1
|
Gallo E. Revolutionizing Synthetic Antibody Design: Harnessing Artificial Intelligence and Deep Sequencing Big Data for Unprecedented Advances. Mol Biotechnol 2025; 67:410-424. [PMID: 38308755 DOI: 10.1007/s12033-024-01064-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/02/2024] [Indexed: 02/05/2024]
Abstract
Synthetic antibodies (Abs) represent a category of engineered proteins meticulously crafted to replicate the functions of their natural counterparts. Such Abs are generated in vitro, enabling advanced molecular alterations associated with antigen recognition, paratope site engineering, and biochemical refinements. In a parallel realm, deep sequencing has brought about a paradigm shift in molecular biology. It facilitates the prompt and cost-effective high-throughput sequencing of DNA and RNA molecules, enabling the comprehensive big data analysis of Ab transcriptomes, including specific regions of interest. Significantly, the integration of artificial intelligence (AI), based on machine- and deep- learning approaches, has fundamentally transformed our capacity to discern patterns hidden within deep sequencing big data, including distinctive Ab features and protein folding free energy landscapes. Ultimately, current AI advances can generate approximations of the most stable Ab structural configurations, enabling the prediction of de novo synthetic Abs. As a result, this manuscript comprehensively examines the latest and relevant literature concerning the intersection of deep sequencing big data and AI methodologies for the design and development of synthetic Abs. Together, these advancements have accelerated the exploration of antibody repertoires, contributing to the refinement of synthetic Ab engineering and optimizations, and facilitating advancements in the lead identification process.
Collapse
Affiliation(s)
- Eugenio Gallo
- Avance Biologicals, Department of Medicinal Chemistry, 950 Dupont Street, Toronto, ON, M6H 1Z2, Canada.
- RevivAb, Department of Protein Engineering, Av. Ipiranga, 6681, Partenon, Porto Alegre, RS, 90619-900, Brazil.
| |
Collapse
|
2
|
O'Donnell TJ, Kanduri C, Isacchini G, Limenitakis JP, Brachman RA, Alvarez RA, Haff IH, Sandve GK, Greiff V. Reading the repertoire: Progress in adaptive immune receptor analysis using machine learning. Cell Syst 2024; 15:1168-1189. [PMID: 39701034 DOI: 10.1016/j.cels.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/16/2024] [Accepted: 11/14/2024] [Indexed: 12/21/2024]
Abstract
The adaptive immune system holds invaluable information on past and present immune responses in the form of B and T cell receptor sequences, but we are limited in our ability to decode this information. Machine learning approaches are under active investigation for a range of tasks relevant to understanding and manipulating the adaptive immune receptor repertoire, including matching receptors to the antigens they bind, generating antibodies or T cell receptors for use as therapeutics, and diagnosing disease based on patient repertoires. Progress on these tasks has the potential to substantially improve the development of vaccines, therapeutics, and diagnostics, as well as advance our understanding of fundamental immunological principles. We outline key challenges for the field, highlighting the need for software benchmarking, targeted large-scale data generation, and coordinated research efforts.
Collapse
Affiliation(s)
| | - Chakravarthi Kanduri
- Department of Informatics, University of Oslo, Oslo, Norway; UiO:RealArt Convergence Environment, University of Oslo, Oslo, Norway
| | | | | | - Rebecca A Brachman
- Imprint Labs, LLC, New York, NY, USA; Cornell Tech, Cornell University, New York, NY, USA
| | | | - Ingrid H Haff
- Department of Mathematics, University of Oslo, 0371 Oslo, Norway
| | - Geir K Sandve
- Department of Informatics, University of Oslo, Oslo, Norway; UiO:RealArt Convergence Environment, University of Oslo, Oslo, Norway
| | - Victor Greiff
- Imprint Labs, LLC, New York, NY, USA; Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
3
|
Abbate MF, Dupic T, Vigne E, Shahsavarian MA, Walczak AM, Mora T. Computational detection of antigen-specific B cell receptors following immunization. Proc Natl Acad Sci U S A 2024; 121:e2401058121. [PMID: 39163333 PMCID: PMC11363332 DOI: 10.1073/pnas.2401058121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 07/10/2024] [Indexed: 08/22/2024] Open
Abstract
B cell receptors (BCRs) play a crucial role in recognizing and fighting foreign antigens. High-throughput sequencing enables in-depth sampling of the BCRs repertoire after immunization. However, only a minor fraction of BCRs actively participate in any given infection. To what extent can we accurately identify antigen-specific sequences directly from BCRs repertoires? We present a computational method grounded on sequence similarity, aimed at identifying statistically significant responsive BCRs. This method leverages well-known characteristics of affinity maturation and expected diversity. We validate its effectiveness using longitudinally sampled human immune repertoire data following influenza vaccination and SARS-CoV-2 infections. We show that different lineages converge to the same responding Complementarity Determining Region 3, demonstrating convergent selection within an individual. The outcomes of this method hold promise for application in vaccine development, personalized medicine, and antibody-derived therapeutics.
Collapse
Affiliation(s)
- Maria Francesca Abbate
- Laboratoire de physique de l’École normale supérieure, CNRS, Paris Sciences et Lettres University, Sorbonne Université, and Université Paris-Cité, Paris75005, France
- Large Molecule Research, Sanofi, Vitry-sur-Seine94 400, France
| | - Thomas Dupic
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA02138
| | | | | | - Aleksandra M. Walczak
- Laboratoire de physique de l’École normale supérieure, CNRS, Paris Sciences et Lettres University, Sorbonne Université, and Université Paris-Cité, Paris75005, France
| | - Thierry Mora
- Laboratoire de physique de l’École normale supérieure, CNRS, Paris Sciences et Lettres University, Sorbonne Université, and Université Paris-Cité, Paris75005, France
| |
Collapse
|
4
|
Vu MH, Robert PA, Akbar R, Swiatczak B, Sandve GK, Haug DTT, Greiff V. Linguistics-based formalization of the antibody language as a basis for antibody language models. NATURE COMPUTATIONAL SCIENCE 2024; 4:412-422. [PMID: 38877120 DOI: 10.1038/s43588-024-00642-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 05/13/2024] [Indexed: 06/16/2024]
Abstract
Apparent parallels between natural language and antibody sequences have led to a surge in deep language models applied to antibody sequences for predicting cognate antigen recognition. However, a linguistic formal definition of antibody language does not exist, and insight into how antibody language models capture antibody-specific binding features remains largely uninterpretable. Here we describe how a linguistic formalization of the antibody language, by characterizing its tokens and grammar, could address current challenges in antibody language model rule mining.
