Rachel Liuqing Shi
- Attribute Sciences, Process Development, Amgen Inc , Thousand Oaks, CA, USA
| | - Gang Xiao
- Attribute Sciences, Process Development, Amgen Inc , Thousand Oaks, CA, USA
| | - Thomas M Dillon
- Attribute Sciences, Process Development, Amgen Inc , Thousand Oaks, CA, USA
| | - Arnold McAuley
- Drug Product Technologies, Process Development, Amgen Inc , Thousand Oaks, CA, USA
| | - Margaret S Ricci
- Attribute Sciences, Process Development, Amgen Inc , Thousand Oaks, CA, USA.,Drug Product Technologies, Process Development, Amgen Inc , Thousand Oaks, CA, USA
| | - Pavel V Bondarenko
- Attribute Sciences, Process Development, Amgen Inc , Thousand Oaks, CA, USA
| |
Collapse
|
32
|
Yüce M, Sert F, Torabfam M, Parlar A, Gürel B, Çakır N, Dağlıkoca DE, Khan MA, Çapan Y. Fractionated charge variants of biosimilars: A review of separation methods, structural and functional analysis. Anal Chim Acta 2021; 1152:238189. [PMID: 33648647 DOI: 10.1016/j.aca.2020.12.064] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 12/21/2022]
Abstract
The similarity between originator and biosimilar monoclonal antibody candidates are rigorously assessed based on primary, secondary, tertiary, quaternary structures, and biological functions. Minor differences in such parameters may alter target-binding, potency, efficacy, or half-life of the molecule. The charge heterogeneity analysis is a prerequisite for all biotherapeutics. Monoclonal antibodies are prone to enzymatic or non-enzymatic structural modifications during or after the production processes, leading to the formation of fragments or aggregates, various glycoforms, oxidized, deamidated, and other degraded residues, reduced Fab region binding activity or altered FcR binding activity. Therefore, the charge variant profiles of the monoclonal antibodies must be regularly and thoroughly evaluated. Comparative structural and functional analysis of physically separated or fractioned charged variants of monoclonal antibodies has gained significant attention in the last few years. The fraction-based charge variant analysis has proved very useful for the biosimilar candidates comprising of unexpected charge isoforms. In this report, the key methods for the physical separation of monoclonal antibody charge variants, structural and functional analyses by liquid chromatography-mass spectrometry, and surface plasmon resonance techniques were reviewed.
Collapse
Affiliation(s)
- Meral Yüce
- Sabanci University, SUNUM Nanotechnology Research and Application Center, 34956, Istanbul, Turkey.
| | - Fatma Sert
- Sabanci University, Faculty of Engineering and Natural Sciences, 34956, Istanbul, Turkey; ILKO ARGEM Biotechnology R&D Center, 34906, Pendik, Istanbul, Turkey
| | - Milad Torabfam
- Sabanci University, Faculty of Engineering and Natural Sciences, 34956, Istanbul, Turkey
| | - Ayhan Parlar
- Sabanci University, Faculty of Engineering and Natural Sciences, 34956, Istanbul, Turkey
| | - Büşra Gürel
- Sabanci University, SUNUM Nanotechnology Research and Application Center, 34956, Istanbul, Turkey
| | - Nilüfer Çakır
- Sabanci University, Faculty of Engineering and Natural Sciences, 34956, Istanbul, Turkey; ILKO ARGEM Biotechnology R&D Center, 34906, Pendik, Istanbul, Turkey
| | - Duygu E Dağlıkoca
- ILKO ARGEM Biotechnology R&D Center, 34906, Pendik, Istanbul, Turkey
| | - Mansoor A Khan
- Texas A&M Health Sciences Centre, Irma Lerma Rangel College of Pharmacy, TX, 77843, USA
| | - Yılmaz Çapan
- ILKO ARGEM Biotechnology R&D Center, 34906, Pendik, Istanbul, Turkey; Hacettepe University, Faculty of Pharmacy, 06100, Ankara, Turkey.