Collapse
Affiliation(s)
- Mai Ha Vu
- Department of Linguistics and Scandinavian Studies, University of Oslo, Oslo, Norway.
| | - Philippe A Robert
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Rahmad Akbar
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Bartlomiej Swiatczak
- Department of History of Science and Scientific Archeology, University of Science and Technology of China, Hefei, China
| | | | | | - Victor Greiff
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
5
|
Lin N, Miyamoto K, Ogawara T, Sakurai S, Kizaka-Kondoh S, Kadonosono T. Epitope binning for multiple antibodies simultaneously using mammalian cell display and DNA sequencing. Commun Biol 2024; 7:652. [PMID: 38806676 PMCID: PMC11133372 DOI: 10.1038/s42003-024-06363-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/21/2024] [Indexed: 05/30/2024] Open
Abstract
Epitope binning, an approach for grouping antibodies based on epitope similarities, is a critical step in antibody drug discovery. However, conventional methods are complex, involving individual antibody production. Here, we established Epitope Binning-seq, an epitope binning platform for simultaneously analyzing multiple antibodies. In this system, epitope similarity between the query antibodies (qAbs) displayed on antigen-expressing cells and a fluorescently labeled reference antibody (rAb) targeting a desired epitope is analyzed by flow cytometry. The qAbs with epitope similar to the rAb can be identified by next-generation sequencing analysis of fluorescence-negative cells. Sensitivity and reliability of this system are confirmed using rAbs, pertuzumab and trastuzumab, which target human epidermal growth factor receptor 2. Epitope Binning-seq enables simultaneous epitope evaluation of 14 qAbs at various abundances in libraries, grouping them into respective epitope bins. This versatile platform is applicable to diverse antibodies and antigens, potentially expediting the identification of clinically useful antibodies.
Collapse
Affiliation(s)
- Ning Lin
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Kotaro Miyamoto
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Takumi Ogawara
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Saki Sakurai
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Shinae Kizaka-Kondoh
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Tetsuya Kadonosono
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan.
| |
Collapse
|
6
|
Chomicz D, Kończak J, Wróbel S, Satława T, Dudzic P, Janusz B, Tarkowski M, Deszyński P, Gawłowski T, Kostyn A, Orłowski M, Klaus T, Schulte L, Martin K, Comeau SR, Krawczyk K. Benchmarking antibody clustering methods using sequence, structural, and machine learning similarity measures for antibody discovery applications. Front Mol Biosci 2024; 11:1352508. [PMID: 38606289 PMCID: PMC11008471 DOI: 10.3389/fmolb.2024.1352508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/09/2024] [Indexed: 04/13/2024] Open
Abstract
Antibodies are proteins produced by our immune system that have been harnessed as biotherapeutics. The discovery of antibody-based therapeutics relies on analyzing large volumes of diverse sequences coming from phage display or animal immunizations. Identification of suitable therapeutic candidates is achieved by grouping the sequences by their similarity and subsequent selection of a diverse set of antibodies for further tests. Such groupings are typically created using sequence-similarity measures alone. Maximizing diversity in selected candidates is crucial to reducing the number of tests of molecules with near-identical properties. With the advances in structural modeling and machine learning, antibodies can now be grouped across other diversity dimensions, such as predicted paratopes or three-dimensional structures. Here we benchmarked antibody grouping methods using clonotype, sequence, paratope prediction, structure prediction, and embedding information. The results were benchmarked on two tasks: binder detection and epitope mapping. We demonstrate that on binder detection no method appears to outperform the others, while on epitope mapping, clonotype, paratope, and embedding clusterings are top performers. Most importantly, all the methods propose orthogonal groupings, offering more diverse pools of candidates when using multiple methods than any single method alone. To facilitate exploring the diversity of antibodies using different methods, we have created an online tool-CLAP-available at (clap.naturalantibody.com) that allows users to group, contrast, and visualize antibodies using the different grouping methods.
Collapse
Affiliation(s)
| | | | - Sonia Wróbel
- NaturalAntibody, Szczecin, West Pomeranian, Poland
| | | | - Paweł Dudzic
- NaturalAntibody, Szczecin, West Pomeranian, Poland
| | | | | | | | | | | | - Marek Orłowski
- Pure Biologics, Wrocław, Poland
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | | | - Lukas Schulte
- Global Computational Biology & Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Kyle Martin
- Biotherapeutics Discovery, Boehringer Ingelheim, Biberach, Germany
| | | | | |
Collapse
|
7
|
Pelissier A, Stratigopoulou M, Donner N, Dimitriadis E, Bende RJ, Guikema JE, Rodriguez Martinez M, van Noesel CJ. Convergent evolution and B-cell recirculation in germinal centers in a human lymph node. Life Sci Alliance 2023; 6:e202301959. [PMID: 37640448 PMCID: PMC10462906 DOI: 10.26508/lsa.202301959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/31/2023] Open
Abstract
Germinal centers (GCs) play a central role in generating an effective immune response against infectious pathogens, and failures in their regulating mechanisms can lead to the development of autoimmune diseases and cancer. Although previous works study experimental systems of the immune response with mouse models that are immunized with specific antigens, our study focused on a real-life situation, with an ongoing GC response in a human lymph node (LN) involving multiple asynchronized GCs reacting simultaneously to unknown antigens. We combined laser capture microdissection of individual GCs from human LN with next-generation repertoire sequencing to characterize individual GCs as distinct evolutionary spaces. In line with well-characterized GC responses in mice, elicited by immunization with model antigens, we observe a heterogeneous clonal diversity across individual GCs from the same human LN. Still, we identify shared clones in several individual GCs, and phylogenetic tree analysis combined with paratope modeling suggest the re-engagement and rediversification of B-cell clones across GCs and expanded clones exhibiting shared antigen responses across distinct GCs, indicating convergent evolution of the GCs.
Collapse
Affiliation(s)
- Aurelien Pelissier
- IBM Research Europe, Rüschlikon, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Maria Stratigopoulou
- Department of Pathology, Amsterdam University Medical Centers, Location AMC, Lymphoma and Myeloma Center Amsterdam, Amsterdam, Netherlands
| | - Naomi Donner
- Department of Pathology, Amsterdam University Medical Centers, Location AMC, Lymphoma and Myeloma Center Amsterdam, Amsterdam, Netherlands
| | | | - Richard J Bende
- Department of Pathology, Amsterdam University Medical Centers, Location AMC, Lymphoma and Myeloma Center Amsterdam, Amsterdam, Netherlands
| | - Jeroen E Guikema
- Department of Pathology, Amsterdam University Medical Centers, Location AMC, Lymphoma and Myeloma Center Amsterdam, Amsterdam, Netherlands
| | | | - Carel Jm van Noesel
- Department of Pathology, Amsterdam University Medical Centers, Location AMC, Lymphoma and Myeloma Center Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
8
|
Spoendlin FC, Abanades B, Raybould MIJ, Wong WK, Georges G, Deane CM. Improved computational epitope profiling using structural models identifies a broader diversity of antibodies that bind to the same epitope. Front Mol Biosci 2023; 10:1237621. [PMID: 37790877 PMCID: PMC10544996 DOI: 10.3389/fmolb.2023.1237621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/28/2023] [Indexed: 10/05/2023] Open
Abstract
The function of an antibody is intrinsically linked to the epitope it engages. Clonal clustering methods, based on sequence identity, are commonly used to group antibodies that will bind to the same epitope. However, such methods neglect the fact that antibodies with highly diverse sequences can exhibit similar binding site geometries and engage common epitopes. In a previous study, we described SPACE1, a method that structurally clustered antibodies in order to predict their epitopes. This methodology was limited by the inaccuracies and incomplete coverage of template-based modeling. In addition, it was only benchmarked at the level of domain-consistency on one virus class. Here, we present SPACE2, which uses the latest machine learning-based structure prediction technology combined with a novel clustering protocol, and benchmark it on binding data that have epitope-level resolution. On six diverse sets of antigen-specific antibodies, we demonstrate that SPACE2 accurately clusters antibodies that engage common epitopes and achieves far higher dataset coverage than clonal clustering and SPACE1. Furthermore, we show that the functionally consistent structural clusters identified by SPACE2 are even more diverse in sequence, genetic lineage, and species origin than those found by SPACE1. These results reiterate that structural data improve our ability to identify antibodies that bind to the same epitope, adding information to sequence-based methods, especially in datasets of antibodies from diverse sources. SPACE2 is openly available on GitHub (https://github.com/oxpig/SPACE2).
Collapse
Affiliation(s)
- Fabian C. Spoendlin
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford, United Kingdom
| | - Brennan Abanades
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford, United Kingdom
| | - Matthew I. J. Raybould
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford, United Kingdom
| | - Wing Ki Wong
- Large Molecule Research, Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Guy Georges
- Large Molecule Research, Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Charlotte M. Deane
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
9
|
Zeng X, Wang T, Kang Y, Bai G, Ma B. Evaluation of Molecular Simulations and Deep Learning Prediction of Antibodies' Recognition of TRBC1 and TRBC2. Antibodies (Basel) 2023; 12:58. [PMID: 37753972 PMCID: PMC10525649 DOI: 10.3390/antib12030058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 08/25/2023] [Accepted: 09/05/2023] [Indexed: 09/28/2023] Open
Abstract
T cell receptor β-chain constant (TRBC) is a promising class of cancer targets consisting of two highly homologous proteins, TRBC1 and TRBC2. Developing targeted antibody therapeutics against TRBC1 or TRBC2 is expected to eradicate the malignant T cells and preserve half of the normal T cells. Recently, several antibody engineering strategies have been used to modulate the TRBC1 and TRBC2 specificity of antibodies. Here, we used molecular simulation and artificial intelligence methods to quantify the affinity difference in antibodies with various mutations for TRBC1 and TRBC2. The affinity of the existing mutants was verified by FEP calculations aided by the AI. We also performed long-time molecular dynamics simulations to reveal the dynamical antigen recognition mechanisms of the TRBC antibodies.
Collapse
Affiliation(s)
- Xincheng Zeng
- Engineering Research Center of Cell & Therapeutic Antibody (MOE), School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (X.Z.); (G.B.)
| | - Tianqun Wang
- Shanghai Digiwiser Biological Inc., Shanghai 200240, China; (T.W.); (Y.K.)
| | - Yue Kang
- Shanghai Digiwiser Biological Inc., Shanghai 200240, China; (T.W.); (Y.K.)
| | - Ganggang Bai
- Engineering Research Center of Cell & Therapeutic Antibody (MOE), School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (X.Z.); (G.B.)
| | - Buyong Ma
- Engineering Research Center of Cell & Therapeutic Antibody (MOE), School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (X.Z.); (G.B.)
- Shanghai Digiwiser Biological Inc., Shanghai 200240, China; (T.W.); (Y.K.)
| |
Collapse
|
10
|
Zeng X, Bai G, Sun C, Ma B. Recent Progress in Antibody Epitope Prediction. Antibodies (Basel) 2023; 12:52. [PMID: 37606436 PMCID: PMC10443277 DOI: 10.3390/antib12030052] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/23/2023] Open
Abstract
Recent progress in epitope prediction has shown promising results in the development of vaccines and therapeutics against various diseases. However, the overall accuracy and success rate need to be improved greatly to gain practical application significance, especially conformational epitope prediction. In this review, we examined the general features of antibody-antigen recognition, highlighting the conformation selection mechanism in flexible antibody-antigen binding. We recently highlighted the success and warning signs of antibody epitope predictions, including linear and conformation epitope predictions. While deep learning-based models gradually outperform traditional feature-based machine learning, sequence and structure features still provide insight into antibody-antigen recognition problems.
Collapse
Affiliation(s)
- Xincheng Zeng
- Engineering Research Center of Cell & Therapeutic Antibody (MOE), School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (X.Z.); (C.S.)
| | - Ganggang Bai
- Engineering Research Center of Cell & Therapeutic Antibody (MOE), School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (X.Z.); (C.S.)
| | - Chuance Sun
- Engineering Research Center of Cell & Therapeutic Antibody (MOE), School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (X.Z.); (C.S.)
| | - Buyong Ma
- Engineering Research Center of Cell & Therapeutic Antibody (MOE), School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (X.Z.); (C.S.)
- Shanghai Digiwiser Biological, Inc., Shanghai 200131, China
| |
Collapse
|
11
|
Gordon GL, Capel HL, Guloglu B, Richardson E, Stafford RL, Deane CM. A comparison of the binding sites of antibodies and single-domain antibodies. Front Immunol 2023; 14:1231623. [PMID: 37533864 PMCID: PMC10392943 DOI: 10.3389/fimmu.2023.1231623] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 06/27/2023] [Indexed: 08/04/2023] Open
Abstract
Antibodies are the largest class of biotherapeutics. However, in recent years, single-domain antibodies have gained traction due to their smaller size and comparable binding affinity. Antibodies (Abs) and single-domain antibodies (sdAbs) differ in the structures of their binding sites: most significantly, single-domain antibodies lack a light chain and so have just three CDR loops. Given this inherent structural difference, it is important to understand whether Abs and sdAbs are distinguishable in how they engage a binding partner and thus, whether they are suited to different types of epitopes. In this study, we use non-redundant sequence and structural datasets to compare the paratopes, epitopes and antigen interactions of Abs and sdAbs. We demonstrate that even though sdAbs have smaller paratopes, they target epitopes of equal size to those targeted by Abs. To achieve this, the paratopes of sdAbs contribute more interactions per residue than the paratopes of Abs. Additionally, we find that conserved framework residues are of increased importance in the paratopes of sdAbs, suggesting that they include non-specific interactions to achieve comparable affinity. Furthermore, the epitopes of sdAbs are only marginally less accessible than those of Abs: we posit that this may be explained by differences in the orientation and compaction of sdAb and Ab CDR-H3 loops. Overall, our results have important implications for the engineering and humanization of sdAbs, as well as the selection of the best modality for targeting a particular epitope.
Collapse
Affiliation(s)
- Gemma L. Gordon
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford, United Kingdom
| | - Henriette L. Capel
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford, United Kingdom
| | - Bora Guloglu
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford, United Kingdom
| | - Eve Richardson
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford, United Kingdom
| | | | - Charlotte M. Deane
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
12
|
Ruffolo JA, Chu LS, Mahajan SP, Gray JJ. Fast, accurate antibody structure prediction from deep learning on massive set of natural antibodies. Nat Commun 2023; 14:2389. [PMID: 37185622 PMCID: PMC10129313 DOI: 10.1038/s41467-023-38063-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
Antibodies have the capacity to bind a diverse set of antigens, and they have become critical therapeutics and diagnostic molecules. The binding of antibodies is facilitated by a set of six hypervariable loops that are diversified through genetic recombination and mutation. Even with recent advances, accurate structural prediction of these loops remains a challenge. Here, we present IgFold, a fast deep learning method for antibody structure prediction. IgFold consists of a pre-trained language model trained on 558 million natural antibody sequences followed by graph networks that directly predict backbone atom coordinates. IgFold predicts structures of similar or better quality than alternative methods (including AlphaFold) in significantly less time (under 25 s). Accurate structure prediction on this timescale makes possible avenues of investigation that were previously infeasible. As a demonstration of IgFold's capabilities, we predicted structures for 1.4 million paired antibody sequences, providing structural insights to 500-fold more antibodies than have experimentally determined structures.