| |
Collapse
|
33
|
Verscheure L, Oosterlynck M, Cerdobbel A, Sandra P, Lynen F, Sandra K. Middle-up characterization of monoclonal antibodies by online reduction liquid chromatography-mass spectrometry. J Chromatogr A 2020; 1637:461808. [PMID: 33385741 DOI: 10.1016/j.chroma.2020.461808] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023]
Abstract
This study describes the fully automated middle-up characterization of monoclonal antibodies (mAbs) and next-generation variants by online reduction liquid chromatography-mass spectrometry (LC-MS). Proteins were trapped on-column and subjected to online desalting, denaturation and reduction prior to reversed phase elution of the created subunits in the MS. The evaluation of more than 20 different therapeutic proteins including full length mAbs (subclasses IgG1, IgG2 and IgG4), bispecific antibodies, antibody fragments, fusion proteins and antibody-drug conjugates (ADC) revealed that the online reduction method is as powerful as the widely applied offline sample preparation with dithiothreitol (DTT) as reducing agent and guanidine hydrochloride (Gnd.HCl) as denaturant and tackles some major disadvantages associated with the latter method, i.e. corrosion of stainless steel components, adduct formation impacting spectral quality and sample stability. The value of the online reduction LC-MS method is also enforced by its ability to reveal unstable antibody variants such as succinimide intermediates of asparagine deamidation and aspartic acid isomerization which are often lost when using the offline sample preparation method. The performance of the online reduction LC-MS set-up was verified and it was revealed that the method is precise with RSD values below 0.25% and 3.0% for retention time and area, respectively. Carry-over is within acceptable limits (< 0.5%) and the reducing buffer is stable up to 24 hours.
Collapse
Affiliation(s)
- Liesa Verscheure
- Research Institute for Chromatography (RIC), President Kennedypark 26, 8500 Kortrijk, Belgium; Separation Science Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, B-9000 Ghent, Belgium
| | - Marie Oosterlynck
- Chemistry Department, KU Leuven, Celestijnenlaan 200F, bus 2404, 3001 Leuven, Belgium
| | - An Cerdobbel
- Research Institute for Chromatography (RIC), President Kennedypark 26, 8500 Kortrijk, Belgium
| | - Pat Sandra
- Research Institute for Chromatography (RIC), President Kennedypark 26, 8500 Kortrijk, Belgium; Separation Science Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, B-9000 Ghent, Belgium
| | - Frederic Lynen
- Separation Science Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, B-9000 Ghent, Belgium
| | - Koen Sandra
- Research Institute for Chromatography (RIC), President Kennedypark 26, 8500 Kortrijk, Belgium; Separation Science Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, B-9000 Ghent, Belgium.
| |
Collapse
|
34
|
Butreddy A, Janga KY, Ajjarapu S, Sarabu S, Dudhipala N. Instability of therapeutic proteins - An overview of stresses, stabilization mechanisms and analytical techniques involved in lyophilized proteins. Int J Biol Macromol 2020; 167:309-325. [PMID: 33275971 DOI: 10.1016/j.ijbiomac.2020.11.188] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 01/06/2023]
Abstract
Solid-state is the preferred choice for storage of protein therapeutics to improve stability and preserve the biological activity by decreasing the physical and chemical degradation associated with liquid protein formulations. Lyophilization or freeze-drying is an effective drying method to overcome the instability problems of proteins. However, the processing steps (freezing, primary drying and secondary drying) involved in the lyophilization process can expose the proteins to various stress and harsh conditions, leading to denaturation, aggregation often a loss in activity of protein therapeutics. Stabilizers such as sugars and surfactants are often added to protect the proteins against physical stress associated with lyophilization process and storage conditions. Another way to curtail the degradation of proteins due to process related stress is by modification of the lyophilization process. Slow freezing, high nucleation temperature, decreasing the extent of supercooling, and annealing can minimize the formation of the interface (ice-water) by producing large ice crystals with less surface area, thereby preserving the native structure and stability of the proteins. Hence, a thorough understanding of formulation composition, lyophilization process parameters and the choice of analytical methods to characterize and monitor the protein instability is crucial for development of stable therapeutic protein products. This review provides an overview of various stress conditions that proteins might encounter during lyophilization process, mechanisms to improve the stability and analytical techniques to tackle the proteins instability during both freeze-drying and storage.
Collapse
Affiliation(s)
- Arun Butreddy
- Formulation R&D, Biological E. Limited, IKP Knowledge Park, Shameerpet, Hyderabad, Telangana State 500078, India; Laboratory of Nanotechnology, University College of Pharmaceutical Sciences, Kakatiya University, Warangal, Telangana State 506009, India
| | - Karthik Yadav Janga
- Laboratory of Nanotechnology, University College of Pharmaceutical Sciences, Kakatiya University, Warangal, Telangana State 506009, India
| | - Srinivas Ajjarapu
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani 333031, India
| | - Sandeep Sarabu
- Laboratory of Nanotechnology, University College of Pharmaceutical Sciences, Kakatiya University, Warangal, Telangana State 506009, India
| | - Narendar Dudhipala
- Laboratory of Nanotechnology, University College of Pharmaceutical Sciences, Kakatiya University, Warangal, Telangana State 506009, India; Department of Pharmaceutics, Vaagdevi College of Pharmacy, Warangal, Telangana State 506 005, India..
| |
Collapse
|
35
|
Millán-Martín S, Carillo S, Füssl F, Sutton J, Gazis P, Cook K, Scheffler K, Bones J. Optimisation of the use of sliding window deconvolution for comprehensive characterisation of trastuzumab and adalimumab charge variants by native high resolution mass spectrometry. Eur J Pharm Biopharm 2020; 158:83-95. [PMID: 33212184 DOI: 10.1016/j.ejpb.2020.11.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 10/23/2022]
Abstract
The biopharmaceutical industry continues to develop mAb-based biotherapeutics in increasing numbers. Due to their complexity, there are several critical quality attributes (CQAs) that need to be measured and controlled to guarantee product safety and efficacy. Charge variant analysis is a widely used method to monitor changes in product quality during the manufacturing process of monoclonal antibodies (mAbs) and, together with a bottom-up peptide centred approach, acts as a key analytical platform to fulfil regulatory requirements. Native MS measures biomolecules under conditions that preserve most aspects of protein tertiary and quaternary structure, enabling direct characterization of large intact proteins such as mAbs. The resulting native mass spectrum of a mAb is characterized by a narrower charge-state envelope that simplifies the spectra and also condenses the ion signals into fewer peaks, increasing the signal-to-noise ratio. Algorithmic spectral deconvolution is needed for routine accurate and rapid molecular weight determination, and consequently, multiple deconvolution algorithms have evolved over the past decade. Here, we demonstrate the utility of the sliding window algorithm as a robust and powerful deconvolution tool for comprehensive characterisation of charge variant analysis data for mAbs. Optimum performance is evaluated by studying the impact of critical software parameters on detection, identification and relative quantitation of protein isoforms. By combining molecular mass and retention time information, it was possible to identify multiple modifications on adalimumab and trastuzumab, both IgG1 mAbs, including lysine truncation, deamidation and succinimide formation, along with the N-glycan distribution of each of the identified charge variants. Sliding window deconvolution also provides a key benefit of low abundant variant detection in a single analysis and the ability to detect co-eluting components with different relative abundances. The studied mAbs demonstrate the algoritms applicability for efficient data processing of both simple and complex mAbs analysed using pH gradient cation exchange chromatography coupled to native mass spectrometry.
Collapse
Affiliation(s)
- Silvia Millán-Martín
- Characterisation and Comparability Laboratory, NIBRT - The National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Blackrock, Co., Dublin, Ireland
| | - Sara Carillo
- Characterisation and Comparability Laboratory, NIBRT - The National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Blackrock, Co., Dublin, Ireland
| | - Florian Füssl
- Characterisation and Comparability Laboratory, NIBRT - The National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Blackrock, Co., Dublin, Ireland
| | - Jennifer Sutton
- Thermo Fisher Scientific, 55 River Oaks Parkway, San José, CA 95134, United States
| | - Paul Gazis
- Thermo Fisher Scientific, 55 River Oaks Parkway, San José, CA 95134, United States
| | - Ken Cook
- Thermo Fisher Scientific, Stafford House, 1 Boundary Park, Hemel Hempstead HP2 7GE, United Kingdom
| | - Kai Scheffler
- Thermo Fisher Scientific, Dornierstrasse 4, 82110 Germering, Germany
| | - Jonathan Bones
- Characterisation and Comparability Laboratory, NIBRT - The National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Blackrock, Co., Dublin, Ireland; School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4 D04 V1W8, Ireland.