Collapse
Affiliation(s)
- Jeffrey A Ruffolo
- Program in Molecular Biophysics, The Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Lee-Shin Chu
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Sai Pooja Mahajan
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Jeffrey J Gray
- Program in Molecular Biophysics, The Johns Hopkins University, Baltimore, MD, 21218, USA.
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, 21218, USA.
| |
Collapse
|
13
|
Hurtado J, Flynn C, Lee JH, Salcedo EC, Cottrell CA, Skog PD, Burton DR, Nemazee D, Schief WR, Landais E, Sok D, Briney B. Efficient isolation of rare B cells using next-generation antigen barcoding. Front Cell Infect Microbiol 2023; 12:962945. [PMID: 36968243 PMCID: PMC10036767 DOI: 10.3389/fcimb.2022.962945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 12/28/2022] [Indexed: 03/12/2023] Open
Abstract
The ability to efficiently isolate antigen-specific B cells in high throughput will greatly accelerate the discovery of therapeutic monoclonal antibodies (mAbs) and catalyze rational vaccine development. Traditional mAb discovery is a costly and labor-intensive process, although recent advances in single-cell genomics using emulsion microfluidics allow simultaneous processing of thousands of individual cells. Here we present a streamlined method for isolation and analysis of large numbers of antigen-specific B cells, including next generation antigen barcoding and an integrated computational framework for B cell multi-omics. We demonstrate the power of this approach by recovering thousands of antigen-specific mAbs, including the efficient isolation of extremely rare precursors of VRC01-class and IOMA-class broadly neutralizing HIV mAbs.
Collapse
Affiliation(s)
- Jonathan Hurtado
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, United States
- Center for Viral Systems Biology, Scripps Research, La Jolla, CA, United States
- Consortium for HIV/AIDS Vaccine Development, Scripps Research, La Jolla, CA, United States
| | - Claudia Flynn
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, United States
- Consortium for HIV/AIDS Vaccine Development, Scripps Research, La Jolla, CA, United States
- IAVI Neutralizing Antibody Center, Scripps Research, La Jolla, CA, United States
| | - Jeong Hyun Lee
- Consortium for HIV/AIDS Vaccine Development, Scripps Research, La Jolla, CA, United States
- IAVI Neutralizing Antibody Center, Scripps Research, La Jolla, CA, United States
- International AIDS Vaccine Initiative, New York, NY, United States
| | - Eugenia C. Salcedo
- Consortium for HIV/AIDS Vaccine Development, Scripps Research, La Jolla, CA, United States
- IAVI Neutralizing Antibody Center, Scripps Research, La Jolla, CA, United States
- International AIDS Vaccine Initiative, New York, NY, United States
| | - Christopher A. Cottrell
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, United States
- Consortium for HIV/AIDS Vaccine Development, Scripps Research, La Jolla, CA, United States
- IAVI Neutralizing Antibody Center, Scripps Research, La Jolla, CA, United States
- International AIDS Vaccine Initiative, New York, NY, United States
| | - Patrick D. Skog
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, United States
| | - Dennis R. Burton
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, United States
- Consortium for HIV/AIDS Vaccine Development, Scripps Research, La Jolla, CA, United States
- IAVI Neutralizing Antibody Center, Scripps Research, La Jolla, CA, United States
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
| | - David Nemazee
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, United States
| | - William R. Schief
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, United States
- Consortium for HIV/AIDS Vaccine Development, Scripps Research, La Jolla, CA, United States
- IAVI Neutralizing Antibody Center, Scripps Research, La Jolla, CA, United States
- International AIDS Vaccine Initiative, New York, NY, United States
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
| | - Elise Landais
- Consortium for HIV/AIDS Vaccine Development, Scripps Research, La Jolla, CA, United States
- IAVI Neutralizing Antibody Center, Scripps Research, La Jolla, CA, United States
- International AIDS Vaccine Initiative, New York, NY, United States
| | - Devin Sok
- Consortium for HIV/AIDS Vaccine Development, Scripps Research, La Jolla, CA, United States
- IAVI Neutralizing Antibody Center, Scripps Research, La Jolla, CA, United States
- International AIDS Vaccine Initiative, New York, NY, United States
| | - Bryan Briney
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, United States
- Center for Viral Systems Biology, Scripps Research, La Jolla, CA, United States
- Consortium for HIV/AIDS Vaccine Development, Scripps Research, La Jolla, CA, United States
- San Diego Center for AIDS Research, Scripps Research, La Jolla, CA, United States
| |
Collapse
|
14
|
Ghanbarpour A, Jiang M, Foster D, Chai Q. Structure-free antibody paratope similarity prediction for in silico epitope binning via protein language models. iScience 2023; 26:106036. [PMID: 36824280 PMCID: PMC9941125 DOI: 10.1016/j.isci.2023.106036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 11/28/2022] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
Antibodies are an important group of biological molecules that are used as therapeutics and diagnostic tools. Although millions of antibody sequences are available, identifying their structural and functional similarity and their antigen binding sites remains a challenge at large scale. Here, we present a fast, sequence-based computational method for antibody paratope prediction based on protein language models. The paratope information is then used to measure similarity among antibodies via protein language models. Our computational method enables binning of antibody discovery hits into groups as the function of epitope engagement. We further demonstrate the utility of the method by identifying antibodies targeting highly similar epitopes of the same antigens from a large pool of antibody sequences, using two case studies: SARS CoV2 Receptor Binding Domain (RBD) and Epidermal Growth Factor Receptor (EGFR). Our approach highlights the potential in accelerating antibody discovery by enhancing hit prioritization and diversity selection.
Collapse
Affiliation(s)
- Ahmadreza Ghanbarpour
- Biotechnology Discovery Research, Lilly Biotechnology Center, 10300 Campus Point Drive, San Diego, CA 92121, USA
| | - Min Jiang
- Advanced Analytics and Data Sciences, Lilly Corporate Center, Indianapolis, IN 46225, USA
| | - Denisa Foster
- Biotechnology Discovery Research, Lilly Biotechnology Center, 10300 Campus Point Drive, San Diego, CA 92121, USA
| | - Qing Chai
- Biotechnology Discovery Research, Lilly Biotechnology Center, 10300 Campus Point Drive, San Diego, CA 92121, USA
| |
Collapse
|
15
|
Khan A, Cowen-Rivers AI, Grosnit A, Deik DGX, Robert PA, Greiff V, Smorodina E, Rawat P, Akbar R, Dreczkowski K, Tutunov R, Bou-Ammar D, Wang J, Storkey A, Bou-Ammar H. Toward real-world automated antibody design with combinatorial Bayesian optimization. CELL REPORTS METHODS 2023; 3:100374. [PMID: 36814835 PMCID: PMC9939385 DOI: 10.1016/j.crmeth.2022.100374] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 10/08/2022] [Accepted: 12/07/2022] [Indexed: 06/14/2023]
Abstract
Antibodies are multimeric proteins capable of highly specific molecular recognition. The complementarity determining region 3 of the antibody variable heavy chain (CDRH3) often dominates antigen-binding specificity. Hence, it is a priority to design optimal antigen-specific CDRH3 to develop therapeutic antibodies. The combinatorial structure of CDRH3 sequences makes it impossible to query binding-affinity oracles exhaustively. Moreover, antibodies are expected to have high target specificity and developability. Here, we present AntBO, a combinatorial Bayesian optimization framework utilizing a CDRH3 trust region for an in silico design of antibodies with favorable developability scores. The in silico experiments on 159 antigens demonstrate that AntBO is a step toward practically viable in vitro antibody design. In under 200 calls to the oracle, AntBO suggests antibodies outperforming the best binding sequence from 6.9 million experimentally obtained CDRH3s. Additionally, AntBO finds very-high-affinity CDRH3 in only 38 protein designs while requiring no domain knowledge.