| |
Collapse
|
36
|
Sawant MS, Streu CN, Wu L, Tessier PM. Toward Drug-Like Multispecific Antibodies by Design. Int J Mol Sci 2020; 21:E7496. [PMID: 33053650 PMCID: PMC7589779 DOI: 10.3390/ijms21207496] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/02/2020] [Accepted: 10/02/2020] [Indexed: 12/18/2022] Open
Abstract
The success of antibody therapeutics is strongly influenced by their multifunctional nature that couples antigen recognition mediated by their variable regions with effector functions and half-life extension mediated by a subset of their constant regions. Nevertheless, the monospecific IgG format is not optimal for many therapeutic applications, and this has led to the design of a vast number of unique multispecific antibody formats that enable targeting of multiple antigens or multiple epitopes on the same antigen. Despite the diversity of these formats, a common challenge in generating multispecific antibodies is that they display suboptimal physical and chemical properties relative to conventional IgGs and are more difficult to develop into therapeutics. Here we review advances in the design and engineering of multispecific antibodies with drug-like properties, including favorable stability, solubility, viscosity, specificity and pharmacokinetic properties. We also highlight emerging experimental and computational methods for improving the next generation of multispecific antibodies, as well as their constituent antibody fragments, with natural IgG-like properties. Finally, we identify several outstanding challenges that need to be addressed to increase the success of multispecific antibodies in the clinic.
Collapse
Affiliation(s)
- Manali S. Sawant
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; (M.S.S.); (C.N.S.)
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Craig N. Streu
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; (M.S.S.); (C.N.S.)
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA;
- Department of Chemistry, Albion College, Albion, MI 49224, USA
| | - Lina Wu
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA;
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Peter M. Tessier
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; (M.S.S.); (C.N.S.)
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA;
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
37
|
Duivelshof BL, Murisier A, Camperi J, Fekete S, Beck A, Guillarme D, D'Atri V. Therapeutic Fc-fusion proteins: Current analytical strategies. J Sep Sci 2020; 44:35-62. [PMID: 32914936 DOI: 10.1002/jssc.202000765] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/27/2020] [Accepted: 09/07/2020] [Indexed: 12/13/2022]
Abstract
Fc-Fusion proteins represent a successful class of biopharmaceutical products, with already 13 drugs approved in the European Union and United States as well as three biosimilar versions of etanercept. Fc-Fusion products combine tailored pharmacological properties of biological ligands, together with multiple functions of the fragment crystallizable domain of immunoglobulins. There is a great diversity in terms of possible biological ligands, including the extracellular domains of natural receptors, functionally active peptides, recombinant enzymes, and genetically engineered binding constructs acting as cytokine traps. Due to their highly diverse structures, the analytical characterization of Fc-Fusion proteins is far more complex than that of monoclonal antibodies and requires the use and development of additional product-specific methods over conventional generic/platform methods. This can be explained, for example, by the presence of numerous sialic acids, leading to high diversity in terms of isoelectric points and complex glycosylation profiles including multiple N- and O-linked glycosylation sites. In this review, we highlight the wide range of analytical strategies used to fully characterize Fc-fusion proteins. We also present case studies on the structural assessment of all commercially available Fc-fusion proteins, based on the features and critical quality attributes of their ligand-binding domains.
Collapse
Affiliation(s)
- Bastiaan L Duivelshof
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, Geneva, Switzerland
| | - Amarande Murisier
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, Geneva, Switzerland
| | - Julien Camperi
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, Geneva, Switzerland
| | - Szabolcs Fekete
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, Geneva, Switzerland
| | - Alain Beck
- IRPF - Centre d'Immunologie Pierre-Fabre (CIPF), Saint-Julien-en-Genevois, France
| | - Davy Guillarme
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, Geneva, Switzerland
| | - Valentina D'Atri
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, Geneva, Switzerland
| |
Collapse
|