Collapse
Affiliation(s)
- Asif Khan
- School of Informatics, University of Edinburgh, Edinburgh EH8 9YL, UK
| | | | | | | | - Philippe A. Robert
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo 0315, Norway
| | - Victor Greiff
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo 0315, Norway
| | - Eva Smorodina
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo 0315, Norway
| | - Puneet Rawat
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo 0315, Norway
| | - Rahmad Akbar
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo 0315, Norway
| | | | | | - Dany Bou-Ammar
- American University of Beirut Medical Centre, Beirut 11-0236, Lebanon
| | - Jun Wang
- Huawei Noah’s Ark Lab, London N1C 4AG, UK
- University College London, London WC1E 6BT, UK
| | - Amos Storkey
- School of Informatics, University of Edinburgh, Edinburgh EH8 9YL, UK
| | - Haitham Bou-Ammar
- Huawei Noah’s Ark Lab, London N1C 4AG, UK
- University College London, London WC1E 6BT, UK
| |
Collapse
|
16
|
Cable J, Saphire EO, Hayday AC, Wiltshire TD, Mousa JJ, Humphreys DP, Breij ECW, Bruhns P, Broketa M, Furuya G, Hauser BM, Mahévas M, Carfi A, Cantaert T, Kwong PD, Tripathi P, Davis JH, Brewis N, Keyt BA, Fennemann FL, Dussupt V, Sivasubramanian A, Kim PM, Rawi R, Richardson E, Leventhal D, Wolters RM, Geuijen CAW, Sleeman MA, Pengo N, Donnellan FR. Antibodies as drugs-a Keystone Symposia report. Ann N Y Acad Sci 2023; 1519:153-166. [PMID: 36382536 PMCID: PMC10103175 DOI: 10.1111/nyas.14915] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Therapeutic antibodies have broad indications across diverse disease states, such as oncology, autoimmune diseases, and infectious diseases. New research continues to identify antibodies with therapeutic potential as well as methods to improve upon endogenous antibodies and to design antibodies de novo. On April 27-30, 2022, experts in antibody research across academia and industry met for the Keystone symposium "Antibodies as Drugs" to present the state-of-the-art in antibody therapeutics, repertoires and deep learning, bispecific antibodies, and engineering.
Collapse
Affiliation(s)
| | - Erica Ollmann Saphire
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA.,Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Adrian C Hayday
- Peter Gorer Department of Immunobiology, King's College London, London, UK.,Cancer Research UK Cancer Immunotherapy Accelerator, London, UK.,Immunosurveillance Laboratory, The Francis Crick Institute, London, UK
| | | | - Jarrod J Mousa
- Department of Infectious Diseases and Center for Vaccines and Immunology, College of Veterinary Medicine, Athens, Georgia, USA.,Department of Biochemistry and Molecular Biology, Franklin College of Arts and Sciences, University of Georgia, Athens, Georgia, USA.,Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | - Esther C W Breij
- Translational Research and Precision Medicine, Genmab BV, Utrecht, the Netherlands
| | - Pierre Bruhns
- Institut Pasteur, Université de Paris, Unit of Antibodies in Therapy and Pathology, Paris, France
| | - Matteo Broketa
- Institut Pasteur, Université de Paris, Unit of Antibodies in Therapy and Pathology, Paris, France
| | - Genta Furuya
- Department of Preventive Medicine and Department of Pathology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Blake M Hauser
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Matthieu Mahévas
- Service de Médecine Interne, Centre de Référence des Cytopénies Auto-immunes de l'adulte, Centre Hospitalier Universitaire Henri-Mondor, Assistance Publique-Hôpitaux de Paris, Université Paris-Est Créteil, Créteil, France
| | - Andrea Carfi
- Moderna Inc., Cambridge, Massachusetts, USA.,Department of Pathology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Tineke Cantaert
- Immunology Unit, Institut Pasteur du Cambodge, The Pasteur Network, Phnom Penh, Cambodia
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Prabhanshu Tripathi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | - Bruce A Keyt
- IGM Biosciences, Inc., Mountainview, California, USA
| | | | - Vincent Dussupt
- Emerging Infectious Diseases Branch, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | | | - Philip M Kim
- Department of Molecular Genetics, Donnelly Centre for Cellular and Biomolecular Research, Toronto, Ontario, Canada.,Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Eve Richardson
- Department of Statistics, University of Oxford, Oxford, UK
| | | | - Rachael M Wolters
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | | | | | | |
Collapse
|
17
|
Ismanto HS, Xu Z, Saputri DS, Wilamowski J, Li S, Nugraha DK, Horiguchi Y, Okada M, Arase H, Standley DM. Landscape of infection enhancing antibodies in COVID-19 and healthy donors. Comput Struct Biotechnol J 2022; 20:6033-6040. [PMCID: PMC9635252 DOI: 10.1016/j.csbj.2022.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/01/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Hendra S. Ismanto
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita 565-0871, Japan
| | - Zichang Xu
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita 565-0871, Japan
| | - Dianita S. Saputri
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita 565-0871, Japan
| | - Jan Wilamowski
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita 565-0871, Japan
| | - Songling Li
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita 565-0871, Japan
- Department of System Immunology, Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita 565-0871, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka 565-0871, Japan
| | - Dendi K. Nugraha
- Deparment of Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita 565-0871, Japan
| | - Yasuhiko Horiguchi
- Deparment of Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita 565-0871, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka 565-0871, Japan
| | - Masato Okada
- Deparment of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita 565-0871, Japan
- Department of Oncogene Research, Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita 565-0871, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka 565-0871, Japan
| | - Hisashi Arase
- Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita 565-0871, Japan
- Department of Immunochemistry, Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita 565-0871, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka 565-0871, Japan
| | - Daron M Standley
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita 565-0871, Japan
- Department of System Immunology, Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita 565-0871, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka 565-0871, Japan
- Corresponding author at: Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita 565-0871, Japan.
| |
Collapse
|
18
|
Jaffe DB, Shahi P, Adams BA, Chrisman AM, Finnegan PM, Raman N, Royall AE, Tsai F, Vollbrecht T, Reyes DS, Hepler NL, McDonnell WJ. Functional antibodies exhibit light chain coherence. Nature 2022; 611:352-357. [PMID: 36289331 PMCID: PMC9607724 DOI: 10.1038/s41586-022-05371-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 09/21/2022] [Indexed: 11/08/2022]
Abstract
The vertebrate adaptive immune system modifies the genome of individual B cells to encode antibodies that bind particular antigens1. In most mammals, antibodies are composed of heavy and light chains that are generated sequentially by recombination of V, D (for heavy chains), J and C gene segments. Each chain contains three complementarity-determining regions (CDR1-CDR3), which contribute to antigen specificity. Certain heavy and light chains are preferred for particular antigens2-22. Here we consider pairs of B cells that share the same heavy chain V gene and CDRH3 amino acid sequence and were isolated from different donors, also known as public clonotypes23,24. We show that for naive antibodies (those not yet adapted to antigens), the probability that they use the same light chain V gene is around 10%, whereas for memory (functional) antibodies, it is around 80%, even if only one cell per clonotype is used. This property of functional antibodies is a phenomenon that we call light chain coherence. We also observe this phenomenon when similar heavy chains recur within a donor. Thus, although naive antibodies seem to recur by chance, the recurrence of functional antibodies reveals surprising constraint and determinism in the processes of V(D)J recombination and immune selection. For most functional antibodies, the heavy chain determines the light chain.
Collapse
|
19
|
Xu Z, Ismanto HS, Zhou H, Saputri DS, Sugihara F, Standley DM. Advances in antibody discovery from human BCR repertoires. FRONTIERS IN BIOINFORMATICS 2022; 2:1044975. [PMID: 36338807 PMCID: PMC9631452 DOI: 10.3389/fbinf.2022.1044975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
Antibodies make up an important and growing class of compounds used for the diagnosis or treatment of disease. While traditional antibody discovery utilized immunization of animals to generate lead compounds, technological innovations have made it possible to search for antibodies targeting a given antigen within the repertoires of B cells in humans. Here we group these innovations into four broad categories: cell sorting allows the collection of cells enriched in specificity to one or more antigens; BCR sequencing can be performed on bulk mRNA, genomic DNA or on paired (heavy-light) mRNA; BCR repertoire analysis generally involves clustering BCRs into specificity groups or more in-depth modeling of antibody-antigen interactions, such as antibody-specific epitope predictions; validation of antibody-antigen interactions requires expression of antibodies, followed by antigen binding assays or epitope mapping. Together with innovations in Deep learning these technologies will contribute to the future discovery of diagnostic and therapeutic antibodies directly from humans.
Collapse
Affiliation(s)
- Zichang Xu
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Hendra S. Ismanto
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Hao Zhou
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Dianita S. Saputri
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Fuminori Sugihara
- Core Instrumentation Facility, Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Daron M. Standley
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
- Department Systems Immunology, Immunology Frontier Research Center, Osaka University, Suita, Japan
| |
Collapse
|
20
|
Mahita J, Kim DG, Son S, Choi Y, Kim HS, Bailey-Kellogg C. Computational epitope binning reveals functional equivalence of sequence-divergent paratopes. Comput Struct Biotechnol J 2022; 20:2169-2180. [PMID: 35615020 PMCID: PMC9118127 DOI: 10.1016/j.csbj.2022.04.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 11/26/2022] Open
Abstract
Epitope binning groups target-specific protein binders recognizing the same binding region. The “Epibin” method utilizes docking models to computationally predict competition and identify bins. Epibin recapitulated binding competition of repebody variants as determined by immunoassays. In addition, Epibin enabled identification of ‘paratope-equivalent’ residues in sequence-dissimilar variants. Computational epitope binning can scale to allow characterization of entire antigen-specific antibody repertoires.
The therapeutic efficacy of a protein binder largely depends on two factors: its binding site and its binding affinity. Advances in in vitro library display screening and next-generation sequencing have enabled accelerated development of strong binders, yet identifying their binding sites still remains a major challenge. The differentiation, or “binning”, of binders into different groups that recognize distinct binding sites on their target is a promising approach that facilitates high-throughput screening of binders that may show different biological activity. Here we study the extent to which the information contained in the amino acid sequences comprising a set of target-specific binders can be leveraged to bin them, inferring functional equivalence of their binding regions, or paratopes, based directly on comparison of the sequences, their modeled structures, or their modeled interactions. Using a leucine-rich repeat binding scaffold known as a “repebody” as the source of diversity in recognition against interleukin-6 (IL-6), we show that the “Epibin” approach introduced here effectively utilized structural modelling and docking to extract specificity information encoded in the repebody amino acid sequences and thereby successfully recapitulate IL-6 binding competition observed in immunoassays. Furthermore, our computational binning provided a basis for designing in vitro mutagenesis experiments to pinpoint specificity-determining residues. Finally, we demonstrate that the Epibin approach can extend to antibodies, retrospectively comparing its predictions to results from antigen-specific antibody competition studies. The study thus demonstrates the utility of modeling structure and binding from the amino acid sequences of different binders against the same target, and paves the way for larger-scale binning and analysis of entire repertoires.
Collapse
|
21
|
Khetan R, Curtis R, Deane CM, Hadsund JT, Kar U, Krawczyk K, Kuroda D, Robinson SA, Sormanni P, Tsumoto K, Warwicker J, Martin ACR. Current advances in biopharmaceutical informatics: guidelines, impact and challenges in the computational developability assessment of antibody therapeutics. MAbs 2022; 14:2020082. [PMID: 35104168 PMCID: PMC8812776 DOI: 10.1080/19420862.2021.2020082] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Therapeutic monoclonal antibodies and their derivatives are key components of clinical pipelines in the global biopharmaceutical industry. The availability of large datasets of antibody sequences, structures, and biophysical properties is increasingly enabling the development of predictive models and computational tools for the "developability assessment" of antibody drug candidates. Here, we provide an overview of the antibody informatics tools applicable to the prediction of developability issues such as stability, aggregation, immunogenicity, and chemical degradation. We further evaluate the opportunities and challenges of using biopharmaceutical informatics for drug discovery and optimization. Finally, we discuss the potential of developability guidelines based on in silico metrics that can be used for the assessment of antibody stability and manufacturability.
Collapse
Affiliation(s)
- Rahul Khetan
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
| | - Robin Curtis
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
| | | | | | - Uddipan Kar
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | | | - Daisuke Kuroda
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan.,Medical Device Development and Regulation Research Center, School of Engineering, The University of Tokyo, Tokyo, Japan.,Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan
| | | | - Pietro Sormanni
- Chemistry of Health, Yusuf Hamied Department of Chemistry, University of Cambridge
| | - Kouhei Tsumoto
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan.,Medical Device Development and Regulation Research Center, School of Engineering, The University of Tokyo, Tokyo, Japan.,Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan.,The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Jim Warwicker
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
| | - Andrew C R Martin
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, UK
| |
Collapse
|
22
|
Akbar R, Bashour H, Rawat P, Robert PA, Smorodina E, Cotet TS, Flem-Karlsen K, Frank R, Mehta BB, Vu MH, Zengin T, Gutierrez-Marcos J, Lund-Johansen F, Andersen JT, Greiff V. Progress and challenges for the machine learning-based design of fit-for-purpose monoclonal antibodies. MAbs 2022; 14:2008790. [PMID: 35293269 PMCID: PMC8928824 DOI: 10.1080/19420862.2021.2008790] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 11/04/2021] [Accepted: 11/17/2021] [Indexed: 12/15/2022] Open
Abstract
Although the therapeutic efficacy and commercial success of monoclonal antibodies (mAbs) are tremendous, the design and discovery of new candidates remain a time and cost-intensive endeavor. In this regard, progress in the generation of data describing antigen binding and developability, computational methodology, and artificial intelligence may pave the way for a new era of in silico on-demand immunotherapeutics design and discovery. Here, we argue that the main necessary machine learning (ML) components for an in silico mAb sequence generator are: understanding of the rules of mAb-antigen binding, capacity to modularly combine mAb design parameters, and algorithms for unconstrained parameter-driven in silico mAb sequence synthesis. We review the current progress toward the realization of these necessary components and discuss the challenges that must be overcome to allow the on-demand ML-based discovery and design of fit-for-purpose mAb therapeutic candidates.
Collapse
Affiliation(s)
- Rahmad Akbar
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Habib Bashour
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Puneet Rawat
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Philippe A. Robert
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Eva Smorodina
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Russia
| | | | - Karine Flem-Karlsen
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Department of Pharmacology, University of Oslo and Oslo University Hospital, Norway
| | - Robert Frank
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Brij Bhushan Mehta
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Mai Ha Vu
- Department of Linguistics and Scandinavian Studies, University of Oslo, Norway
| | - Talip Zengin
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Bioinformatics, Mugla Sitki Kocman University, Turkey
| | | | | | - Jan Terje Andersen
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Department of Pharmacology, University of Oslo and Oslo University Hospital, Norway
| | - Victor Greiff
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| |
Collapse
|
23
|
Robinson SA, Raybould MIJ, Schneider C, Wong WK, Marks C, Deane CM. Epitope profiling using computational structural modelling demonstrated on coronavirus-binding antibodies. PLoS Comput Biol 2021; 17:e1009675. [PMID: 34898603 PMCID: PMC8700021 DOI: 10.1371/journal.pcbi.1009675] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 12/23/2021] [Accepted: 11/22/2021] [Indexed: 12/30/2022] Open
Abstract
Identifying the epitope of an antibody is a key step in understanding its function and its potential as a therapeutic. Sequence-based clonal clustering can identify antibodies with similar epitope complementarity, however, antibodies from markedly different lineages but with similar structures can engage the same epitope. We describe a novel computational method for epitope profiling based on structural modelling and clustering. Using the method, we demonstrate that sequence dissimilar but functionally similar antibodies can be found across the Coronavirus Antibody Database, with high accuracy (92% of antibodies in multiple-occupancy structural clusters bind to consistent domains). Our approach functionally links antibodies with distinct genetic lineages, species origins, and coronavirus specificities. This indicates greater convergence exists in the immune responses to coronaviruses than is suggested by sequence-based approaches. Our results show that applying structural analytics to large class-specific antibody databases will enable high confidence structure-function relationships to be drawn, yielding new opportunities to identify functional convergence hitherto missed by sequence-only analysis. Antibodies are a key component of the immune system that combat pathogens by binding to a defined region of their molecular surface (known as an ‘epitope’). The ability to map which antibodies target the same epitopes is crucial when designing non-competing antibody therapeutics or predicting the influence of pathogen mutation on population immunity. While one can use laboratory experiments to deduce when pairs of antibodies engage the same epitope, such experiments are very expensive and time consuming if used to compare on the order of thousands of antibodies. In this work, we report a new computational algorithm (SPACE) that clusters antibodies that target the same epitope based on their predicted 3D structure, as binding site structure is a property often conserved between binders complementary to the same epitope. Unlike existing antibody epitope profiling tools which assume two antibodies must share a high sequence identity/similar genetic basis to engage the same region, our orthogonal method can detect broader patterns of convergent evolution across binders to different pathogen strains, and between antibodies with different genetic and even species origins.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Neutralizing/chemistry
- Antibodies, Neutralizing/genetics
- Antibodies, Viral/chemistry
- Antibodies, Viral/genetics
- Antibodies, Viral/metabolism
- Antibody Specificity
- Antigen-Antibody Complex/chemistry
- Antigen-Antibody Complex/genetics
- Antigen-Antibody Reactions/genetics
- Antigen-Antibody Reactions/immunology
- Antigens, Viral/chemistry
- COVID-19/immunology
- COVID-19/virology
- Computational Biology
- Coronavirus/chemistry
- Coronavirus/genetics
- Coronavirus/immunology
- Databases, Chemical
- Epitope Mapping
- Epitopes, B-Lymphocyte/chemistry
- Epitopes, B-Lymphocyte/genetics
- Humans
- Mice
- Models, Molecular
- Pandemics
- SARS-CoV-2/chemistry
- SARS-CoV-2/genetics
- SARS-CoV-2/immunology
- Single-Domain Antibodies/immunology
Collapse
Affiliation(s)
- Sarah A Robinson
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, United Kingdom
| | - Matthew I J Raybould
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, United Kingdom
| | - Constantin Schneider
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, United Kingdom
| | - Wing Ki Wong
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, United Kingdom
| | - Claire Marks
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, United Kingdom
| | - Charlotte M Deane
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, United Kingdom
| |
Collapse
|
24
|
Raybould MIJ, Marks C, Kovaltsuk A, Lewis AP, Shi J, Deane CM. Public Baseline and shared response structures support the theory of antibody repertoire functional commonality. PLoS Comput Biol 2021; 17:e1008781. [PMID: 33647011 PMCID: PMC7951972 DOI: 10.1371/journal.pcbi.1008781] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 03/11/2021] [Accepted: 02/08/2021] [Indexed: 12/14/2022] Open
Abstract
The naïve antibody/B-cell receptor (BCR) repertoires of different individuals ought to exhibit significant functional commonality, given that most pathogens trigger an effective antibody response to immunodominant epitopes. Sequence-based repertoire analysis has so far offered little evidence for this phenomenon. For example, a recent study estimated the number of shared ('public') antibody clonotypes in circulating baseline repertoires to be around 0.02% across ten unrelated individuals. However, to engage the same epitope, antibodies only require a similar binding site structure and the presence of key paratope interactions, which can occur even when their sequences are dissimilar. Here, we search for evidence of geometric similarity/convergence across human antibody repertoires. We first structurally profile naïve ('baseline') antibody diversity using snapshots from 41 unrelated individuals, predicting all modellable distinct structures within each repertoire. This analysis uncovers a high (much greater than random) degree of structural commonality. For instance, around 3% of distinct structures are common to the ten most diverse individual samples ('Public Baseline' structures). Our approach is the first computational method to find levels of BCR commonality commensurate with epitope immunodominance and could therefore be harnessed to find more genetically distant antibodies with same-epitope complementarity. We then apply the same structural profiling approach to repertoire snapshots from three individuals before and after flu vaccination, detecting a convergent structural drift indicative of recognising similar epitopes ('Public Response' structures). We show that Antibody Model Libraries derived from Public Baseline and Public Response structures represent a powerful geometric basis set of low-immunogenicity candidates exploitable for general or target-focused therapeutic antibody screening.
Collapse
Affiliation(s)
- Matthew I. J. Raybould
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford, United Kingdom
| | - Claire Marks
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford, United Kingdom
| | - Aleksandr Kovaltsuk
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford, United Kingdom
| | - Alan P. Lewis
- Data and Computational Sciences, GlaxoSmithKline Research and Development, Stevenage, United Kingdom
| | - Jiye Shi
- Chemistry Department, UCB Pharma, Slough, United Kingdom
| | - Charlotte M. Deane
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
25
|
Macpherson A, Laabei M, Ahdash Z, Graewert MA, Birtley JR, Schulze MSE, Crennell S, Robinson SA, Holmes B, Oleinikovas V, Nilsson PH, Snowden J, Ellis V, Mollnes TE, Deane CM, Svergun D, Lawson AD, van den Elsen JM. The allosteric modulation of complement C5 by knob domain peptides. eLife 2021; 10:63586. [PMID: 33570492 PMCID: PMC7972453 DOI: 10.7554/elife.63586] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/11/2021] [Indexed: 12/22/2022] Open
Abstract
Bovines have evolved a subset of antibodies with ultra-long heavy chain complementarity determining regions that harbour cysteine-rich knob domains. To produce high-affinity peptides, we previously isolated autonomous 3–6 kDa knob domains from bovine antibodies. Here, we show that binding of four knob domain peptides elicits a range of effects on the clinically validated drug target complement C5. Allosteric mechanisms predominated, with one peptide selectively inhibiting C5 cleavage by the alternative pathway C5 convertase, revealing a targetable mechanistic difference between the classical and alternative pathway C5 convertases. Taking a hybrid biophysical approach, we present C5-knob domain co-crystal structures and, by solution methods, observed allosteric effects propagating >50 Å from the binding sites. This study expands the therapeutic scope of C5, presents new inhibitors, and introduces knob domains as new, low molecular weight antibody fragments, with therapeutic potential. Antibodies are proteins produced by the immune system that can selectively bind to other molecules and modify their behaviour. Cows are highly equipped at fighting-off disease-causing microbes due to the unique shape of some of their antibodies. Unlike other jawed vertebrates, cows’ antibodies contain an ultra-long loop region that contains a ‘knob domain’ which sticks out from the rest of the antibody. Recent research has shown that when detached, the knob domain behaves like an antibody fragment, and can independently bind to a range of different proteins. Antibody fragments are commonly developed in the laboratory to target proteins associated with certain diseases, such as arthritis and cancer. But it was unclear whether the knob domains from cows’ antibodies could also have therapeutic potential. To investigate this, Macpherson et al. studied how knob domains attach to complement C5, a protein in the inflammatory pathway which is a drug target for various diseases, including severe COVID-19. The experiments identified various knob domains that bind to complement C5 and inhibits its activity by altering its structure or movement. Further tests studying the structure of these interactions, led to the discovery of a common mechanism by which inhibitors can modify the behaviour of this inflammatory protein. Complement C5 is involved in numerous molecular pathways in the immune system, which means many of the drugs developed to inhibit its activity can also leave patients vulnerable to infection. However, one of the knob domains identified by Macpherson et al. was found to reduce the activity of complement C5 in some pathways, whilst leaving other pathways intact. This could potentially reduce the risk of bacterial infections which sometimes arise following treatment with these types of inhibitors. These findings highlight a new approach for developing drug inhibitors for complement C5. Furthermore, the ability of knob domains to bind to multiple sites of complement C5 suggests that this fragment could be used to target proteins associated with other diseases.
Collapse
Affiliation(s)
- Alex Macpherson
- UCB, Slough, United Kingdom.,Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Maisem Laabei
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | | | | | | | | | - Susan Crennell
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Sarah A Robinson
- Department of Statistics, University of Oxford, Oxford, United Kingdom
| | | | | | - Per H Nilsson
- UCB, Slough, United Kingdom.,Department of Chemistry and Biomedicine, Linnaeus University, Kalmar, Sweden.,Department of Immunology, Oslo University Hospital, University of Oslo, Oslo, Norway
| | | | | | - Tom Eirik Mollnes
- Department of Immunology, Oslo University Hospital, University of Oslo, Oslo, Norway.,Research Laboratory, Bodø Hospital, K.G. Jebsen TREC, University of Tromsø, Tromsø, Norway.,Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - Charlotte M Deane
- Department of Statistics, University of Oxford, Oxford, United Kingdom
| | - Dmitri Svergun
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
| | | | - Jean Mh van den Elsen
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom.,Centre for Therapeutic Innovation, University of Bath, Bath, United Kingdom
| |
Collapse
|
26
|
Richardson E, Galson JD, Kellam P, Kelly DF, Smith SE, Palser A, Watson S, Deane CM. A computational method for immune repertoire mining that identifies novel binders from different clonotypes, demonstrated by identifying anti-pertussis toxoid antibodies. MAbs 2021; 13:1869406. [PMID: 33427589 PMCID: PMC7808390 DOI: 10.1080/19420862.2020.1869406] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Due to their shared genetic history, antibodies from the same clonotype often bind to the same epitope. This knowledge is used in immune repertoire mining, where known binders are used to search bulk sequencing repertoires to identify new binders. However, current computational methods cannot identify epitope convergence between antibodies from different clonotypes, limiting the sequence diversity of antigen-specific antibodies that can be identified. We describe how the antibody binding site, the paratope, can be used to cluster antibodies with common antigen reactivity from different clonotypes. Our method, paratyping, uses the predicted paratope to identify these novel cross clonotype matches. We experimentally validated our predictions on a pertussis toxoid dataset. Our results show that even the simplest abstraction of the antibody binding site, using only the length of the loops involved and predicted binding residues, is sufficient to group antigen-specific antibodies and provide additional information to conventional clonotype analysis. Abbreviations: BCR: B-cell receptor; CDR: complementarity-determining region; PTx: pertussis toxoid
Collapse
Affiliation(s)
- Eve Richardson
- Department of Statistics, University of Oxford , Oxford, UK
| | - Jacob D Galson
- Alchemab Therapeutics Ltd , London, UK.,Division of Immunology, University Children's Hospital, University of Zurich, Zurich , Switzerland
| | - Paul Kellam
- Kymab Ltd , Cambridge, UK.,Department of Infectious Diseases, Faculty of Medicine, Imperial College London , London, UK
| | - Dominic F Kelly
- Department of Paediatrics, University of Oxford , Oxford, UK.,Oxford University Hospitals NHS Foundation Trust , Oxford, UK
| | | | | | | | | |
Collapse
|
27
|
Raybould MIJ, Rees AR, Deane CM. Current strategies for detecting functional convergence across B-cell receptor repertoires. MAbs 2021; 13:1996732. [PMID: 34781829 PMCID: PMC8604390 DOI: 10.1080/19420862.2021.1996732] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/10/2021] [Accepted: 10/12/2021] [Indexed: 12/11/2022] Open
Abstract
Convergence across B-cell receptor (BCR) and antibody repertoires has become instrumental in prioritizing candidates in recent rapid therapeutic antibody discovery campaigns. It has also increased our understanding of the immune system, providing evidence for the preferential selection of BCRs to particular (immunodominant) epitopes post vaccination/infection. These important implications for both drug discovery and immunology mean that it is essential to consider the optimal way to combine experimental and computational technology when probing BCR repertoires for convergence signatures. Here, we discuss the theoretical basis for observing BCR repertoire functional convergence and explore factors of study design that can impact functional signal. We also review the computational arsenal available to detect antibodies with similar functional properties, highlighting opportunities enabled by recent clustering algorithms that exploit structural similarities between BCRs. Finally, we suggest future areas of development that should increase the power of BCR repertoire functional clustering.
Collapse
Affiliation(s)
- Matthew I. J. Raybould
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford, UK
| | | | - Charlotte M. Deane
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford, UK
| |
Collapse
|